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ABSTRACT: Graphene oxide (GO) has been widely utilized as the
precursor of graphene (GR) to fabricate GR-based hybrid photocatalysts
for solar-to-chemical energy conversion. However, until now, the
properties and roles that GO played in heterogeneous photocatalysis
have remained relatively elusive. In this Review, we start with a brief
discussion of synthesis and structure of GO. Then, the photocatalysis-
related properties of GO, including electrical conductivity, surface
chemistry, dispersibility, and semiconductor properties, are concisely
summarized. In particular, we have highlighted the fundamental
multifaceted roles of GO in heterogeneous photocatalysis, which contain
the precursor of GR, cross-linked framework for constructing aerogel
photocatalyst, macromolecular surfactant, two-dimensional growth template, and photocatalyst by itself. Furthermore, the future
prospects and remaining challenges on developing effective GO-derived hybrid photocatalysts are presented, which is expected to
inspire further research into this promising research domain.

1. INTRODUCTION

Solar-to-chemical energy conversion through photocatalytic
technology has attracted wide attention because it offers a
promising solution to the energy crisis and environmental
pollution issues.1−6 Up to now, various semiconductor-based
photocatalysts have been synthesized and applied for different
reactions, including H2 evolution from water splitting, CO2
reduction to value-added chemicals, atmospheric ammonia
synthesis, pollutant elimination, and organic synthesis.7−13

Nevertheless, one of the crucial problems limiting the
application of semiconductor-based photocatalysts is that
photogenerated charge carriers in the excited state are unstable
and easily recombined, which leads to a relatively inferior
performance of semiconductor photocatalysts.14−16 Therefore,
enhancing the separation and migration of photoinduced
electron−hole pairs is a significant and challenging theme to
boost the performance of semiconductor-based photocatalysts
for target reactions.17−19

Compositing semiconductors with graphene (GR) is
considered as a viable strategy to boost the performance of
semiconductors because the superior conductivity of GR
enables it to efficiently accept and conduct photoinduced
electrons from semiconductors.20−23 Therefore, the more
effective separation of photogenerated electron−hole pairs is
beneficial to improve the photocatalytic activity of semi-
conductors.24−26 Regarding the synthesis of GR-based semi-
conductor hybrid, graphene oxide (GO), on account of its high
yield, abundant surface functional groups, and flexible solution
processability, has been frequently used as the precursor of
GR.27−29 Because of the unique structure and surface

chemistry features, the roles of GO played in heterogeneous
photocatalysis are found to be diverse.11,30 For example, except
for the role as precursor to synthesize GR, GO can also act as
“macromolecular surfactants” to promote the dispersion of
insoluble materials.31−33 The two-dimensional (2D) structure
allows GO to serve as a growth template to induce the
synthesis of composite materials with special morphology.34−36

In addition, GO can also be used as a building block for the
preparation of three-dimensional (3D) GR aerogel-supported
photocatalysts.37−39 Furthermore, GO with appropriate degree
of oxidation can be directly used as a photocatalyst for various
redox reactions.40,41 There have been some excellent reviews
on preparation and applications of GR-based composite
photocatalysts.42−47 However, to the best of our knowledge,
an integral overview that focuses on synthesis, properties, and
multifarious roles of GO in heterogeneous photocatalysis has
been still unavailable. Therefore, it is imperative to compile a
general review from the widely dispersed literature to provide
useful information and stimulate further development in this
significant field.
In this Review, we first briefly reveal the synthesis methods

and structural features of GO. Then, photocatalysis-related
properties of GO, including electrical conductivity, surface
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chemistry, dispersibility, and semiconductor properties, have
been summarized. Next, we put dedicated emphasis on the
multifarious roles of GO in heterogeneous photocatalysis,
which contain precursor of GR, cross-linked framework for
constructing aerogel photocatalyst, macromolecular surfactant,
2D growth template, and photocatalyst (Figure 1). Finally, the

prospective research tendencies and challenges of constructing
GO-derived photocatalysts for solar energy conversion are
presented. This Review is expected to furnish salutary
information for in-depth understanding of the diverse roles
of GO in photocatalysis, thus promoting ongoing interest in
rational utilization of the unique structure and properties of
GO to construct high-performance GR-based photocatalysts
toward target applications.

2. SYNTHESIS AND STRUCTURE OF GRAPHENE
OXIDE

2.1. Synthesis

Similar to GR obtained by stripping graphite, GO can be
obtained by stripping graphite oxide.48−51 Brodie first reported
the preparation of graphite oxide from original graphite in
1859.52 In comparison, the preparations of graphite oxides
have only been activated in the past decade, mainly because of
the initiative contributions of Ruoff et al.53−55 As shown in
Table 1, some typical methods for GO synthesis are
summarized, and their advantages and disadvantages are
discussed. Notably, in 1958, Hummers reported the most
commonly used method today: graphite by oxidation treating
with KMnO4 and NaNO3 in concentrated H2SO4.

56,57 It can
be found that the Hummers oxidation method is more efficient
and safer than Brodie and Staudenmaier methods. Never-
theless, further improvements of the Hummers method are
highly required because this method will release toxic gases
(NO2, N2O4) during the oxidation process.58−60 To address
this problem, some modified Hummers methods have been
proposed.61 For example, in 2010, Tour reported an improved
Hummers method by replacing HNO3 with the less corrosive
H3PO4.

56 This modified Hummers method can not only
address the problem of toxic gas release but also synthesize GO
with higher degree of oxidization and fewer defects in the basal
plane, which makes it attractive to efficiently produce high-
quality GO. In addition, the Hummers method has another
inherent limitation associated with the explosive risk of
permanganate oxidants. In recent years, this problem can be
partially solved by using relatively mild oxidants, such as
K2FeO4.

62 As presented in Figure 2, the oxidation treatment of
graphite makes graphite sheets contain abundant oxygenated
functional groups, which increases the distance and reduces the
van der Waals force between graphite layers, thus promoting
the exfoliation of graphite oxide.1,63,64 GO can be finally
obtained by mechanical stirring or ultrasonic treatment of
graphite oxide in polar organic solvent or water medium.65−67

Figure 1. Schematic illustration of multifarious roles of GO in
heterogeneous photocatalysis.

Table 1. Various Synthesis Methods of GO

name oxidizing agents/steps advantages disadvantages yearref

Brodie KClO3 + HNO3, 60 °C, 4 days first synthetic method request to repeat four oxidation
steps

185952

Staudenmaier KClO3 + HNO3 + H2SO4 simpler and more efficient than
Brodie method

production of toxic gases 189868

Hofmann same as Staudenmaier method, but with HNO3 avoid the usage of corrosive HNO3 production of toxic
gases (NOx)

193769

Hummers and Offeman NaNO3 + KMnO4 + H2SO4, 45 °C, 2 h avoid the usage of corrosive HNO3 production of toxic gases
(NOx)

195857

Kovtyukhova (i) H2SO4 + K2S2O8, P2O5, 80 °C, 6 h high level of oxidation multiple steps and production
of toxic gases (NOx)

199970

(ii) H2SO4 + KMnO4, 35 °C, 2 h
(iii) 30% H2O2

Modified Hummers
method by Hirata

(i) H2SO4 + KMnO4 + NaNO3, 20 °C, 5 days high yield long oxidation reaction 200471

(ii) 30% H2O2

Ang and Loh (i) NaNO3 + H2SO4 + KMnO4, 90 °C, 0.5 h high GO content, more than 90%
monolayer

long duration, multiple steps 200972

(ii) redisperse in DMF + tetrabutyl ammonium
hydroxide + H2O, 90 °C, 2 day

Marcano and Tour (i) KMnO4 + H2SO4 + H3PO4, 50 °C, 12 h. no poisonous gas production creating explosive Mn2O7
intermediates

201056,73

(ii) 30% H2O2

Eigler (i) NaNO3 + H2SO4 + KMnO4, 30 °C, 21 h minimum CO2 production generation of poisonous gases
(NOx)

201374

(ii) 30% H2O2

Peng-Gao K2FeO4 + H2SO4, room temperature, 1 h high yield, Mn ion contamination
can be avoided, efficient

handling difficulty pollution 201562
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2.2. Structure

The chemical composition of GO is analogous to graphite
oxide, including aromatic and aliphatic carbon regions, and the
ratio of C/O in GO is usually maintained at 1.5 to 2.5.75,76

However, the precise structure of GO is still controversial
because of its nonstoichiometric nature and strong hygroscopic
property.77 Over the past few years, various GO structure
models have been presented.1,61,78 Among these, the most
widely accepted is the Lerf−Klinowski model proposed in
1998, which contains epoxy, hydroxyl, and carboxyl
groups.79−81 These oxygen-containing functional groups on

the GO surface enable GO to possess benign dispersion and
adsorption properties.1,82 Various spectral techniques have
been used to comprehend the electronic structure of GO.65,83

For example, Erikson et al. have confirmed the Lerf−Klinowski
model using the high-resolution transmission electron
microscopy (TEM).84 As displayed in Figure 3a, they have
found that the original GR possesses a complete carbon lattice.
However, as shown in Figure 3b,c, GO sheets are filled with
abundant disordered oxidation regions and defective pores
formed after peroxidation of C atoms into CO and CO2.

48,85

These abundant structural defects on GO surface lead to
unsatisfactory electrical conductivity of RGO.48,86

Figure 2. Synthesis diagram of GO from pristine graphite using chemical oxidant method. Reproduced with permission from ref 75. Copyright
2014 American Chemical Society.

Figure 3. (a) Ultrahigh-resolution TEM image of pristine GR. (b) High-contrast aberration-corrected TEM images of GO. (c) Ultrahigh-resolution
TEM image of GO. Reproduced with permission from ref 84. Copyright 2010 Wiley.
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3. PHOTOCATALYSIS-RELATED PROPERTIES OF
GRAPHENE OXIDE

3.1. Electrical Conductivity Properties

Different from GR with superior electrical conductivity, GO is
electrically insulated.3,87 Nevertheless, the conductivity of GO
can be distinctly improved by the reduction treatment due to
the recovery of graphitic networks of sp2 bonds during the
reduction process.76,88−90 Stankovich et al. have evaluated the
conductivity of raw graphite, GO, and reduced graphene oxide
(RGO) with 30% relative humidity.54 The result indicates that
the conductivity of RGO is about 5 orders of magnitude higher
than that of GO and about 10 times lower than that of original
graphite.54,77 In addition, thermal, electrochemical, and
chemical reduction are frequently used to convert GO into
RGO, and thermal reduction techniques generally recover the
conductivity of GO more efficiently than chemical reduction
methods.78,91 While most of the oxygenated functional groups
of GO can be eliminated by reduction treatment, residual
defects lead to inferior conductivity of RGO compared with
defect-free GR.76,92

3.2. Surface Adsorption Properties

Due to the 2D structure, abundant surface oxygenated
functional groups, and high specific surface area, GO is a
desired support to increase the adsorption capacity of
composite photocatalysts.1,93 According to the disparate
reaction system, the forms of reciprocity between adsorbates
(e.g., poisonous metal ions, dyestuff, and organics) and GO are
diverse, which include physical, electrostatic, and chemical
interaction.61 As shown in Figure 4, in addition to physical

adsorption of target reactants on the surface of GO, the surface
oxygen-containing functional groups enables GO to interact
with a wide variety of molecules and metal ions.1 Moreover,
the aromatic regions of GO can form a π−π stacking
interaction with organic pollutants containing aromatic
structures, thus contributing to improving the adsorption of
reaction substrates.45 The increased adsorption ability
contributes to the gathering of the target substrates from the
solution to the surface of the photocatalysts.61,94 As a result,
reactants adsorbed on the GO surface can react effectively with
the active substances, thus speeding up the photoredox
reaction efficiency.45 Notably, 2D GO with a large π-

conjugated structure exhibits excellent adsorption ability for
CO2 molecules, which enables it to be used as a desirable
support for photocatalytic CO2 reduction.

43,95

3.3. Dispersibility Properties

The dispersibility of GO in solvent mainly depends on the
properties of solvent and the functional groups on GO.96

Owing to the abundant oxygenated functional groups, GO can
be dispersed in water and some polar organic solvents, while
GO in nonpolar solvents usually exhibits inferior dispersibility
(Figure 5).97,98 However, the dispersibility of GO is not
entirely determined by the polarity of the solvent.99 For
example, GO can be effectively dispersed in N-methyl
pyrrolidone (NMP) but not in dimethyl sulfoxide (DMSO),
although DMSO possesses the same net dipole moment with
NMP.98 Another primary assumption is that the surface
tension of solvent and GO needs to be matched as much as
possible to obtain a minimum free energy of mixing.31,97

According to the Derjaguin−Landau−Verwey−Overbeek
(DLVO) theory, repulsive forces among charged GO sheets
are significant for the dispersion and aggregation behavior of
GO sheets.100,101 The zeta potential test results indicate that
GO surface is negatively charged, which helps GO to disperse
in solution.102 In addition, the pH is also important for the
stability of the GO dispersion. In basic pH conditions, GO can
be uniformly dispersed because of the mutual repulsion
between GO sheets.103,104 However, acidic pH conditions
lead to obvious aggregation of GO sheets, because the
electrostatic repulsion is not enough to counter accumulation
under the low pH circumstance.65,105 Furthermore, the
thermodynamic and kinetic behavior of GO sheets in solvents
have also been investigated by theoretical calculations, and the
results indicate that the intensive hydrogen bonds between
deprotonated carboxyl groups and H2O molecules can enhance
the dispersibility of GO.106,107

3.4. Semiconductor Properties

The valence band maximum (VBM) and conduction band
minimum (CBM) of GR composed of bonding π and
antibonding π (π*) orbitals, respectively, contact at the
Brillouin zone corners, making the monolithic GR a zero-
bandgap semiconductor.61,108,109 The close C−C distance
results in dense overlap of electron bands, and the behavior of
electrons and holes in the GR is similar to that of mass-free
charges.40,110 As discussed above, GO is covalently embellished
with oxygenated functional groups, and these C−O bonds in
GO destroy the expanded sp2 conjugated network, which leads
to the transform of zero-gap GR to semiconductor GO.111,112

The CBM of GO consists of the antibonding π*-orbital and
the VBM consists of the O 2p orbital, rather than the π-
orbital.113,114 In addition, the band gap of GO gradually
decreases from 3.5 to 1 eV accompanied by the elevated C/O
ratio.115,116 GO with oxygen-containing functional groups can
be considered as a p-type semiconductor, and GO can be
transformed from p-type to n-type semiconductor by
substituting oxygen-containing groups with nitrogen-rich
groups.114,117

4. MULTIFARIOUS ROLES OF GRAPHENE OXIDE IN
PHOTOCATALYSIS

4.1. Precursor of Reduced Graphene Oxide

The most diffusely accepted role of GO is considered to the
precursor of RGO.83,118−121 Table 2 shows a series of typical

Figure 4. Schematic diagram of various adsorption types between
reactants and GO derived hybrid photocatalysts. Reproduced with
permission from ref 93. Copyright 2014 Royal Society of Chemistry.
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Figure 5. Images of GO dispersed in water and various organic solvents. Reproduced with permission from ref 98. Copyright 2010 American
Chemical Society.

Table 2. Various Photocatalytic Applications over RGO-Based Composites

composite photocatalyst photocatalytic applications light source photocatalytic activity enhancement ref

TiO2 nanotube array-RGO degradation of methyl blue (MB) visible light xenon lamp 1.6-fold of blank TiO2 128
ZnO-RGO degradation of MB UV light xenon lamp 1.3-fold of bare ZnO 129
TiO2-RGO photoinactivation of Escherichia coli bacteria solar light 7.5-fold of blank TiO2 130
AgInZnS-RGO H2 evolution form H2O splitting visible light xenon lamp 2-fold of blank AgInZnS 131
ZnS-RGO H2 evolution form H2O splitting visible light xenon lamp 8-fold of blank ZnS 132
ZnIn2S4 nanosheets-RGO H2 evolution form H2O splitting visible light xenon lamp 4-fold of blank ZnIn2S4 nanosheets 133
CdS-RGO H2 evolution form H2O splitting visible light xenon lamp 2-fold of bare ZnS 134
Zn0.5Cd0.5S nanorods- RGO H2 evolution form H2O splitting visible light xenon lamp 2-fold of bare Zn0.5Cd0.5S nanorods 135
TiO2-RGO CO2 reduction into CH4 UV light xenon lamp 2-fold of blank TiO2 127
CdS nanorod-RGO CO2 reduction into CH4 visible light xenon lamp 10-fold of blank CdS nanorod 136
Cu2O-RGO CO2 reduction into CO visible light xenon lamp 6-fold of blank Cu2O 137

Figure 6. (a) Resistances of SEG and SRGO. (b) Schematic illustration of photocatalytic CO2 reduction over SEG-TiO2 hybrid. (c) Photocatalytic
H2 evolution rates over SEG-P25 and SRGO-P25 hybrid. Reproduced with permission from ref 127. Copyright 2011 American Chemical Society.
(d) Resistances of RGO and EGR. (e) Typical SEM image of CdS-2%RGO composite. (f) TEM image of CdS-2%RGO composite. (g) Time-
online photoactivity over CdS, CdS-2%RGO and CdS-2%EGR hybrids. Diagram of H2 evolution over (h) CdS-EGR and (i) CdS-RGO hybrids.
Reproduced with permission from ref 124. Copyright 2018 Elsevier.
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GO derived RGO-based composites for various photocatalytic
applications. After introduction of RGO, the photocatalytic
activity of these composites has an improvement, which is
mainly because RGO can act as an electron conductor to
promote the migration of the photogenerated charge
carriers.122 In 2010, Xu et al. argued that TiO2−RGO
composite photocatalysts are in essence the same as other
TiO2−carbon (carbon nanotubes, fullerenes, and activated
carbon) counterparts with regard to enhancing the photo-
activity of TiO2.

123 The key features for the prepared TiO2-
RGO composites, including the increased adsorptivity of
pollutants, enhanced light absorption intensity and extended
light absorption range, and promoted charge separation and
transportation, can also be observed in their counterparts of
TiO2−CNT prepared via the same approach.3 Therefore, they
emphasize that researchers need to give more effort to
exploring how to rationally utilize intriguing characteristics of
RGO. The conductivity of the RGO is greatly reduced by the
abundant surface defects.124,125 In this regard, the synthesis of
solvent exfoliated graphene (SEG) with decreased defects has
been developed.3,126 For example, Hersam et al. have reported
a comparative research between SEG-P25 and SRGO-P25
hybrid.127 The Raman spectra indicate that the defect density
of SEG is much lower than that of SRGO. In addition, the
conductivity of SEG is obviously higher than that of SRGO
(Figure 6a). The increased conductivity of SEG indicates a
longer electronic mean free path, which accelerates the
migration of photoinduced charge carriers (Figure 6b).
Therefore, SEG-TiO2 hybrids exhibit superior photocatalytic
performance compared with SRGO-TiO2 composites (Figure
6c). In addition, Xu et al. have used the defect-few, commercial
Elicarb graphene (EGR) to prepare EGR-CdS hybrid.124 As
shown in Figure 6d, EGR shows significantly higher
conductivity than RGO. To resolve the poor dispersion defect
of EGR, sodium dodecyl benzene acid (SDBS) has been used
to modify EGR with negatively charged hydrophilic functional
groups. As shown in Figure 6e,f, the positively charged CdS
nanospheres can be compounded with EGR by an electrostatic

self-assembly strategy. Under the same conditions, CdS-EGR
composite exhibits better performance than CdS-RGO
composite for photocatalytic H2 evolution, which is due to
the fact that superior conductivity of EGR can guarantee the
more efficient transfer of photoinduced electrons of CdS
(Figure 6g−i).
Furthermore, Amal et al. have indicated that RGO can act as

an electronic medium in a Z-scheme photocatalytic system.138

In this system, BiVO4 has been selected as the O2-generating
photocatalyst, and Ru-SrTiO3:Rh has been used as the H2-
generating photocatalyst. As shown in Figure 7a, the electrons
are first migrated from BiVO4 to RGO, and then these
accumulated electrons on RGO are combined with holes on
Ru-SrTiO3:Rh. Besides being a photoelectron mediator and
acceptor, GO-derived RGO can also be used as a photo-
sensitizer. Du et al. have utilized theoretical calculations to
research the interfacial interaction of the RGO-TiO2
composite, and the result indicates that electrons on RGO
will transfer to TiO2 under visible light illumination.139 Xu et
al. have provided direct experimental evidence to prove the
photosensitizers role of RGO by designing RGO-ZnS and
RGO-ZnO systems (Figure 7b).140,141 Moreover, Xu et al.
have also indicated that photosensitive efficiency of RGO can
be improved by further oxidation of the GO.142 Further
oxidation reduces the size of GO sheets and increases the
content of oxygen-containing functional groups (the resulting
samples are called Nano GO). Using GO and NanoGO as
precursors, ZnO-RGO and ZnONanoRGO hybrids with
similar structure have been synthesized. The photocatalytic
activity test over ZnO-RGO and ZnO-NanoRGO composite
indicates that NanoRGO shows remarkably higher photo-
sensitive efficiency than RGO (Figure 7c,d). In addition,
controlled experiments and cycle tests manifest that the
presence of residual oxygen-containing functional groups is the
primary factor determining the photosensitive performance of
RGO (Figure 7e). The theoretical calculation indicates that
residual oxygenated functional groups on RGO surface have a
vital effect on its band gap. With the increase of residual

Figure 7. (a) Diagram of Z-scheme system. Reproduced with permission from ref 138. Copyright 2011 American Chemical Society. (b) Diagram
of photosensitive mechanism of RGO in the GR-ZnO composite system. Reproduced with permission from ref 141. Copyright 2013 American
Chemical Society. Photocatalytic performance of (c) ZnO-RGO and (d) ZnO-NanoRGO3 for the reduction of Cr(VI). (e) Recycled testing of
ZnO-10%NanoRGO3. (f) Theoretical calculation results over VBM, CBM and bandgaps of graphene with diverse content of oxygen-containing
functional groups. Reproduced with permission from ref 142. Copyright 2016 American Chemical Society.
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oxygen-containing functional groups, the band gap of RGO
widens with the upshift of CB, which improves the reduction
ability of electrons and enhances the photosensitive efficiency
of RGO (Figure 7f).

4.2. Cross-Linked Framework for Constructing an Aerogel
Photocatalyst

Traditional RGO-based powder photocatalysts are easily
stacked, resulting in failure to make full use of intrinsic
properties of RGO.45 In addition, the recycling of the powder
photocatalyst not only requires complex operation, but also, a
large number of lost photocatalysts in this process may
endanger human health and pollute the environment.61,143

Moreover, agitation is always an unavoidable process to
disperse powder photocatalysts. However, this powerful
mechanical stirring treatment is not in line with practical
applications.144 Constructing macroscopic 3D GR aerogels-
based photocatalysts using GO as a cross-linked framework has
been considered as a promising method to avoid above
issues.145,146 In addition, the macroblock structure of GR
aerogels-based photocatalysts allows them to be easily
separated from aqueous solutions.147 Because GR aerogels
are lightweight, they can be suspended in an aqueous solution
to ensure effective absorption of sunlight and contact with
reactant molecules in practical application.148 Furthermore,
GR aerogels possess other special advantages besides the
characteristics of powder GR sheets.86 On the one hand, the
3D network-like structures can offer multidimensional electron
transport routes, which contribute to the valid migration of
photoinduced electrons. On the other hand, hierarchically
porous structures of GR aerogel can increase specific surface
area, thus promoting the effective adsorption of reac-
tants.149,150 Adding cross-linking agents to a GO solution is
a simple and efficient method to prepare 3D GO aerogels, and
commonly used cross-linking agents include polymers, small
organic molecules, biomolecules, and multivalent ions.151 Shi
et al. have reported the assembly of GO sheets by adding
poly(vinyl alcohol) (PVA) as a cross-linker to induce the
formation of a 3D GO hydrogel.152 During the synthesis
process, the hydrogen bonding interaction between hydroxyl-
rich PVA chains and oxygen-containing functional groups on
GO sheets accounts for forming the cross-linking sites.151 In
addition, hydrothermal reduction of GO is an effective method
to construct GR aerogels-based photocatalysts.145,153 A
suitable reduction temperature is usually necessary, and the
temperatures usually need to be above 150 °C.151,154 For
example, Shi et al. have prepared the GR aerogels through
hydrothermal reduction of GO at 180 °C for 12 h (Figure
8a).155 As presented in Figure 8b−d, the prepared GR aerogels
possess excellent mechanical strength and abundant pore
structure.
Moreover, Wang et al. have reported the synthesis of carbon

quantum dots/GR aerogel (CQDs/GA) hybrids via hydro-
thermal reduction method.156 As shown in Figure 9a, carbon
quantum dots (CQDs) can be well dispersed in aqueous
solution and effectively adsorbed on the GO surface by π−π
interaction. Hydrothermal reduction leads to the removal of
hydrophilic groups of GO, resulting in cross-linking of GO
hydrophobic regions. Meanwhile, the residual hydrophilic
oxygen-containing groups of GO can adsorb a H2O molecule
by hydrogen bonding, which hinders the parallel stacking of
GR nanosheets, thus forming the 3D GR hydrogel structure.
The final 3D CQDs/GR aerogel composites can be obtained

by freeze-drying the CQDs/GR hydrogel. As shown in Figure
9b, electrons in the VB of CQD are excited to the CB and then
migrate to the surface of 3D GR aerogel through a
multidimensional electron transfer pathway, including 2D GR
nanosheets and 3D cross-linking framework, which can
effectively promote the reduction of Cr (VI) to nontoxic Cr
(III).
Except for the hydrothermal reduction method, chemical

reduction can also be used to construct 3D GR aerogel
photocatalysts. Chen et al. have indicated that the reduction
time required to synthesize GR aerogel is disparate for diverse
reductive agents.157 Furthermore, they have also indicated that
the shape of the 3D GR hydrogels prepared by chemical
reduction method can be regulated by changing the shapes of
the reactors. Xu et al. have synthesized RGO-Ti3C2Tx-Eosin Y
(RTiC/EY) hydrogel using NaHSO3 as reducing agent.158 As
shown in Figure 10a, Ti3C2Tx, EY, NaHSO3, and GO are first
mixed to obtain a colloid solution, and then the mixed colloids
react at 70° to form RTiC/EY hydrogels. The RTiC/EY
aerogel can be obtained after freeze-drying the RTiC/EY
hydrogel, and the RTiC/EY aerogel presents a porous
structure with thin pore walls (Figure 10b). As displayed in
Figure 10c,d, under the same conditions, the RTiC/EY aerogel
has showed obviously better performance than the RTiC/EY
powder in reduction of Cr (VI) and photocatalytic hydro-
genation of 4-nitroaniline (4-NA). As schematically illustrated
in Figure 10e, there are two main reasons for the elevated
photocatalytic performance of RTiC/EY aerogels. First, the
porous structure of the RTiC/EY aerogel endows them to
possess multidimensional electron migration route, which
accelerates the transfer of electrons from EY. In addition, the
increased surface area of RTiC/EY aerogels can promote the
adsorption of reactants.
4.3. Macromolecular Surfactant

A large number of hydrophilic oxygenated functional groups
make GO possess excellent water solubility.48,159 In addition,
aromatic regions of GO can provide effective sites for
interaction with some insoluble substances by π−π inter-

Figure 8. (a) Picture of GO dispersion before and after hydrothermal
reduction. (b) Picture of 3D GR aerogel. (c, d) SEM images of 3D
GR aerogel. Reproduced with permission from ref 155. Copyright
2010 American Chemical Society.
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actions.83,160 As a result, the unique structural properties of
GO enable it to be a promising “macromolecular surfactant”.
Huang et al. have demonstrated that GO as surfactants can be
used to disperse single-walled carbon nanotubes
(SWCNTs).31,99 As shown in Figure 11a,b, SWCNTs cannot
be well dispersed in water, and the SEM image shows the

stacked structure of SWCNTs. However, when SWCNTs have
been fully sonicated in GO solution, SWCNTs can be
effectively dispersed, and the SEM image reveals that the
SWCNTs are disentangled and highly dispersed (Figure
11c).161 Furthermore, Xu et al. have also reported that GO
can be used as a surfactant to disperse commercial EGR and

Figure 9. (a) Synthesis schematic of the 3D CQDs/GA hybrid. (b) Diagram of the reaction mechanism over 3D CQDs/GA hybrids. Reproduced
with permission from ref 156. Copyright 2018 Elsevier.

Figure 10. (a) Preparation diagram of RTiC hydrogel. (b) SEM image of RTiC aerogel. (c, d) Results of photocatalytic activity test over RTiC/EY
hydrogel and RTiC/EY powder. (e) Schematic diagram of photocatalytic reaction mechanism. Reproduced with permission from ref 158.
Copyright 2019 American Chemical Society.
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provides basic framework for constructing 3D RGO@EGR-
Eosin Y (RGO@EGR-EY) aerogel.102 As shown in Figure 11d,
C 1s X-ray photoelectron spectroscopy (XPS) of GO and EGR
indicates that GO possesses abundant oxygenated functional
groups, while the EGR surface lacks oxygenated functional
groups. After the hydrophobic EGR powders are fully
sonicated in GO solution, the GO@EGR suspension can
remain stable even after two months of deposition (Figure
11e). Moreover, as shown in Figure 11f,g, the contact angle of
the GO@EGR film is smaller than that of the EGR membrane,
which indicates that GO as surfactant can effectively improve
the hydrophilicity of EGR. Figure 11h presents the resistivity
of obtained samples, and the result shows that the conductivity
of RGO@15%EGR-2EY aerogel is significantly higher than
that of RGO-2EY aerogel. The enhanced conductivity of
RGO@15%EGR-2EY aerogel promotes the migration of
photoinduced charge carriers between the RGO@15%EGR

aerogel and EY, thus boosting the photocatalytic performance
of RGO@15%EGR-2EY aerogel (Figure 11i).
In addition to dispersing insoluble carbon materials, GO can

also be used as surfactants to induce the synthesis of
semiconductor and metal composites. For example, Yao et al.
have used GO as surfactant to construct flower-like ZnO, and
GO can induce the synthesis of flower-like ZnO more
effectively than classical surfactants, such as dodecyl
trimethylammonium bromide (CTAB) and dodecyl sweet
methyl base.162 Furthermore, Pan et al. have indicated that GO
as a macromolecular surfactant can be used to regulate
morphology and induce oxygen vacancy formation in ZnO.163

Notably, RGO cannot act as a macromolecular surfactant like
GO, indicating that the morphology regulation of ZnO is
primarily attributed to the oxygenated functional groups on
GO surfaces. Furthermore, Zhang et al. have also indicated

Figure 11. (a) Pictures of GO, SWCNTs, and SWCNTs/GO dispersed in water. SEM images of SWCNTs (b) before and (c) after sonication with
GO. Reproduced with permission from ref 161. Copyright 2012 Royal Society of Chemistry. (d) C 1s XPS spectra of GO and EGR. (e) Pictures of
GO, EGR, and GO@EGR dispersed in water. Contact angle measurement for (f) EGR and (g) GO@EGR. (h) Resistivity−pressure (R−P) curves
of obtained samples. (i) Photocatalytic reduction of Cr(VI) over different samples. Reproduced with permission from ref 102 Copyright 2010
Elsevier.

Figure 12. (a) Preparation diagram of ZnO-CdS and RGO-ZnO-CdS hybrids. SEM images of (b, c) ZnO-CdS and (d, e) RGO-ZnO-CdS hybrids.
Reproduced with permission from ref 170. Copyright 2015 Wiley.
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that GO can act as surfactant to facilitate the preparation of a
stable Au−Pd alloy.164

4.4. Two-Dimensional Growth Template

The unique 2D structure and amenable wet-chemistry
processability of GO enable it to be used as a versatile
template for the construction of nanomaterials with various
morphologies.44,165 Notably, GO can be simply eliminated by
calcination in air, thus avoiding the utilization of harmful
acids/base.166,167 Furthermore, in some situations, a GO

template can also be directly used to promote the electron
transfer in the photocatalytic system, which not only avoids
additional removal process but also enhances the photo-
catalytic activity of composites.168 Up to now, a variety of
composite photocatalysts with specific morphologies have been
prepared by using GO as 2D growth template.44,169 For
example, Han et al. have used GO as a 2D growth template for
in situ growth of 1D ZnO nanorod and the synthesis of RGO-
ZnO-CdS ternary composites using CdS as photosensitizer

Figure 13. (a, b) SEM images of ZnS(EN)0.5 NS and GO. (c, d) Diagram of a ZnS(EN)0.5 NS wrapped in GO sheets. (e−g) Synthetic diagram of
ZnS-NF@RGO. (h) TEM image of the ZnS-NF@RGO. Reproduced with permission from ref 172. Copyright 2015 Wiley.

Figure 14. (a) Synthesis diagram of transition metal hydroxides-GR composites. (b, c) SEM images of Ni(OH)2-10%GR. (d) TEM image of
Ni(OH)2-10%GR. (e, f) SEM images of bare Ni(OH)2. (g) TEM image of bare Ni(OH)2. Reproduced with permission from ref 95. Copyright
2020 Springer Nature.
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(Figure 12a).170 As displayed in Figure 12b−e, the blank ZnO
presents a stacked star-like morphology, but when GO has
been used as growth templates, the ZnO-RGO composite
shows a uniform nanorod array morphology. Abundant
oxygenated functional groups of GO can serve as effective
sites for anchoring ZnO seeds, as well as induce the
heteroepitaxial growth of ZnO nanorod array.
Especially, GO as 2D growth templates have unique

advantages in inducing synthesis of 2D composites materi-
als.25,61 For instance, Liu et al. have prepared a series of 2D
porous metal oxide by using GO as growth templates.171 Zhao
et al. have synthesized 2D ZnS nanoframe (NF)@GO
composites using 2D GO as growth templates.172 As shown
in Figure 13a−c, the ZnS-ethylenediamine (ZnS(EN)0.5)
nanosheets are selected as the precursors of the ZnS NF,
and ZnS(EN)0.5 nanosheets are primarily wrapped by GO to
form an envelope-like quasi-2D space. The evolution of the
ZnS(EN)0.5 sheets is confined within the quasi-2D space,
which efficiently protects the side edges of ZnS(EN)0.5 sheets
from collapse and facilitates the migration of Zn2+ and S2− ions
from interiors to the side edges of the ZnS(EN)0.5 sheets
(Figure 13d−g). Therefore, ZnS(EN)0.5 sheets can be
gradually transformed into ZnS NFs assembled on RGO, as
presented in Figure 13h.
Furthermore, abundant oxygenated functional groups make

GO negatively charged and can be used as an effective
template for electrostatic self-assembly with positively charged
materials. Chen et al. have reported electrostatic self-assembly
of uniform CdS nanospheres (NSPs) with negatively charged
GO to synthesize CdS NSPs/RGO composite.173 Further-
more, Xu et al. have reported the preparation of different
transition metal hydroxides nanosheet arrays onto 2D platform

of GO.95 As shown in Figure 14a, after transition metal
precursors are added into GO solution, the electrostatic
interaction between GO and transition metal cations results in
an intimate adsorption of transition metal cations on the
surface of GO. Therefore, GO as growth template can induce
the heteronucleation and directional crystal growth of
transition metal hydroxides in solution phase. As shown in
Figure 14b−d, SEM images of Ni(OH)2-10%GR show that a
Ni(OH)2 nanosheet array can be uniformly grown on the
surface of GO templates. However, without GO as the growth
template, the prepared bare Ni(OH)2 presents a sphere-like
aggregated structure, which is because nuclear formation and
crystal growth of bare Ni(OH)2 lack steric hindrance, thereby
resulting in an omnidirectional and superimposed assembly
(Figure 14e−g).
4.5. Photocatalyst

Apart from GR-semiconductor composite photocatalysts as
discussed above, individual GO can also act as a photocatalyst,
because GO with suitable oxidation degree exhibits semi-
conductor properties.1,40 For instance, Teng et al. have
indicated GO with band gap of 2.4−4.3 eV can be utilized
as photocatalysts to produce H2 from water splitting.113,114 As
presented in Figure 15a, the band gap of GO increases with the
elevated oxidation degree, and VBM or CBM of GO1, GO2
and GO3 are suitable for O2 and H2 evolution. Nevertheless, in
the actual photocatalytic activity test, only the GO3 with the
highest degree of oxidation can produce O2, while GO1 and
GO2 cannot produce O2, which is because the VBM position
of GO will change after irradiation, and only irradiated GO3
(irr-GO3) has a sufficiently positive VBM for water oxidation
(Figure 15b)

Figure 15. Energy level diagrams of (a) GO and (b) irr-GO. Reproduced with permission ref 40. Copyright 2011 American Chemical Society. (c)
H2 evolution rates of GO and P-GO. Reproduced with permission from ref 175. Copyright 2013 Wiley. (d) Diagram of p−n heterojunction formed
at the interface between GO and TO2. Reproduced with permission ref 177. Copyright 2015 American Chemical Society.
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The introduction of cocatalysts is a simple and effective way
to optimize performance of GO.76,174 Agegnehu et al. have
reported that deposition of Ni and NiO cocatalysts on GO can
boost the performance of GO for photocatalytic H2 evolution
form H2O splitting.76 Compared with bare GO, the H2
evolution rates of NiO-GO and Ni-GO hybrid have increased
by about 4 and 7 times, respectively. Heteroatom doping of
GO is another efficient way to enhance the performance of
GO. For example, Marcos-Sańchez et al. have synthesized P-
doped GO (P-GO) and found the H2 generation rate of P-GO
is obviously higher than that of GO (Figure 15c).175 In
addition, similar phenomena can also be seen in the N-doped
GO (N-GO) as reported by Garcia-Sańchez et al.176

Furthermore, GO with a large number of oxygen-containing
functional groups can be considered as a p-type semi-
conductor, and Chen et al. have indicated that p-type GO
with n-type TiO2 can form p−n heterojunction, which
contributes to the efficient separation of photoinduced
electron−hole pairs (Figure 15d).177

GO can be utilized not only as a photocatalyst for H2
production but also as a photocatalyst for CO2 reduction to
produce useful fuels.178,179 Chen et al. have reported that GO
as a photocatalyst can drive the conversion of CO2 to
methanol, and the photocatalytic performance of GO is
obviously better than that of P25.180 Furthermore, they have
also prepared a series of Cu cocatalyst decorated GO (Cu/
GO) composites by a one-step microwave method.181 As
displayed in Figure 16a, the generation rate of methanol and
acetaldehyde over the optimal Cu/GO-2 (10% Cu) hybrid is
distinctly higher than that of GO. The superior photocatalytic
performance of the Cu/GO-2 hybrid compared with GO is

mainly due to the fact that introduction of Cu cocatalyst can
promote the separation of photoinduced electron−hole pairs
in GO (Figure 16b). In addition, Cu/GO hybrids with
disparate Cu cocatalyst contents possess different energy band
structures. As shown in Figure 16c, CBM of Cu/GO-1 (5%
Cu) and Cu/GO-2 is viable for the conversion of CO2 to
methanol and acetaldehyde. However, the CBM of Cu/GO-3
(15% Cu) is lower than the CO2/CH3OH reduction potential,
which results in the disappearance of methanol in product.

5. CONCLUSIONS AND PERSPECTIVES

In this Review, the synthesis, structural, photocatalysis-related
properties, and roles of GO in photocatalysis have been
summarized. In addition to acting as precursor to synthesize
GR, GO can also act as a cross-linked framework for
constructing an aerogel photocatalyst, a macromolecular
surfactant to disperse insoluble materials, a 2D growth
template, and a photocatalyst by itself. Inspired by the current
developments described above, some challenges and oppor-
tunities for further advancement in this research field are
presented as follows:
First, a large number of strong acids and oxidants are

inevitably used for current GO synthesis, which causes serious
environmental pollution and operational safety problems. In
addition, the dispersibility, conductivity, and adsorption
property of GO are mainly determined by its size, layer
number, and degree of oxidation. However, the GO prepared
by existing methods is usually inhomogeneous, leading to an
obvious uncertainty in the structure−property correlation.
Therefore, more efforts need to be paid to develop
environmentally friendly methods for uniform GO preparation.

Figure 16. (a) Product generation rates over P25, GO, and Cu/GO. (b) Diagram of photocatalytic CO2 reduction mechanism over Cu/GO. (c)
Energy band structure of GO and Cu/CO composites. Reprinted with permission from ref 181. Copyright 2014 American Chemical Society.
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Second, the electrical conductivity of GO-derived RGO has
been remarkably decreased because of the residual oxygen-
containing functional groups and a large number of defects in
RGO. Improving the electrical conductivity of RGO is a
direction that needs persistent endeavor in the future. In this
regard, efficient reduction methods need to be developed to
reduce the residual oxygenated functional groups and restore
π-conjugation of RGO as much as possible. In addition,
heteroatom doping of RGO is also a promising way to improve
the electrical conductivity of RGO.
Third, there are still many issues that need to be solved for

further development. For example, a convincing explanation is
still absent for the semiconductor character of GO. Besides, the
exact structure of GO has also not been confirmed. Hence,
more in-depth systemic investigations for these issues from
both theoretical and experimental aspects are highly desirable.
Notably, rapidly developed in situ characterization techniques
allow real-time detection of changes in the atomic structure of
the photocatalyst, which will help to understand the semi-
conductor properties of GO and accurately elucidate structural
characteristics of GO.
Fourth, the current applications of GO-derived composites

mainly focus on photocatalytic degradation pollutants and H2

evolution from water splitting. Applications in photoreduction
of CO2 and atmospheric ammonia synthesis need further
exploration. Furthermore, most current photocatalytic reac-
tions require the addition of sacrificial agents, which not only
significantly augments the reaction cost but also squanders the
energy of photoinduced charge carriers. To solve this problem,
rational design of a dual-function reaction system, in which
photocatalytic oxidation and reduction reactions operate in a
harmonious manner, will be an effective way.
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