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A B S T R A C T

We investigated the whole genome sequence of a freshwater agar-degrading bacterium Cellvibrio sp. KY-
GH-1 (KCTC13629BP) to explore genetic information encoding agarases which hydrolyze agar into its
monomers. The complete genome of KY-GH-1 comprised 5,762,391 base pairs (bp) with 47.9% GC
content, and contained 5080 protein-encoding sequences, including nine β-agarase genes and two α-
neoagarobiose hydrolase (α-NABH) genes in an agarase gene cluster spanning approximately 77 kb. Based
on these genetic information, the degradation of agar into monomers (D-galactose and 3,6-anhydro-L-
galactose) by KY-GH-1 was predicted to be initiated by endolytic GH16 β-agarases and endolytic GH86 β-
agarases, further processed by exolytic GH50 β-agarases, and then terminated by exolytic GH117 α-
NABHs. This study reveals the diversity and abundance of agarase genes, and provides insight into their
roles in the agar-degrading enzyme machinery of Cellvibrio sp. KY-GH-1.
© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Agar is a complex polysaccharide that is abundant in the cell
walls and intracellular spaces of marine red algae such as Gelidium
and Gracilaria. It comprises a mixture of neutral agarose and
charged agaropectin. Agarose contains alternating residues of α-
1,3-linked 3,6-anhydro-L-galactose (AHG) and β-1,4-linked D-
galactose; agaropectin has the same repeating units with some
replacement of AHG residues with L-galactose sulfate and partial
replacement of the D-galactose residues with pyruvic acid acetal
4,6-O-(1-carboxyethylidene)-D-galactose [1].

Agar forms a stable gel at low concentrations and is generally
resistant to microbial degradation.

Therefore, it is widely used as a gelling agent in food
industries, microbial culture media, and several other biotech-
nological techniques. In addition, agaro-oligosaccharides and
neoagaro-oligosaccharides, which are agar-degrading products,
have been shown to exert antioxidant activity [2], antitumor
activity [3,4], prebiotic effect [5], and moisturizing effect [6],
anti-inflammatory activity [7], and anti-diabetic and anti-
obesity effects [8]. Since an agar-degrading bacterium Bacillus
gelaticus was first isolated from seawater by Gran in 1902, several
genera of agar-degrading bacteria including Acinetobacter, Agar-
ivorans, Alteromonas, Cellulophaga, Cytophaga, Flammeovirga,
Gayadomonas, Microbulbifer, Pseudoalteromonas, Pseudomonas,
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Saccharophagus, Thalassomonas, Vibrio, and Zobellia have been
identified, mainly in marine environments [9–11]. Few genera of
non-marine agar-degrading bacteria have also been isolated from
freshwater environments or terrestrial soil environments, includ-
ing Alteromonas, Bacillus, Cellvibrio, Cytophaga, Paenibacillus,
Streptomyces, and Thermoanaerobacter [11–13].

Agar-degrading bacteria produce agarases to degrade agar
into D-galactose and AHG, which act as carbon and energy
sources. Agarases are divided into two types depending on their
mode of cleavage; α-agarase (EC 3.2.1.158) cleaves the α-(1,3)
glycosidic linkage, whereas the β-agarase (EC 3.2.1.81) cleaves
the β-(1,4) glycosidic linkage [9]. Although numerous research-
ers have studied the biochemical and enzymatic properties of
bacterial agarases, they have examined either a single agarase
purified from agar-degrading bacteria or a recombinant agarase
produced in a bacterial expression system from its gene. The
reported agarases were mostly agar-liquefying endo-type β-
agarases which cleave the β-1,4-linkage of agar to produce
neoagaro-oligosaccharides [9,10]. There have been fewer
reports on α-agarases which hydrolyze the α-1,3-linkage of
agar to produce agaro-oligosaccharides. Analyses of the amino
acid sequence similarities of bacterial agarases based on the
Carbohydrate-Active Enzymes (CAZyme) database have
revealed that β-agarases belong to four glycoside hydrolase
(GH) families, i.e., GH16, GH50, GH86, and GH118 [14–16],
whereas α-agarases belong to two families, i.e., GH96 and
GH117 [17,18]. The GH16, GH86, and GH118 β-agarases are
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Fig. 2. Phylogenetic relationships of KY-GH-1 and related Cellvibrio species based
on 16S rDNA gene sequence similarities. The tree was constructed by the neighbor-
joining method [21], and approximately 1497 nucleotides were used for
comparison. The 16S rRNA gene.
(DQ084459) of Pseudomonas fluorescence FLM05-1 was used as the outgroup.
Numbers at nodes are levels of bootstrap support; only values above 50% are given.
Scale bar represents one nucleotide substitution per 100 nucleotides.

Table 1
Features of the Cellvibrio sp. KY-GH-1 genome.

Features Value

Total reading base pairs (bp) 1,219,212,882
Contig number 1
Total size, N50 (bp) 5,762,391
Read coverage 210
GC content (%) 47.9
tRNAs 48
rRNAs 9
Protein-coding sequences 5080
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endolytic and mainly produce neoagarotetraose (NA4)/
neoagarohexaose (NA6), NA6/neoagarooctaose (NA8), and
NA8/neoagarodecaose (NA10), respectively. The GH50 β-agar-
ases are exolytic and mainly produce neoagarobiose (NA2)
[9,19]. The GH96 α-agarases mainly produce agarobiose from
agarose; the GH117 enzyme α-neoagarobiose hydrolase
(α-NABH) catalyzes the hydrolytic degradation of NA2 to D-
galactose and AHG [18].

Although the previous studies on the individual agarases
have improved our understanding of the diversity and
redundancy of bacterial agarases, it remains unclear what
combination of agarases is required for efficient degradation of
agar into its monomers in agar-degrading bacteria. Recently,
we have isolated an agar-degrading bacterial strain KY-GH-1
from freshwater sediments from Shinchun River, Daegu city,
Republic of Korea. The bacterial strain KY-GH-1 was capable of
exerting shallow depression around the colonies on the basal
medium plate (0.2% NaNO3, 0.05% polypeptone, 0.05% K2HPO4,
0.05% MgSO4�7H2O, 0.01% CaCl2�2H2O, 0.01% NaCl, 0.002%
FeSO4�7H2O, 0.02% MnSO4, and 1.8% agar), and was curved rod
form (Fig. 1A and B). For the taxonomic identification of the
strain KY-GH-1, the 16S rRNA gene (~1.5 kb) was selectively
amplified from the chromosomal DNA by polymerase chain
reaction and the nucleotide sequence was determined as
previously described [11]. When the 16S rDNA sequence was
aligned with those available in the GenBank nucleotide
sequence database by using the BLASTN search program, it
exhibited maximum homology with Cellvibrio species and
appeared to be 99.1% identical to Cellvibrio fibrivorans strain R-
4079 (Fig. 2).

To elucidate the agar-degrading enzyme machinery in
Cellvibrio sp. KY-GH-1, we analyzed the entire genome using a
PacBio RS II Sequencer [20], and conducted the genome assembly
using SMRT Analysis software (v2.3.0 HGAP.2). We found that the
complete circular genome, which consisted of one contig,
comprised 5,762,391 bp with 47.9% GC contents (Table 1). The
read coverage was 210 � . The RNAmmer and tRNAscan-SE
programs predicted that there were 48 tRNA genes and 9 rRNA
genes. Protein-coding sequences (CDS), which were predicted
using Glimmer 3.0 and were annotated by comparisons with
NCBI-nr, UniRef90, COG, and KEGG databases using BLAST
version 2.2.26, numbered 5080. Among the 5080 CDS, we detected
four GH16 β-agarase genes (β-CvAga16A, β-CvAga16B, β-CvAga16C,
β-CvAga16D), three GH50 β-agarase genes (β-CvAga50A, β-
CvAga50B, β-CvAga50C), and two GH86 β-agarase genes
Fig. 1. An agar plate with an agar-degrading KY-GH-1 colonies (A), and photomicro
magnification (B).
(β-CvAga86A, β-CvAga86B), as well as two GH117 α-NABH genes
(α-CvNabh117A, α-CvNabh117B) in an agarase gene cluster
spanning approximately 77 kb (Fig. 3 and Table 2). The agarase
gene cluster appeared to be located between +3313 kb and
+3390 kb based on the translation start site (+1) of the DNA
replication initiation protein gene, DnaA, on the genome sequence.
In contrast, neither the GH118 β-agarase gene nor the GH96 α-
agarase gene was detected in the CDS.
graph of the agarolytic strain KY-GH-1 taken by light microscopy with �1000



Fig. 3. Circular representation of Cellvibrio sp. KY-GH-1 genome showing genomic features, and structure of the agarase gene cluster (~77 kb) encoding nine β-agarases
and two α-neoagarobiose hydrolases (α-NABHs).

Table 2
Characteristics of predicted agarase genes in the Cellvibrio sp. KY-GH-1 genome.

Gene name Mode of activity Nucleotide
length (bp)

Protein size (kDa) Major products

β-CvAga16A endolytic-β-agarase 1,434 52.5 NA4, NA6
β-CvAga16B endolytic-β-agarase 1,794 65.7 NA4, NA6
β-CvAga16C endolytic-β-agarase 1,773 64.9 NA4, NA6
β-CvAga16D endolytic-β-agarase 2,997 109.8 NA4, NA6
β-CvAga50A exolytic-β-agarase 2,397 87.8 NA2
β-CvAga50B exolytic-β-agarase 2,319 84.9 NA2
β-CvAga50C exolytic-β-agarase 2,313 84.7 NA2
β-CvAga86A endolytic-β-agarase 2,136 78.2 NA6, NA8
β-CvAga86B endolytic-β-agarase 4,515 165.4 NA6, NA8
α-CvNabh117A exolytic-α-NABH 1,095 40.0 D-galactose, AHG
α-CvNabh117B exolytic-α-NABH 1,179 43.1 D-galactose, AHG

Symbols: AHG, 3,6-anhydro-L-galactose; NA2, neoagarobiose; NA4, neoagarotetraose; NA6, neoagarohexaose; NA8, neoagarooctaose; NA10, neoagarodecaose.
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If Cellvibrio sp. KY-GH-1 produces endolytic GH16 β-agarases,
endolytic GH86 β-agarases, exolytic GH50 β-agarases, and
exolytic GH117 α-NABHs as components of its agar-degrading
enzyme machinery, the degradation of agar into monomers (D-
galactose and AHG) will be initiated by endolytic GH16 β-agarases
and endolytic GH86 β-agarases, further processed by exolytic
GH50 β-agarases, and then terminated by exolytic GH117 α-NABHs
(Fig. 4).

Nucleotide sequence accession numbers

The complete genome sequence of Cellvibrio sp. KY-GH-1 has
been deposited in the GenBank database under accession number
CP031728. The strain is available from the Korean Collection for
Type Cultures (Jeongeup, Republic of Korea) under the accession
number KCTC13629BP.
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Fig. 4. Schematic diagram of the process by which Cellvibrio sp. KY-GH-1 degrades agarose.
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