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Abstract Modeling distributions of citations to scientific papers is crucial for under-

standing how science develops. However, there is a considerable empirical controversy on

which statistical model fits the citation distributions best. This paper is concerned with

rigorous empirical detection of power-law behaviour in the distribution of citations

received by the most highly cited scientific papers. We have used a large, novel data set on

citations to scientific papers published between 1998 and 2002 drawn from Scopus. The

power-law model is compared with a number of alternative models using a likelihood ratio

test. We have found that the power-law hypothesis is rejected for around half of the Scopus

fields of science. For these fields of science, the Yule, power-law with exponential cut-off

and log-normal distributions seem to fit the data better than the pure power-law model. On

the other hand, when the power-law hypothesis is not rejected, it is usually empirically

indistinguishable from most of the alternative models. The pure power-law model seems to

be the best model only for the most highly cited papers in ‘‘Physics and Astronomy’’.

Overall, our results seem to support theories implying that the most highly cited scientific

papers follow the Yule, power-law with exponential cut-off or log-normal distribution. Our

findings suggest also that power laws in citation distributions, when present, account only

for a very small fraction of the published papers (less than 1 % for most of science fields)

and that the power-law scaling parameter (exponent) is substantially higher (from around

3.2 to around 4.7) than found in the older literature.
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Introduction

It is often argued in scientometrics, social physics and other sciences that distributions of

some scientific ‘‘items’’ (e.g., articles, citations) produced by some scientific sources (e.g.,
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authors, journals) have heavy tails that can be modelled using a power-law model. These

distributions are then said to conform to the Lotka’s law (Lotka 1926). Examples of such

distributions include author productivity, occurrence of words, citations received by

papers, nodes of social networks, number of authors per paper, scattering of scientific

literature in journals, and many others (Egghe 2005). In fact, power-law models are widely

used in many sciences as physics, biology, earth and planetary sciences, economics,

finance, computer science, and others (Newman 2005; Clauset et al. 2009). Models

equivalent to Lotka’s law are known as Pareto’s law in economics (Gabaix 2009) and as

Zipf’s law in linguistics (Baayen 2001). Appropriate measuring and providing scientific

explanations for power laws plays an important role in understanding the behaviour of

various natural and social phenomena.

This paper is concerned with empirical detection of power-law behaviour in the dis-

tribution of citations received by scientific papers. The power-law distribution of citations

for the highly cited papers was first suggested by SollaPrice (1965), who also proposed a

‘‘cumulative advantage’’ mechanism that could generate the power-law distribution

(SollaPrice 1976). More recently, a growing literature has developed that aims at mea-

suring power laws in the right tails of citation distributions. In particular, Redner (1998),

Redner (2005) found that the right tails of citation distributions for articles published in

Physical Review over a century and of articles published in 1981 in journals covered by

Thomson Scientific’s Web of Science (WoS) follow power laws. The latter data set was

also modelled with power-law techniques by Clauset et al. (2009) and Peterson et al.

(2010). The latter study also used data from 2007 list of the living highest h-index chemists

and from Physical Review D between 1975 and 1994. VanRaan (2006) observed that the

top of the distribution of around 18,000 papers published between 1991 and 1998 in the

field of chemistry in Netherlands follows a power law distribution. Power-law models were

also fitted to data from high energy physics (Lehmann et al. 2003), data for most cited

physicists (Laherrère and Sornette 1998), data for all papers published in journals of the

American Physical Society from 1983 to 2008 (Eom and Fortunato 2011), and to data for

all physics papers published between 1980 and 1989 (Golosovsky and Solomon 2012).

Recently, Albarrán and Ruiz-Castillo (2011) tested for the power-law behavior using a

large WoS dataset of 3.9 million articles published between 1998 and 2002 categorized in

22 WoS research fields. The same dataset was also used to search for the power laws in the

right tail of citation distributions categorized in 219 WoS scientific sub-fields (Albarrán

et al. 2011a, b). These studies offer the largest existing body of evidence on the power-law

behaviour of citation distributions. Three major conclusions appear from them. First, the

power-law behavior is not universal. The existence of power law cannot be rejected in the

WoS data for 17 out of 22 and for 140 out of 219 sub-fields studied in Albarrán and Ruiz-

Castillo (2011) and in Albarrán et al. (2011a, b), respectively. Secondly, in opposition to

previous studies, these papers found that the scaling parameter (exponent) of the power-

law distribution is above 3.5 in most of the cases, while the older literature suggested that

the parameter value is between 2 and 3 (Albarrán et al. 2011). Third, power laws in citation

distributions are rather small—on average they cover just about 2 % of the most highly

cited articles in a given WoS field of science and account for about 13.5 % of all citations

in the field.

The main aim of this paper is to use a statistically rigorous approach to answer the

empirical question of whether the power-law model describes best the observed distribu-

tion of highly cited papers. We use the statistical toolbox for detecting power-law

behaviour introduced by Clauset et al. (2009). There are two major contributions of the

present paper. First, we use a very large, previously unused data set on the citation
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distributions of the most highly cited papers in several fields of science. This data set

comes from Scopus, a bibliographic database introduced in 2004 by Elsevier, and contains

2.2 million articles published between 1998 and 2002 and categorized in 27 Scopus major

subject areas of science. Most of the previous studies used rather small data sets, which

were not suitable for rigorous statistical detecting of the power-law behaviour. In contrast,

our sample is even bigger with respect to the most highly cited papers than the large

sample used in the recent contributions based on WoS data (Albarrán and Ruiz-Castillo

2011; Albarrán et al. 2011a, b). This results from the fact that Scopus indexes about 70 %

more sources compared to the WoS (López-Illescas et al. 2008; Chadegani et al. 2013) and

therefore gives a more comprehensive coverage of citation distributions.1

The second major contribution of the paper is to provide a rigorous statistical com-

parison of the power-law model and a number of alternative models with respect to the

problem which theoretical distribution fits better empirical data on citations. This problem

of model selection has been previously studied in some contributions to the literature. It

has been argued that models like stretched exponential (Laherrère and Sornette 1998), Yule

(SollaPrice 1976), log-normal (Redner 2005; Stringer et al. 2008; Radicchi et al. 2008),

Tsallis (Tsallis and deAlbuquerque 2000; Anastasiadis et al. 2010; Wallace et al. 2009) or

shifted power law (Eom and Fortunato 2011) fit citation distributions equally well or better

than the pure power-law model. However, previous papers have either focused on a single

alternative distribution or used only visual methods to choose between the competing

models. The present paper fills the gap by providing a systematic and statistically rigorous

comparison of the power-law distribution with such alternative models as the log-normal,

exponential, stretched exponential (Weibull), Tsallis, Yule and power-law with exponen-

tial cut-off. The comparison between models was performed using a likelihood ratio test

(Vuong 1989; Clauset et al. 2009).

Materials and methods

Fitting power-law model to citation data

We follow Clauset et al. (2009) in choosing methods for fitting power laws to citation

distributions. These authors carefully show that, in general, the appropriate methods

depend on whether the data are continuous or discrete. In our case, the latter is true as

citations are non-negative integers. Let x be the number of citations received by an article

in a given field of science. The probability density function (pdf) of the discrete power-law

model is defined as

pðxÞ ¼ x�a

fða; x0Þ
; ð1Þ

where fða; x0Þ is the generalized or Hurwitz zeta function. The a is a shape parameter of

the power-law distribution, known as the power-law exponent or scaling parameter. The

power-law behaviour is usually found only for values greater than some minimum, denoted

1 From the perspective of measuring power laws in citation distributions, the most important part of the
distribution is the right tail. It seems that the database used in this paper has a better coverage of the right tail
of citation distributions. The most highly cited paper in our database has received 5,187 citations (see
Table 2), while the corresponding number for the database based on WoS is 4,461 (Li and Ruiz-Castillo
2013). Our database is further described in ‘‘Materials and methods’’ section.
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by x0. In case of citation distributions, the power-law behaviour has been found on average

only in the top 2 % of all articles published in a field of science (Albarrán et al. 2011a, b).

The lower bound on the power-law behaviour, x0, should be therefore estimated if we

want to measure precisely in which part of a citation distribution the model applies.

Moreover, we need an estimate of x0 if we want to obtain an unbiased estimate of the

power-law exponent, a.

We estimate a using the maximum likelihood (ML) estimation. The log-likelihood

function corresponding to (1) is

LðaÞ ¼ �n ln fða; x0Þ � a
Xn

i¼1

ln xi; ð2Þ

where xi is the number of citations received by the ith paper ði ¼ 1; . . .; nÞ.
The ML estimate for a is found by numerical maximization of (2).2

Following Clauset et al. (2009), we use the following procedure to estimate the lower

bound on the power-law behaviour, x0. For each x > xmin, we calculate the ML estimate of

the power-law exponent, â, and then we compute the well-known Kolmogorov–Smirnov

(KS) statistic for the data and the fitted model. The KS statistic is defined as

KS ¼ max
x>x0

SðxÞ � Pðx; âÞj j; ð3Þ

where SðxÞ is the cumulative distribution function (cdf) for the observations with value at

least x0, and Pðx; âÞ is the cdf for the fitted power-law model to observations for which

x > x0. The estimate x̂0 is then chosen as a value of x0 for which the KS statistic is the

smallest. The standard errors for both estimated parameters, â and x̂0, are computed with

standard bootstrap methods with 1,000 replications.

Goodness-of-fit and model selection tests

The next step in measuring power laws involves testing goodness of fit. A positive result of

such a test allows to conclude that a power-law model is consistent with data. Following

Clauset et al. (2009) again, we use a test based on a semi-parametric bootstrap approach.3

The procedure starts with fitting a power-law model to data and calculating a KS statistic

(see Eq. 3) for this fit, denoted by k. Next, a large number of synthetic data sets is

generated that follow the originally fitted power-law model above the estimated x0 and

have the same non-power-law distribution as the original data set below x̂0. Then, a power-

law model is fitted to each of the generated data sets using the same methods as for the

original data set, and the KS statistics are calculated. The fraction of data sets for which

their own KS statistic is larger than k is the p value of the test. It represents a probability

that the KS statistics computed for data drawn from the power-law model fitted to the

original data is at least as large as k. The power-law hypothesis is rejected if the p value is

2 Clauset et al. (2009) provide also an approximate method of estimating a for the discrete power-law model
by assuming that continuous power-law distributed reals are rounded to the nearest integers. However, it this
paper we use an exact approach based on maximizing (2).
3 If our data were drawn from a given model, then we could use the KS statistic in testing goodness of fit,
because the distribution of the KS statistic is known in such a case. However, when the underlying model is
not known or when its parameters are estimated from the data, which is our case, the distribution of the KS
statistic must be obtained by simulation.
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smaller than some chosen threshold.4 Following Clauset et al. (2009), we rule out the

power-law model if the estimated p value for this test is smaller than 0.1. In the present

paper, we use 1,000 generated data sets.

If the goodness-of-fit test rejects the power-law hypothesis, we may conclude that the

power law has not been found. However, if a data set is fitted well by a power law, the

question remains if there is an alternative distribution, which is an equally good or better fit

to this data set. We need, therefore, to fit some rival distributions and evaluate which

distribution gives a better fit. To this aim, we use the likelihood ratio test, which tests if the

compared models are equally close to the true model against the alternative that one is

closer. The test computes the logarithm of the ratio of the likelihoods of the data under two

competing distributions, LR, which is negative or positive depending on which model fits

data better. Specifically, let us consider two distributions with pdfs denoted by p1ðxÞ and

p2ðxÞ. The LR is defined as:

LR ¼
Xn

i¼1

½ln p1ðxiÞ � ln p2ðxiÞ�: ð4Þ

A positive value of the LR suggests that model p1ðxÞ fits the data better. However, the sign

of the LR can be used to determine which model should be favored only if the LR is

significantly different from zero. Vuong (1989) showed that in the case of non-nested

models the normalized log-likelihood ratio NLR ¼ n�1=2LR=r, where r is the estimated

standard deviation of LR, has a limit standard normal distribution.5 This result can be used

to compute a p value for the test discriminating between the competing models. If the

p value is small (for example, smaller than 0.1), then the sign of the LR can probably be

trusted as an indicator of which model is preferred. However, if the p value is large, then

the test is unable to choose between the compared distributions.

We have followed Clauset et al. (2009) in choosing the following alternative discrete

distributions: exponential, stretched exponential (Weibull), log-normal, Yule and the

power law with exponential cut-off.6 Most of these models have been considered in pre-

vious literature on modeling citation distribution. As another alternative, we also use the

Tsallis distribution, which has been also proposed as a model for citation distributions

(Wallace et al. 2009; Anastasiadis et al. 2010). Finally, we also consider a ‘‘digamma’’

model using exponential functions of a digamma function, which was recently introduced

for distributions with heavy tails in a statistical physics framework based on the principle

of maximum entropy (Peterson et al. 2013).7

The definitions of our alternative distributions are given in Table 1.

4 In this goodness-of-fit test we are interested in verifying if the power-law model is a plausible hypothesis
for our data sets. Hence, high p values suggest that the power law is not ruled out. This approach is to be
contrasted with the usual approach, which for a given null hypothesis interprets low p values as evidence in
favor of the alternative hypothesis. See Clauset et al. (2009) for a more detailed discussion of these
interpretations of p values.
5 In case of nested models, 2LR has a limit a Chi squared distribution (Vuong 1989).
6 The power-law with exponential cut-off behaves like the pure power-law model for smaller values of x,
x > x0,while for larger values of x it behaves like an exponential distribution. The pure power-law model is
nested within the power-law with exponential cut-off, and for this reason the latter always provides a fit at
least as good as the former.
7 I would like to thank an anonymous referee for suggesting the inclusion of this distribution in our
comparison of alternative models.
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Data

We use citation data from Scopus, a bibliographic database introduced in 2004 by Elsevier.

Scopus is a major competitor to the most-widely used data source in the literature on

modeling citation distributions—Web of Science (WoS) from Thomson Reuters. Scopus

covers 29 million records with references going back to 1996 and 21 million pre-1996

records going back as far as 1823. An important limitation of the database is that it does not

cover cited references for pre-1996 articles. Scopus contains 21,000 peer-reviewed journals

from more than 5,000 international publishers. It covers about 70 % more sources com-

pared to the WoS (López-Illescas et al. 2008), but a large part of the additional sources are

low-impact journals. A recent literature review has found that the quite extensive literature

that compares WoS and Scopus from the perspective of citation analysis offers mixed

results (Chadegani et al. 2013). However, most of the studies suggest that, at least for the

period from 1996 on, the number of citations in both databases is either roughly similar or

higher in Scopus than in WoS. Therefore, is seems that Scopus constitutes a useful

alternative to WoS from the perspective of modeling citation distributions.

Journals in Scopus are classified under four main subject areas: life sciences (4,200

journals), health sciences (6,500 journals), physical sciences (7,100 journals) and social

sciences including arts and humanities (7,000 journals). The four main subject areas are

further divided into 27 major subject areas and more than 300 minor subject areas. Journals

may be classified under more than one subject area.

The analysis in this paper was performed on the level of 27 Scopus major subject areas

of science.8 From the various document types contained in Scopus, we have selected only

articles. For the purpose of comparability with the recent WoS-based studies (Albarrán and

Ruiz-Castillo 2011; Albarrán et al. 2011a), only the articles published between 1998 and

2002 were considered. Following previous literature, we have chosen a common 5-year

citation window for all articles published in 1998–2002.9 See Albarrán and Ruiz-Castillo

Table 1 Definitions of alternative discrete distributions

Distribution name Probability distribution function

Exponential ð1� e�kÞekx0 e�kx

Stretched exponential (Weibull) 1P1
x0
ðqxb�qðxþ1Þb Þ

qxb � qðxþ1Þb

Log-normal
ffiffiffiffiffiffi

2
pr2

q
erfcðlnx0�lffiffi

2
p

r
Þ

h i�1
1
x
exp � ðlnx�lÞ2

2r2

h i

Tsallis 1P1
x0
ð1þx=rÞ�h�1 ð1þ x=rÞ�h�1

Yule ða� 1Þ Cðx0þa�1Þ
Cðx0Þ

CðxÞ
CðxþaÞ

Digamma e�lk0wðxþk0 ÞP1
x0

e�lk0wðxþk0 Þ

Power law with exponential cut-off ð
P1

x0
x�ae�kxÞ�1

x�ae�kx

The distributions have been normalized to ensure that the total probability in the domain ½x0;þ1� is 1.
Discrete log-normal distribution is approximated by rounding the continuous log-normally distributed reals
to the nearest integers. For Tsallis distribution, we use a parametrization considered by Shalizi (2007)

8 See Table 2 for a list of the analyzed Scopus areas of science.
9 For example, for articles published in 1998 we have analyzed citations received during 1998–2002, while
for articles published in 2002, those received during 2002–2006.
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(2011) for a justification of choosing the 5-year citation window common for all fields of

science.

In order to measure the power-law behaviour of citations, we need data on the right tails

of citation distributions. To this end, we have used the Scopus Citation Tracker to collect

citations for minð100;000; xÞ of the highest cited articles, where x is the actual number of

articles published in a given field of science during 1998–2002. This analysis was per-

formed separately for each of the 27 science fields categorized by Scopus.

Descriptive statistics for our data sets are presented in Table 2.

In some cases, there was less than 100,000 articles published in a field of science during

1998–2002 and we were able to obtain complete or almost complete distributions of

citations (see columns 2–4 of Table 2).10 In other cases, we have obtained only a part of

the relevant distribution encompassing the right tail and some part of the middle of the

distribution. The smallest portions of citation distributions were obtained for Medicine

(8.4 % of total papers), Biochemistry, Genetics and Molecular Biology (15.7 %) and

Physics and Astronomy (18.4 %). However, using the WoS data for 22 science categories,

Albarrán and Ruiz-Castillo (2011) found that power laws account usually only for less than

2 % of the highest-cited articles. Therefore, it seems that the coverage of the right tails of

citation distributions in our samples is satisfactory for our purposes.

Results and discussion

Table 3 presents results of fitting the discrete power-law model to our data sets consisting

of citations to scientific articles published over 1998–2002 (with a common 5-year citation

window), separately for each of the 27 Scopus major subject areas of science. The last row

gives also results for all subject areas combined (‘‘All sciences’’). Beside estimates of the

power-law exponent ðâÞ and the lower bound on the power-law behaviour ðx̂0Þ, the table

gives also the estimated number and the percentage of power-law distributed papers, as

well as the p value for our goodness-of-fit test.

Results with respect to the goodness-of-fit suggest that the power-law hypothesis cannot

be rejected for the following 14 Scopus science fields: ‘‘Agricultural and Biological Sci-

ences’’, ‘‘Biochemistry, Genetics and Molecular Biology’’, ‘‘Chemical Engineering’’,

‘‘Chemistry’’, ‘‘Energy’’, ‘‘Environmental Science’’, ‘‘Materials Science’’, ‘‘Neurosci-

ence’’, ‘‘Nursing’’, ‘‘Pharmacology, Toxicology and Pharmaceutics’’, ‘‘Physics and

Astronomy’’, ‘‘Psychology’’, ‘‘Health Professions’’, and ‘‘Multidisciplinary’’. The

remaining 13 Scopus fields of science for which the power-law model is rejected include

humanities and social sciences (‘‘Arts and Humanities’’, ‘‘Business, Management and

Accounting’’, ‘‘Economics, Econometrics and Finance’’, ‘‘Social Sciences’’), but also

formal sciences (‘‘Computer Science’’, ‘‘Decision Sciences’’, ‘‘Mathematics’’), life sci-

ences (‘‘Immunology and Microbiology’’, ‘‘Medicine’’, ‘‘Veterinary’’, ‘‘Dentistry’’), as

well as ‘‘Earth and Planetary Sciences’’ and ‘‘Engineering’’. The best power-law fits for

these fields of science are shown on Fig. 1.

For most of the distributions shown on Fig. 1, it can be clearly seen that their right tails

decay faster than the pure power-law model indicates. This suggest that the largest

observations for these distributions should be rather modeled with a distribution having a

10 For all fields of science analyzed, there were some articles with missing information on citations. These
articles were removed from our samples. However, this has usually affected only about 0.1 % of our
samples.
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lighter tail than the pure power-law model like the log-normal or power-law with expo-

nential cut-off models.

The p value for our goodness-of-fit test in case of ‘‘All Sciences’’ is 0.076, which is

below our acceptance threshold of 0.1. However, this p value is non-negligible and sig-

nificantly higher than p values for most of the 13 Scopus fields of science for which we

reject the power-law hypothesis. For this reason, we conclude that the evidence is not

Table 2 Descriptive statistics for citation distributions, Scopus, 1998–2002, 5-year citation window

Scopus subject
area of science

Total
number
of papers

No. of
papers in
the sample

% of all
papers in
the sample

Mean
no. of
citations

Std.
Dev. of
citations

Max.
no. of
citations

Agricultural and

Biological Sciences

372,575 99,804 26.8 15.17 14.36 628

Arts and Humanities 47,191 47,074 99.8 1.256 3.357 91

Biochemistry, Genetics

and Molecular

Biology

636,421 99,819 15.7 49.09 46.29 3,118

Business, Management

and Accounting

61,211 61,156 99.9 3.452 7.273 287

Chemical Engineering 158,673 98,989 62.4 7.232 9.236 344

Chemistry 416,660 99,398 23.9 21.07 21.17 1,065

Computer Science 134,179 99,933 74.5 6.44 18.13 2,737

Decision Sciences 27,409 27,393 99.9 3.467 5.496 143

Earth and Planetary

Sciences

228,197 99,788 43.7 14.1 17.03 1,195

Economics,

Econometrics

and Finance

49,645 49,559 99.8 4.652 8.653 287

Energy 67,076 66,378 99.0 2.553 5.596 334

Engineering 439,719 99,765 22.7 11.77 15.83 971

Environmental Science 186,898 99,847 53.4 10.72 11.27 730

Immunology

and Microbiology

195,339 99,858 51.1 22.11 25.11 926

Materials Science 331,310 99,591 30.1 12.48 14.49 697

Mathematics 193,740 99,922 51.6 6.912 11.38 929

Medicine 1,191,154 99,823 8.4 48.55 60.14 4,365

Neuroscience 445,181 99,886 22.4 18.97 20.39 771

Nursing 51,283 50,464 98.4 5.274 12.07 518

Pharmacology,

Toxicology

and Pharmaceutics

179,427 99,757 55.6 12.19 12.28 347

Physics and Astronomy 541,328 99,817 18.4 24.75 31.64 3,118

Psychology 104,449 99,736 95.5 7.446 11.55 377

Social Sciences 215,410 99,890 46.4 6.148 8.055 519

Veterinary 53,203 53,117 99.8 3.637 5.843 128

Dentistry 27,470 27,437 99.9 4.943 6.736 115

Health Professions 75,491 75,414 99.9 7.272 11.49 348

Multidisciplinary 50,287 50,226 99.9 30.38 76.08 5,187

All Sciences 6,480,926 2,203,841 34.0 14.92 27.74 5,187
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conclusive in this case. Our result for ‘‘All Sciences’’ is, however, in a stark contrast with

that of Albarrán and Ruiz-Castillo (2011), who using the WoS data found that the fit for a

corresponding data set was very good (with a p value of 0.85).11

The estimates of the power-law exponent for the 14 Scopus science fields for which the

power law seems to be a plausible hypothesis range from 3.24 to 4.69. This is in a good

agreement with Albarrán and Ruiz-Castillo (2011) and confirms their assessment that the

true value of this parameter is substantially higher than found in the earlier literature

(Redner 1998; Lehmann et al. 2003; Tsallis and deAlbuquerque 2000), which offered

estimates ranging from around 2.3 to around 3. We also confirm the observation of Al-

barrán and Ruiz-Castillo (2011) that power laws in citation distributions are rather small—

they account usually for less than 1 % of total articles published in a field of science. The

only two fields in our study with slightly ‘‘bigger’’ power laws are ‘‘Chemistry’’ (2 %) and

‘‘Multidisciplinary’’ (2.8 %).

The comparison between the power-law hypothesis and alternatives using the Vuong’s

test is presented in Table 4. It can be observed that the exponential model can be ruled out

in most of the cases. We discuss other results first for the 13 Scopus fields of science that
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Fig. 1 The complementary cumulative distribution functions (blue circles) and best power-law fits (dashed
black line) for citation distributions that did not pass the goodness-of-fit test, Scopus, 1998–2002, 5-year
citation window

11 In Albarrán and Ruiz-Castillo (2011), the power-law hypothesis is found plausible for 17 out of 22 WoS
fields of science. It is rejected for ‘‘Pharmacology and Toxicology’’, ‘‘Physics’’, ‘‘Agricultural Sciences’’,
‘‘Engineering’’, and ‘‘Social Sciences, General’’. These results are not directly comparable with those of the
present paper as Scopus and WoS use different classification systems to categorize journals.
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did not pass our goodness-of-fit test. For all of these fields, except for ‘‘Veterinary’’, the

Yule and power-law with exponential cut-off models fit the data better than the pure

power-law model in a statistically significant way. The log-normal model is better than the

pure power-law model in 10 of the discussed fields; the same holds for the Weibull

distribution in case of 5 fields and for the digamma distribution in case of 4 fields.

However, these results do not imply that the distributions, which give a better fit to the non-

power-law distributed data than the pure power-law model are plausible hypotheses for

these data sets. This issue should be further studied using appropriate goodness-of-fit tests.

We now turn to results for the remaining Scopus fields of science that were not rejected

by our goodness-of-fit test. The power-law hypothesis seems to be the best model only for

‘‘Physics and Astronomy’’. In this case, the test statistics is always non-negative implying

that the power-law model fits the data as good as or better than each of the alternatives. For

the remaining 13 fields of science, the log-normal, Yule and power-law with exponential

cut-off models have always higher log-likelihoods suggesting that these models may fit the

data better than the pure power-law distribution. However, only in a few cases the dif-

ferences between models are statistically significant. For ‘‘Chemistry’’ and ‘‘Multidisci-

plinary’’ both the Yule and power-law with exponential cut-off models are favoured over

the pure power-law model. The power-law with exponential cut-off is also favoured in case

of ‘‘Health Professions’’. In other cases, the p values for the likelihood ratio test are large,

which implies that there is no conclusive evidence that would allow to distinguish between

the pure power-law, log-normal, Yule and power-law with exponential cut-off distribu-

tions. Comparing the power-law distribution with the Weibull and Tsallis distributions, we

observe that the sign of the test statistic is positive in roughly half of the cases, but the

p values are always large and neither model can be ruled out. For the considered 13 fields

of science, the digamma model is never better than the power law, judging by the sign of

the test statistic. Our likelihood ratio tests suggest therefore that when the power law is a

plausible hypothesis according to our goodness-of-fit test it is often indistinguishable from

some alternative models.

Overall, our results show that the evidence in favour of the power-law behaviour of the

right-tails of citation distributions is rather weak. For roughly half of the Scopus fields of

science studied, the power-law hypothesis is rejected. Other distributions, especially the

Yule, power-law with exponential cut-off and log-normal seem to fit the data from these

fields of science better than the pure power-law model. On the other hand, when the power-

law hypothesis is not rejected, it is usually empirically indistinguishable from all alter-

natives with the exception of the exponential distribution. The pure power-law model

seems to be favoured over alternative models only for the most highly cited papers in

‘‘Physics and Astronomy’’. Our results suggest that theories implying that the most highly

cited scientific papers follow the Yule, power-law with exponential cut-off or log-normal

distribution may have slightly more support in data than theories predicting the pure

power-law behaviour.

Conclusions

We have used a large, novel data set on citations to scientific papers published between

1998 and 2002 drawn from Scopus to test empirically for the power-law behaviour of the

right-tails of citation distributions. We have found that the power-law hypothesis is

rejected for around half of the Scopus fields of science. For the remaining fields of science,

the power-law distribution is a plausible model, but the differences between the power law
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and alternative models are usually statistically insignificant. The paper also confirmed

recent findings of Albarrán and Ruiz-Castillo (2011) that power laws in citation distri-

butions, when they are a plausible, account only for a very small fraction of the published

papers (less than 1 % for most of science fields) and that the power-law exponent is

substantially higher than found in the older literature.

Acknowledgments I would like to thank two anonymous referees for helpful comments and suggestions
that improved this paper. The use of Matlab and R software accompanying the papers by Clauset et al.
(2009), Shalizi (2007) and Peterson et al. (2013) is gratefully acknowledged. Any remaining errors are my
responsibility.

Open Access This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the
source are credited.

References

Albarrán, P., Crespo, J. A., Ortuño, I., & Ruiz-Castillo, J. (2011). The skewness of science in 219 sub-fields
and a number of aggregates. Scientometrics, 88(2), 385–397.

Albarrán, P., Crespo, J.A., Ortuño, I., & Ruiz-Castillo, J. (2011). The skewness of science in 219 sub-fields
and a number of aggregates. Working paper 11–09, Universidad Carlos III.

Albarrán, P., & Ruiz-Castillo, J. (2011). References made and citations received by scientific articles.
Journal of the American Society for Information Science and Technology, 62(1), 40–49.

Anastasiadis, A. D., deAlbuquerque, M. P., deAlbuquerque, M. P., & Mussi, D. B. (2010). Tsallis
q-exponential describes the distribution of scientific citations—A new characterization of the impact.
Scientometrics, 83(1), 205–218.

Baayen, R. H. (2001). Word frequency distributions. Dordrecht: Kluwer.
Chadegani, A. A., Salehi, H., Md Yunus, M., Farhadi, H., Fooladi, M., Farhadi, M., et al. (2013). A

comparison between two main academic literature collections: Web of Science and Scopus databases.
Asian Social Science, 9(5), 18–26.

Clauset, A., Shalizi, C. R., & Newman, M. E. (2009). Power-law distributions in empirical data. SIAM
Review, 51(4), 661–703.

de Solla Price, D. (1965). Networks of scientific papers. Science, 149, 510–515.
de Solla Price, D. (1976). A general theory of bibliometric and other cumulative advantage processes.

Journal of the American Society for Information Science, 27(5), 292–306.
Egghe, L. (2005). Power laws in the information production process: Lotkaian informetrics. Oxford:

Elsevier.
Eom, Y. H., & Fortunato, S. (2011). Characterizing and modeling citation dynamics. PloS One, 6(9),

e24,926.
Gabaix, X. (2009). Power laws in economics and finance. Annual Review of Economics, 1(1), 255–294.
Golosovsky, M., & Solomon, S. (2012). Runaway events dominate the heavy tail of citation distributions.

The European Physical Journal Special Topics, 205(1), 303–311.
Laherrère, J., & Sornette, D. (1998). Stretched exponential distributions in nature and economy:‘‘Fat tails’’

with characteristic scales. The European Physical Journal B, 2(4), 525–539.
Lehmann, S., Lautrup, B., & Jackson, A. (2003). Citation networks in high energy physics. Physical Review

E, 68(2), 026,113.
Li, Y., & Ruiz-Castillo, J. (2013). The impact of extreme observations in citation distributions. Tech. rep.,

Universidad Carlos III, Departamento de Economı́a.
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