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Abstract

Doxorubicin is a potent chemotherapeutic agent that is widely-used to treat a variety of can-

cers but causes acute and chronic cardiac injury, severely limiting its use. Clinically, the

acute side effects of doxorubicin are mostly manageable, whereas the delayed conse-

quences can lead to life-threatening heart failure, even decades after cancer treatment. The

cardiotoxicity of doxorubicin is subject to a critical cumulative dose and so dosage limitation

is considered to be the best way to reduce these effects. Hence, a number of studies have

defined a “safe dose” of the drug, both in animal models and clinical settings, with the aim of

avoiding long-term cardiac effects. Here we show that a dose generally considered as safe in

a mouse model can induce harmful changes in the myocardium, as early as 2 weeks after

infusion. The adverse changes include the development of fibrotic lesions, disarray of cardio-

myocytes and a major transcription dysregulation. Importantly, low-dose doxorubicin caused

specific changes in the transcriptional profile of several histone deacetylases (HDACs) which

are epigenetic regulators of cardiac remodelling. This suggests that cardioprotective thera-

pies, aimed at modulating HDACs during doxorubicin treatment, deserve further exploration.

Introduction

Cardiac remodelling occurs in response to many pathological and toxic stimuli, including

genetic abnormalities and chronic administration of cardiotoxic small molecules. Anthracy-

clines like doxorubicin (adriamycin) are widely used anticancer drugs and constitute part of

the standard chemotherapeutical regime for a broad spectrum of malignancies, due to their

high effectiveness [1]. They cause, however, both acute and chronic dose-dependent cardiac

injury, which severely restricts their use [2]. Although acute doxorubicin-induced cardiotoxi-

city is mostly manageable in clinical settings, delayed, life-threatening, anthracycline-associ-

ated heart failure can appear even decades after cancer treatment. Over the last decades, a

number of groups developed mouse models that mimic doxorubicin induced cardiomyopathy.

It has been widely demonstrated that doxorubicin causes cell death of cardiomyocytes followed
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by the appearance of interstitial fibrosis that, on a physiological level, is manifested by a reduc-

tion of the ventricular ejection fraction and contractile function (for a review see [3,4]).

The major strategy to reduce the risk of delayed drug-associated cardiomyopathy is to

apply dose limitation [5]. In humans, oncologists most often limit the cumulative dose of

doxorubicin to 400–450 mg/m2, although it is known that a certain degree of myocardial tissue

damage may occur even at dosages that are significantly lower than this maximal tolerated

dose [6]. Another widely-used strategy is the administration of doxorubicin by continuous

infusion; this is believed to reduce the risk of doxorubicin-induced heart failure, despite the

fact that it has never been proven to be effective in long-term studies of cancer survivors. The

aim is to reduce peak plasma doxorubicin levels, thus limiting the exposure of heart tissue to

high concentrations of the drug [7].

Despite the existence of many theories behind the molecular mechanisms of doxorubicin

cardiotoxicity, and over 40 years of intensive studies, there are still no effective cardioprotec-

tive interventions against anthracycline-induced cardiac injury [3]. There is growing evidence

that the pathological processes that lead to heart malfunction and failure are caused by a cas-

cade of rapid post-translational modifications, governed by a powerful epigenetic mechanism

[8]. This is likely mediated by a group of enzymes known as histone deacetylases (HDACs)

that play a crucial role in histone or protein deacetylation and, consequently, control global

gene expression. Mammalian HDACs are a family of 18 proteins, divided into four groups

based on structural and functional similarities: class I (HDACs: 1, 2, 3, 8), class IIa (HDACs: 4,

5, 7, 9), class IIb (HDACs: 6, 10), class III (sirtuins 1–7) and class IV (HDAC11 is the sole

member); for a review, see [9]. By following the transcriptional signature of Hdacs upon

chronic treatment with doxorubicin, we sought to provide insights into the subsequent tran-

scriptional changes in the diseased heart.

In this study, using a well-established mouse model of chronic doxorubicin infusion, we

show that a dose of doxorubicin that is generally considered as “safe” [10] can induce adverse

changes in the myocardium, as soon as 2 weeks after the start of continuous infusion. The

adverse cardiac remodelling was associated with morphological features, including a disarray

of cardiomyocytes and fibrotic lesions. The transcriptome showed evidence of dysregulation

with striking changes in the HDAC genes. These transcriptional changes in major epigenetic

regulators are not only molecular markers of cardiac pathological remodelling, but are poten-

tial targets for therapeutic intervention, to reduce doxorubicin toxicity.

Materials and methods

Mouse maintenance

CBA x C57BL/6 F1 females (wild type mice) were purchased from Charles River. All animals

had unlimited access to water and breeding chow (Special Diet Services, Witham, UK), and

housing conditions and environmental enrichment were as previously described [11]. Mice

were subjected to a 12 h light/dark cycle. All methods related to experimental procedures per-

formed on animals were conducted under a project license from the Home Office, UK, accord-

ingly to guidelines under the Animals (Scientific Procedures) Act 1986 and were approved by

an ethical committee at Imperial College London. Experimental groups included the wild type

mice (females only) at 10 weeks of age (n = 6).

Chronic treatment with doxorubicin

Doxorubicin (Sigma) was freshly prepared and diluted in PBS (Sigma). Mini osmotic pumps

(Alzet pumps Model 2002, Charles River) were loaded with 200 μl of either vehicle (PBS), or

doxorubicin at a dose of 15 μg/g of body weight, allowing diffusion at 0.5 μl/hour, for a period

Doxorubicin toxicity in the murine heart
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of 14 days. In order to implant mini osmotic pumps, animals were initially anesthetized with

5% isoflurane, and then anaesthesia was maintained at ~1.5% isoflurane throughout the surgi-

cal procedure. Alzet pumps were implanted subcutaneously onto the back of each mouse [12].

After 14 days, the mice were culled and their hearts taken for further analysis. Body weight was

measured at the beginning and the end of the trial.

RNA extraction and Taqman real-time PCR expression analysis

Total RNA from whole hearts was extracted with the mini-RNA kit (Qiagen), according to the

manufacturer’s instructions. The reverse transcription reaction (RT) was performed using

MMLV superscript reverse transcriptase (Invitrogen) and random hexamers (Operon) [12].

All Taqman qPCR reactions were performed using the LightCycler1 480 Instrument (Roche).

Estimation of mRNA copy number was determined in triplicate for each RNA sample by com-

parison to the geometric mean of three endogenous housekeeping genes, Rpl13a, Canx and

Gapdh (Primer Design). Primer and probe sets for genes of interest were purchased from

Primer Design or ABI. Primers for transcripts of Hdacs were previously described [13].

Immunohistochemistry and confocal microscopy

For immunohistochemistry, hearts were snap frozen in liquid nitrogen, prior to embedding

in OCT. 6–10 μm sections were cut using a cryostat (Leica), air dried and fixed in 4% PFA,

(paraformaldehyde) in PBS or in acetone, at -20˚C for 15 min, followed by washing in 0.1%

PBS-Triton X-100 [14]. Blocking was achieved by incubation with 5% BSA-C (Aurion) in

0.1% PBS-Triton X-100, for at least 30 min at RT. Immunolabelling with primary antibodies

(anti-collagen VI 1 in 100 (600-401-108-05, Rockland); anti-vinculin 1 in 200 (V4505, Sigma)

was performed in 0.1% PBS-Triton X-100, 1% BSA-C, overnight in a humidified box at 4˚C.

Sections were washed 3 times in PBS, incubated for 60 min at RT in a dark box, with an anti-

rabbit secondary antibody (FITC Invitrogen, 1:1000 in PBS), washed 3 times in PBS and coun-

terstained with phalloidin (Sigma) and DAPI or draq5 (Invitrogen). Sections were mounted in

Vectashield mounting medium (Vector Laboratories). Sections were examined using the Leica

TCS SP4 laser scanning confocal microscope and analysed with Leica Application Suite (LAS)

v5 (Leica Microsystems, Heidelberg, Germany).

Protein extraction, western blotting and antibodies

Protein lysates from heart tissues were homogenized in RIPA buffer (1% (v/v) NP-40, 0.5% (v/

v) deoxycholate, 0.1% (w/v) SDS, 50 mM Tris-HCl pH 8.0, 150 mM NaCl, 1 mM β-mercap-

toethanol, 100 μM PMSF, 1 mM DTT) supplemented with protease inhibitor cocktail (Roche).

Protein concentration was measured using the Pierce BCA assay kit (Thermo Scientific).

Briefly, 20 μg protein lysate was fractionated on a 10% (w/v) SDS-PAGE gel and transferred

onto a Protran nitrocellulose membrane (Whatman). All primary and secondary antibodies

used in this study were previously described [13–15].

Statistical analysis

All data were analysed with Microsoft Office Excel and Student’s t-test (two tailed) or ONE--

WAY ANOVA SPSS (IBM).

Results

We tested the hypothesis that chronic infusion of a relatively low dose of doxorubicin can

induce adverse cardiac remodelling in murine hearts. We administered doxorubicin to wild
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type (WT) female mice, from 10 weeks of age, for two weeks. Both groups (PBS vehicle and

doxorubicin) had comparable body weights at both the start (Fig 1A) and at the end of the trial

(Fig 1B). The groups also had comparable tibia lengths at 12 weeks of age (Fig 1C), indicating

that there were no gross differences in growth. However, chronic treatment with doxorubicin

led to a significant increase in heart weight (Fig 1D). Consequently, the HW/TL index (Heart

Weight to Tibia Length) was significantly increased in the WT doxorubicin group, in compari-

son to the WT vehicle (PBS) group (Fig 1E). We did not observe any general adverse effects

that are common in humans, such as eye or skin irritation, or hair loss. Local toxicity or vesi-

cant effects of doxorubicin (tissue damage from escaping out of the vein) do not occur with

Alzet pumps and so were also absent. Overall, we conclude from this morphometric analysis

that doxorubicin treatment at low dose (15 μg/g infusion) was cardiotoxic and led to a cardio-

myopathy that is similar to that previously described for a higher cumulative dose of doxorubi-

cin (24 μg/g) [16].

To further gain insights into doxorubicin-related toxicity, we performed immunohis-

tochemistry on these hearts, in order to visualise the gross morphologies of cardiomyocytes

(Fig 2A and 2B). Vinculin staining indicated that doxorubicin treatment causes a disarray of

cardiomyocytes. This was accompanied by a replacement fibrosis, as judged based on collagen

VI staining (Fig 2C and 2D).

Many types of pathological changes in the heart are associated with a reactivation of the foe-

tal gene programme [17]. We therefore assessed the expression levels of genes known to be

changed as a consequence of cardiac hypertrophy or dilated cardiomyopathy (DCM) [12,17].

We found Anp (atrial natriuretic peptide) and Bnp (brain natriuretic peptide) to be up-regu-

lated in doxorubicin-treated mice, in comparison to their respective vehicle groups (Fig 3).

Similarly, we found that the transcripts of two other well-known reactivated foetally-expressed

Fig 1. Morphometric analysis of doxorubicin-treated mice. (A) Body weight at 10 weeks of age, prior to implantation of the Alzet pumps. (B)

Body weight at the end of the trial (12 weeks of age) (C) tibia length (D) heart weight (E) heart weight to tibia length index. All values are

mean ± SEM (n = 6 WT PBS, n = 6 WT doxorubicin), One-way ANOVA with Bonferroni post-hoc test: *p < 0.05, **p < 0.01, ***p < 0.001.

https://doi.org/10.1371/journal.pone.0180571.g001
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genes, namely Bmp-10 (bone morphogenetic protein 10) and Myh-7 (myosin heavy chain

beta), were significantly up-regulated in the WT doxorubicin-treated mice (Fig 3). On the

other hand, Bdnf (brain derived neutrophic factor) is a well-studied gene that has been linked

to contractile dysfunction in the heart [18]. Surprisingly, we found that doxorubicin treatment

does not alter the transcript level of Bdnf (Fig 3), indicating that the damage response is dis-

tinct from this pathway.

Typically, the heart responds to pathological stresses or processes by remodelling in a man-

ner that is associated with changes in epigenetic marks and recent studies suggest a key role for

histone deacetylases (HDACs) in the control of pathological cardiac remodelling [19–21].

Hence, we sought to profile the transcription of 11 Hdacs upon chronic treatment with doxo-

rubicin. We found that treatment leads to a significant down-regulation of Hdac2 mRNA and

that this was the only member of the class I HDACs to be deregulated (Fig 4A). Among

class II a and b, we found a significant up-regulation of Hdac4, Hdac5, Hdac6, Hdac7 and

Hdac10, while transcript levels of Hdac9 remained un-changed (Fig 4A). We also noticed

that Hdac11 (the sole member of class IV) was significantly up-regulated in the treated

murine hearts, in comparison to their WT littermates (Fig 4A). Next, we investigated

Fig 2. Gross cardiac morphology of hearts treated with doxorubicin. Representative vinculin staining

(green) in WT (PBS) mice (A) and WT doxorubicin (B). Nuclei (red) were visualized with draq5. Replacement

fibrosis was detected in the doxorubicin treated hearts (D) but not in vehicle hearts (C), visualising with the

anti-collagen VI antibody (green). Nuclei (blue) were visualised with DAPI, (E, F).

https://doi.org/10.1371/journal.pone.0180571.g002
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whether chronic doxorubicin treatment can affect the protein levels of deregulated HDACs

on the transcriptional level. We previously screened a number of commercially-available

antibodies raised against HDAC enzymes that were suitable and specific for immunodetec-

tion in mouse tissues [13–15]. Using western blotting, we found that doxorubicin had no

effect on the protein level of HDAC3 in the heart lysates of WT mice, in comparison to their

vehicle group (Fig 4B). However, chronic doxorubicin treatment led to a significant down-

regulation of HDAC2 and a significant up-regulation (approximately 2-fold) of HDAC4

and HDAC5 protein levels (Fig 4B).

Overall, this confirms that deregulated transcripts of Hdacs can also result in changes at the

protein level. Unfortunately, due to the lack of availability of commercial, validated antibodies

against HDAC6, HDAC7, HDAC10 and HDAC11, we were not able to assay the protein levels

of this subset in doxorubicin-treated murine hearts.

It is believed that given the large body of literature on HDACs in cardiomyopathy, one may

conclude that chronic doxorubicin infusion likely exerts its cardiotoxic properties through an

epigenetic mechanism related to changes in the transcriptional signature of histone deacety-

lases. Alternatively, since it is mainly class II HDACs that have been identified here as potential

molecular targets for doxorubicin-induced cardiomyopathy, it is very likely that such mecha-

nisms are linked to non-histone actions of class II HDACs, including their well-described

properties as transcriptional repressors; for a review see [22,23].

Discussion

Anthracyclines such as doxorubicin (adriamycin) are widely-used anticancer drugs, with a

proven therapeutic potential in many haematological cancers and solid malignancies [24].

Despite the beneficial effect of doxorubicin in cancer, it is well-established that this drug causes

a severe cardiomyopathy, and heart failure is observed in doxorubicin-treated cancer patients

Fig 3. Re-activation of foetal gene markers in hearts treated with doxorubicin. Anp (atrial natriuretic

peptide), Bmp-10 (brain morphogentic protein 10), Bnp (brain natriuretic protein), and Myh-7 (myosin heavy

chain beta) were elevated in the hearts treated with doxorubicin. Bdnf (brain derived neurotophic factor)

mRNA remained unchanged. All Taqman qPCR values were normalized to the geometric mean of three

housekeeping genes: Actb, Cyc1 and Gapdh. Error bars are SEM (n = 6). One-way ANOVA with Bonferroni

post-hoc test: *p < 0.05, **p < 0.01; ***p < 0.001.

https://doi.org/10.1371/journal.pone.0180571.g003
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Fig 4. Chronic administration of doxorubicin leads to a significant transcriptional deregulation of Hdacs. (A) Transcript

levels of Hdac4, Hdac5, Hdac6, Hdac7, Hdac10 and Hdac11 were increased, while Hdac2 mRNA was significantly reduced, in

Doxorubicin toxicity in the murine heart
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[25]. Although the precise mechanism of doxorubicin’s cardiotoxicity remains largely

unknown, there have been a number of studies suggesting that doxorubicin might act through

oxidative stress, including superoxide radical production, mitochondrial DNA damage, or

even an imbalance in calcium or iron homeostasis; for a review see [25]. However, until now,

little has been known about whether doxorubicin changes epigenetic regulation in the heart.

Hence, we sought to establish whether there were any changes in the transcriptional signature

of histone deacetylases (Hdacs), using a well-established mouse model with chronic adminis-

tration of doxorubicin [26,27].

For the first time, we can report that the following Hdacs are significantly deregulated in

doxorubicin-treated murine hearts: Hdac2, Hdac4, Hdac5, Hdac6, Hdac7, Hdac10 and Hdac11.

Interestingly, the majority of altered Hdac transcripts belong to the class II (a and b) and IV

sub-families. Class IIa HDACs have already been linked to the hypertrophy of cardiomyocytes,

likely through their repressive propensities via the MEF2 family of transcription factors [28].

Interestingly, the loss of miR-22 (which targets HDAC4) led to the development of dilated car-

diomyopathy under stress conditions [29]. HDAC7 has been showed to control endothelial

growth via its interaction with beta-catenin, a mechanism that is independent of its enzymatic

domain [30]. While HDAC2-deficient mice showed a partial lethality due to early myocardial

defects [31], there are no data available about the function of HDAC10 and 11 in the heart. In

fact, Hdac6 has already been identified as a molecular target in a cardiomyopathy mouse

model based on the accumulation of misfolded proteins [32]. This is in contrast to the Hdac
transcriptional profile in hypertrophic hearts, where class I and IIb were mainly deregulated,

such as in the chronic isoproterenol mouse model [12]. Therefore doxorubicin-induced car-

diomyopathy is mediated through a different subset of Hdac members than those responding

to hypertrophic signals.

In this study we did not explore the dose-dependency of the HDAC transcriptional alter-

ations with doxorubicin. Although it would be interesting to test whether lower doses of doxo-

rubicin would still affect the transcriptional profile of HDACs, this would likely lead to a

reduction in the therapeutic effectiveness of doxorubicin towards its primary target–cancer

cells–and so would not solve the problem by itself. Nonetheless, the distinctive alterations in

Hdacs raise intriguing new possibilities for therapeutic approaches that might ameliorate

doxorubicin toxicity. Previous studies have demonstrated the efficiency of HDAC inhibitors

in reducing cardiac hypertrophy under pathological conditions [33,34] and in attenuating

structural remodelling after myocardial infarction [35]. In fact, a detailed map of chromatin

modification caused by two well-used pan-HDAC inhibitors, namely TSA and SAHA, has

been described in a human aortic endothelial cell model [36]. Moreover, recent clinical studies

favour dexrazoxane (a topoisomerase-2 inhibitor) as a cardioprotective agent in doxorubicin-

induced cardiomyopathy (for a review see [37]). Interestingly, there are reports that in cancer

cell lines HDAC inhibitors might facilitate selective degradation of topoisomerase-2 [38] and

act in a similar way to dexrazoxane. Our data imply that it would be worthwhile to elucidate

the apparently different pathways involved in doxorubicin-induced transcriptional deregula-

tion of Hdacs. By understanding this complex cardiac pathological response better, it may per-

haps be possible to intervene pharmacologically. For example, specific selective HDAC

the hearts of WT mice treated with doxorubicin. All Taqman qPCR values were normalized to the geometric mean of three

housekeeping genes: Actb, Cyc1 and Gapdh. Error bars are ±SEM (n = 6). One-way ANOVA with Bonferroni post-hoc test:

*p < 0.05, **p < 0.01; ***p < 0.001. (B) Representative western immunoblots of 20 μg of heart homogenates from WT

doxorubicin and vehicle-treated mice (PBS). Protein levels of HDAC2 are significantly down-regulated; HDAC3 remains

unchanged; HDAC4 and HDAC5 are significantly up-regulated. Relative expression levels of HDACs were obtained by

normalisation to ATP5b in densitometry; values are mean ± SEM (n = 6). Student’s t test: *p < 0.05, **p < 0.01, ***p < 0.001.

https://doi.org/10.1371/journal.pone.0180571.g004
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inhibitors could target the cytotoxic effect of doxorubicin in the heart. It is well established

that some pan-HDAC inhibitors are beneficial in a model of cardiac hypertrophy [34], and

may attenuate structural remodelling after myocardial infarction [35]. Alternatively, suberoy-

lanilide hydroxamic acid (SAHA; an inhibitor of Class I and II HDACs) reduced protein

aggregates in cardiomyocytes and led to substantial improvement in cardiac function [32].

Our study would suggest that lowering the activities of HDAC4, 5, 7, 10 and 11 might be bene-

ficial in managing doxorubicin cardiotoxicity. However, class IIa HDACs possess a single

amino acid exchange (tyrosine in class I HDACs versus a histidine in class IIa HDACs) that is

responsible for their reduced enzymatic activity [39]. In fact, a reverse His-to-Tyr mutation

(HDAC4 His-976-Tyr) led to a remarkable 1,000-fold increase in the histone deacetylase activ-

ity [39]. This is in line with our recently published immunoaffinity-based AcetylScan proteomic

screen; although this identified many proteins that are known to be modified by acetylation,

in the absence of HDAC4 there was no effect on the acetylation profile of the murine neonate

brain [40]. This further reinforces that HDAC4 is not a true deacetylase. Since HDAC4 shares a

high homology with other class IIa members, it is highly likely that these other members are

also not true deacetylase enzymes. Hence, developing specific inhibitors that alter class IIa activ-

ities that are not related to the deacetylase domain might be a better therapeutic strategy for

doxorubicin-induced cardiomyopathy.

It is well known that cardiac pathological epigenetic remodelling plays a pivotal role in dis-

ease and aging. For example, HDACs control crucial pathological events in the heart, such

as hypertrophy [33,41], fibrosis [42], contractility [43], and energy metabolism [44]. In fact,

an increased global activity of HDACs has been associated with various adverse cardiac con-

ditions, including hypertrophy [12,34], cardiac ischemia-reperfusion injury [45] and Hun-

tington’s disease related cardiomyopathy [12,14]. Our data also imply that the epigenetic

alterations observed with low-dose doxorubicin are indeed resulting in remodelling of gene

expression. For example, we observed a re-activation of foetal genes such as Anf, Bnf and

Bmp-10 and Myh-7, which is characteristic for many kinds of heart pathology. However, the

profile remained unchanged for levels of Bdnf, a gene that has been associated with the con-

tractile dysfunction in the heart [18], indicating that doxorubicin cardiotoxicity does not

affect this pathway under these conditions. Again, this is an indication that the genetic and

epigenetic pathways regulating this response require further characterisation, in order to

tailor cardioprotective therapies during doxorubicin treatment. One might also assume that

more specific HDAC inhibitors i.e. targeting only class IIa and b could be more efficient

against doxorubicin-induced cardiomyopathy.

Overall, in this study we aimed to verify whether there were any changes in epigenetic regu-

lation in response to doxorubicin in the murine heart. The observation that there are distinct

changes, even under conditions which are generally considered to be cardioprotective, sug-

gests that new approaches to reducing doxorubicin toxicity should now be explored.
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