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Bone marrow (BM) microenvironment represents an important compartment of bone 
that regulates bone homeostasis and the balance between bone formation and bone 
resorption depending on the physiological needs of the organism. Abnormalities of BM 
microenvironmental dynamics can lead to metabolic bone diseases. BM stromal cells 
(also known as skeletal or mesenchymal stem cells) [bone marrow stromal stem cell 
(BMSC)] are multipotent stem cells located within BM stroma and give rise to osteo-
blasts and adipocytes. However, cellular and molecular mechanisms of BMSC lineage 
commitment to adipocytic lineage and regulation of BM adipocyte formation are not fully 
understood. In this review, we will discuss recent findings pertaining to identification and 
characterization of adipocyte progenitor cells in BM and the regulation of differentiation 
into mature adipocytes. We have also emphasized the clinical relevance of these findings.

Keywords: bone marrow stem cells, adipogenesis, secreted factors, bone marrow microenvironment, bone 
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iNTRODUCTiON

Bone marrow (BM) is an important compartment of bone, which regulates bone homeostasis. BM 
can also be perceived as an immune organ as it contains many different cell types secreting a large 
number of cytokines and immune modulatory factors. Finally, BM is a metabolic organ and has 
recently been demonstrated to regulate a whole body energy metabolism (1, 2).

The cellular composition of BM is complex as it contains hematopoietic stem cells giving rise 
to myeloid lineage including osteoclasts and lymphoid lineage giving rise to immune cells. It also 
contains a stroma compartment containing bone marrow stromal stem cells (BMSC) (also known as 
skeletal or mesenchymal stem cells) and their differentiated progeny of adipocytes and osteoblasts as 
well as endothelial cells, pericytes and neuronal cells. The cellular composition of BM changes with 
age, gender, and metabolic status (3, 4).

Bone turnover/remodeling is very dynamic and energetically demanding process that consists of 
two main phases: bone formation mediated by osteoblasts recruited from BMSC and bone resorp-
tion mediated by osteoclasts recruited from hematopoietic progenitors. Bone resorption and bone 
formation are coupled in time and space and there is a balance between the amount of bone resorbed 
by osteoclasts and the amount of bone formed by osteoblasts. These processes of coupling and balance 
are tightly regulated via several factors present in BM microenvironment and also via sympathetic 
central nervous system (2) (Figure 1). Imbalance between bone resorption and bone formation leads 
to metabolic bone diseases, including age-related bone loss and osteoporosis.
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FiGURe 1 | Regulation of bone marrow stem cells differentiation into adipocytes or osteoblasts. Bone marrow is a heterogeneous organ, which consists 
of different cell types participating in bone homeostasis. Among them, most abundant are hematopoietic stem cells (bone resorptive osteoclasts) and mesenchymal 
stem cells giving rise into bone forming osteoblasts or adipocytes. This process is regulated via several transcription factors and secreted molecules (e.g., PPARs, 
Wnt, adiponectin, leptin), which are produced locally or released from peripheral tissues, including BAT, WAT, skeletal muscle, liver, or CNS and affecting bone 
marrow niche through circulation. This multiorgan crosstalk between bone and peripheral tissues plays an important role in the regulation of bone and energy 
metabolism. Abbreviations: CNS, central nervous system; BAT, brown adipose tissue; WAT, white adipose tissue. Adapted from SERVIER Medical Art; http://www.
servier.com/Powerpoint-image-bank
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During the recent years, there has been an increasing interest 
in understanding the biology of BM adipocyte for a number 
of reasons. First, it is an abundant cell type in adult BM (5). 
Second, an increased BM adipose tissue mass has been reported 
in the conditions of low bone mass, suggesting an abnormal 
differentiation of BMSC as a possible pathogenetic mechanism 
to be investigated. Finally, the biological role of BM adipocytes 
and their differences and similarities with extramedullary 
adipocytes are not known and may be relevant to bone tissue 
homeostasis.

In this review, we will present an overview of the BM adipocyte 
differentiation and its regulation by a number of factors. We will 
also outline a number of specific signaling pathways that regulate 
BMSC lineage commitment to adipocytes versus osteoblasts and 
that can be targeted to enhance bone formation and increase bone 
mass.

FROM BONe MARROw STeM CeLLS TO 
COMMiTTeD ADiPOCYTiC CeLLS iN THe 
BONe MARROw

In vitro, BMSC are plastic-adherent cells, present within BM 
stroma and capable of clonal expansion and differentiation to 
osteoblasts and adipocytes. Currently, human BM adipocytes are 
thought to differentiate from BMSC as evidenced by a large body 
of both in  vitro and in  vivo studies (5). In mice, recent lineage 
tracing studies employing genetically modified mice, provided 
evidence for the common stem cell hypothesis for the presence of 
a common stem cells for osteoblastic and adipocytic cells (6, 7). 
Table 1 summaries the main characteristics of recently reported 
BMSC and progenitor cells identified and characterized based 
on lineage tracing studies employing expression of a number 
of markers.
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TABLe 1 | List of different skeletal progenitor cells in the bone marrow 
identified by specific cell surface markers and mediators.

Marker Function Differentiation  
potential

Reference

Nestin A type VI intermediate 
filament protein

HSC maintenance (8)

Gremlin Inhibitor of BMP in TGF 
beta signaling pathway

Osteoblast, chondrocyte, 
reticular cell

(9)

RANKL Receptor activator of  
NFκB ligand

Adipocyte (10)

LepR Leptin receptor Adipocyte (11)

Sox9 Transcription factor Chondrocyte (12)

Col2 Type II collagen Chondrocyte (13)

CD146 Cell adhesion molecule Osteoblast (14)

CD34 Cell adhesion molecule Osteoblast (15)

TABLe 2 | Cellular and molecular characteristics of bone marrow and 
extramedullary adipocytes.

Parameters Bone marrow 
adipocytes

extramedullary  
adipocytes

Reference

Adipocyte size + ++ (24)
Content of free fatty acids + ++ (28)
Cytokine expression ↑ ↓ (31)
Adipokine expression ↓ ↑ (27)
Stem cell markers 
expression

↓ ↑ (26)

Immunomodulatory 
properties

↑ ↓ (31)
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Single cell clonal analysis of cultured BM stromal cells 
revealed, in addition to BMSC, the presence of independent 
committed precursors for osteoblasts and adipocytes. Our study 
of Post et  al. demonstrated the existence of these precursors 
within the murine BM stroma (16). Based on clonal selection, 
we were able to isolate and characterize the phenotype of two 
different precursor cell lines isolated from BM of 2- to 3-month-
old mice: one cell line is committed to adipocyte differentiation 
and termed adipoMSC and another one committed to osteoblast 
and chondrocyte differentiation and termed boneMSC. The two 
cell lines exhibit distinct morphology and molecular signature. 
Based on the differentiation marker expression between these two 
cell lines, we have recently reported that CD34 is differentially 
expressed in boneMSC and not in adipoMSC and that it can be used 
to prospective isolation of osteoblastic committed BMSC (15). 
Examples of studies using lineage tracing to identify committed 
precursor cells include the study of Yue et al. (11) that employed 
leptin receptor (LepR) to identify precursor cells with adipocyte 
differentiation potential. Mice with conditionally deleted LepR 
in limb bones enhanced osteogenesis and improved fracture 
healing (11). Another example is the study of Holt et  al. (10) 
that demonstrated the presence of RANKL + preadipocytes in 
aged mice BM that support osteoclastogenesis. Similar findings 
have been confirmed in human BM (10, 17). Interestingly, some 
lineage tracing studies show heterogeneity of BMSC popula-
tions with respect to their differentiation potential. Gremlin 
1 (Grem1) is a secreted BMP inhibitor and involved in the 
regulation of adipogenesis in peripheral adipose acting via 
PPARγ (18). Recent study of Worthley et al. identified Gremlin 
1 positive precursor cells that can differentiate into osteoblasts, 
chondrocytes, and reticular cells, but not to adipocytes (9). All 
these studies demonstrate the presence of complex cellular het-
erogeneity within the BM microenvironment and the presence 
of different committed BMSC subpopulations with a different 
differentiation potential, whose functions in the BM can be 
modulated independently during aging and metabolic diseases. 
It is also possible that these precursor cells number and functions 
are modulated by physiological conditions and energy demand. 
Since most of the above-mentioned studies were performed in 

mice, it is important to define the relevance of these findings to 
normal human physiology.

BONe MARROw ADiPOCYTeS veRSUS 
eXTRAMeDULLARY ADiPOCYTeS

Biological differences between BM medullary adipocytes and 
extramedullary adipocytes are not completely delineated. Several 
investigators have reported similarities between stromal cells 
isolated from the BM and subcutaneous stromal cells with respect 
to molecular phenotype and adipocyte differentiation capacity 
(19–22). However, significant differences have been observed in 
their responsiveness to adipocyte differentiation signals, as sub-
cutaneous adipose tissue-derived stem cells (ASC) are better to 
differentiate to adipocytes compared to BMSC. BM and extramed-
ullary adipocytes are different in cell size, expression of stem cell 
markers (e.g., Sox2, Nanog, Klf4), presence of extracellular matrix, 
free fatty acid content, proportion of immune cells in contact with 
adipocytes, levels of cytokine, and adipokine expression (23–28). 
Also BMSC have higher expression of inflammatory genes com-
pared to ASC (29). Interestingly, the molecular signature analysis 
reveals that stromal cells from different tissue compartment 
are imprinted by their tissue of origin and ASC are enriched in 
adipogenesis-associated genes compared to MSC from other tis-
sue compartments (19, 30–35). Other differences on cellular and 
molecular level have been reported (see listed in Table 2).

A recent paper of Liaw et al. has reported significant differ-
ences in lipid composition among different adipocytic cell lines 
derived from a variety of sources, including white and brown 
adipose tissue in mice and in adipocytes differentiated from 
3T3-L1 cell line and ear mesenchymal cells (36). Unfortunately, 
the authors did not include BM adipocytes in their studies. This 
data highlight the differences in lipid metabolism in different 
adipocyte compartments, which may be mediated by exposure to 
different bioactive molecules in their microenvironment.

BONe MARROw STROMAL STeM CeLL 
COMMiTMeNT TO ADiPOCYTiC LiNeAGe 
AND ReGULATORY FACTORS

Bone marrow stromal stem cell commitment to adipocytic line-
age is a complex process, which is tightly controlled via several 
positive and negative regulatory factors activated possibly in a 
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TABLe 3 | List of selected regulatory factors for adipocyte differentiation in bone marrow and adipose-derived stem cells.

Gene name Gene symbol Category Bone marrow-derived stem 
cells (BMSC)

Adipose-derived 
stem cells (ASC)

Reference

Peroxisome proliferated-activated receptor γ PPARγ Transcription factor ↑ ↑ (37, 38)
CAAT enhancer binding protein C/EBPα/β Transcription factor ↑↓ ↑ (37–39)
Adiponectin Adipoq Soluble mediator ↓ ↓ (40–42)
Leptin Lep Soluble mediator ↓ ↓ (43–45)
Secreted frizzled-related protein 1 sFRP1 Soluble mediator ↑ ↑ (46, 47)
Delta like-1/preadipocyte factor 1 Dlk1/Pref-1 Soluble mediator ↓ ↓ (48)
Low-density lipoprotein receptor-related protein 5 LRP5 Soluble mediator ↓ ↑ (49–51)
Bone morphogenic proteins BMPs (2,4,7) Soluble mediator ↓↑ (depends on concentration 

and differentiation cocktail) 
↑ (white and beige) (52–54)

Insulin growth-like factor 1 IGF-1 Soluble mediator ↓ ↑ (55, 56)
Irisin, fibronectin type III domain-containing 5 Fndc5 Soluble mediator ↓ ↑ (beige) (57–59)
Fibroblast growth factor 21 FGF-21 Soluble mediator ↑ ↑ (60, 61)
Transforming growth factor beta TGFβ Soluble mediator ↓ ↓ (62, 63)
Interleukin 1 IL1 Soluble mediator ↓ ↓ (62)
Interleukin 6 IL6 Soluble mediator ↓ ↓ (62)
Tumor necrosis factor α TNFα Soluble mediator ↓ ↓ (62)
Heme-oxygenase 1 HO-1 Soluble mediator ↓ ↓ (64, 65)
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sequential cascade. These factors include steroid hormones, 
secreted cytokines/adipokines, and transcription factors. Most 
of these signaling molecules are known for their regulation of 
adipogenesis in bona fide ASC. Table 3 summarizes the effects of 
selected regulatory factors on adipocyte differentiation in BMSC 
and ASC that are discussed in the following paragraphs.

The most characterized transcription factor and a key 
regulator of adipogenesis is peroxisome proliferated-activated 
receptor gamma (PPARγ) (37, 66). PPARγ belongs to a nuclear 
receptor superfamily, which is activated by lipophilic ligands. The 
activation of PPARγ is necessary and sufficient for adipocyte dif-
ferentiation and also required for maintenance of differentiated 
state in BMSC and ASC (67–69). Inhibition of PPARγ in  vitro 
impairs adipogenesis, while enhancing osteoblast differentia-
tion in BMSC (67). In mice PPARγ deficiency leads to impaired 
development of adipose tissue when fed a high-fat diet (HFD) 
(70). PPARγ is also a target for insulin sensitizing drugs, such 
as thiazolidinediones in diabetes. However, their use for diabetic 
patients is associated with a decreased bone mass and increases 
a risk for fracture. The role of PPARγ activation in age-related 
increase of BM adipogenesis and decreased osteoblastogenesis 
has been discussed previously [for more information, see the 
reviews: Ref. (3, 38, 68, 71)].

Additional transcription factors involved in the regulation of 
adipogenesis are members of CAAT enhancer binding proteins 
(C/EBP) family: C/EBPα, C/EBPβ, C/EBPγ and C/EBPδ. Based 
on the studies performed in 3T3 cell line, C/EBP activation during 
adipocyte differentiation is synchronized in a temporal manner 
where early activation of C/EBPβ and C/EBPδ leads to induction 
of C/EBPα. In BMSC, the function and activation of individual 
transcription factors exhibited a different pattern (72). Moreover, 
it has been shown that an isoform of C/EBPβ, liver-enriched 
inhibitory protein (LIP), which lacks transcriptional binding 
domain, induces activation of Runx2 and promotes osteogenesis 
in BMSC (39). C/EBPs crosstalk with PPARγ and regulate each 
other via a feedback loop (38, 68). C/EBP deficient mice exhibited 
impaired adipogenesis and insulin sensitivity (73–75). Moreover, 

C/EBPβ-deficient mice displayed reduced bone mineral density 
with decreased trabecular number (76, 77). These findings 
confirm an important role of C/EBPs in the early stage of MSC 
differentiation and their commitment (78).

The PPARγ-regulated adipokines: leptin and adiponectin are 
primarily secreted by adipocytes and can regulate adipogen-
esis (79, 80). In vitro leptin inhibits adipogenesis and enhances 
osteoblastogenesis in human stromal marrow cells (43). On the 
other hand, leptin-deficient mice ob/ob and LepR-deficient db/
db mice exhibit an increased BM adiposity and low bone mass 
(79). Leptin regulates bone mass negatively indirectly via sympa-
thetic nervous system (44). Interestingly, selective inhibition of 
LepR in osteoblastic cells has no effects on bone mass, whereas 
hypothalamic deletion of LepR leads to a phenotype similar to 
that of ob/ob mice (81), suggesting that the main effects of leptin 
on bone are centrally mediated. In extramedullary adipocytes 
leptin impairs adipocyte function (e.g., insulin responsiveness 
and lipid metabolism) and inhibits lipogenesis (45). In addition, 
Aprath-Husmann et al. reported no effect of leptin on adipocyte 
differentiation in ASC of lean and obese subjects (82). Also, leptin 
levels increase with obesity and diabetes, diseases associated with 
bone fragility. Thus, leptin seems to exert multiple functions with 
direct and indirect effects on BM adipocytes and extramedullary 
adipocytes.

Adiponectin is an adipocyte-secreted factor with insulin 
sensitizing and anti-inflammatory effects. Adiponectin blocks 
adipocyte differentiation of BMSC and ASC suggesting an 
autocrine or paracrine negative feedback loop (40). In vitro 
adiponectin enhances osteoblast differentiation, increases 
osteoblast proliferation and maturation via cyclooxygenase 2 
(Cox2)-dependent mechanism, and inhibits osteoclastogenesis 
(41, 83). However, in vivo effects on bone mass are more complex. 
Adiponectin regulates bone formation via opposite central and 
peripheral mechanisms through FoxO1 transcriptional factor. 
Adiponectin-deficient mice exhibit increased bone mass in young 
age but low bone mass during aging. This effect is explained 
by local inhibition of osteoblast proliferation and enhanced 
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osteoblast apoptosis. During aging, this effect is antagonized by 
adiponectin-mediated effects on hypothalamic neurons that lead 
to decreased sympathetic tone and, consequently, increased bone 
mass and decreased energy expenditure (80). Overexpression of 
adiponectin in adipose tissue causes impairment of adipogenesis 
and increased preadipocyte factor 1 (Pref-1) expression, which 
inhibits adipogenesis in mice (42).

In obesity and type 2 diabetes, circulating levels of leptin 
and adiponectin are differentially regulated (up- and down-
regulated, respectively). However, their role in the regulation of 
BM adipogenesis has not been determined. Recently, Yue et al. 
demonstrated LepR signaling in BMSC promotes adipogenesis 
and inhibits osteoblastogenesis in response to diet (11). By 
contrast, activation of adiponectin receptor R1 (AdipR1) in 
osteoblasts results in enhanced bone formation via GSK-3β/β-
Catenin signaling (84). AdipoR1 deficient mice exhibit impaired 
osteoblast differentiation. The study of Yu et al. highlighted the 
importance of adiponectin signaling in BMSC mobilization and 
recruitment during bone fracture repair via increased secretion 
of stromal cell-derived factor 1 (SDF-1) in mice (85). Cawthorn 
et al. recently reported increased secretion of adiponectin from 
BM adipocytes in caloric restriction state that can contribute 
to its circulating levels (86), suggesting an important endo-
crine role of BM adipocytes in the regulation of whole body 
energy metabolism. However, this observation needs further 
investigation.

Novel factors, which have been identified in our laboratory 
based on proteomic analysis of secreted factors by committed BM 
adipocytic cells (adipoMSC) and committed BM osteoblastic cells 
(boneMSC), are secreted frizzled-related protein 1 (sFRP1) and 
Delta-like 1, also known as preadipocyte factor 1 (Dlk1/Pref-1) 
(16).

Secreted frizzled-related protein 1 is an inhibitor of Wnt 
signaling that sequester Wnts from their receptors. In vitro it 
inhibits osteoblastogenesis and promotes adipogensis of BMSC 
by blocking the Wnt signaling (46) In vivo sFRP1 inhibited bone 
formation. Similar effects of sFRP1 have been reported in preadi-
pocytes and primary adipose tissue-derived cells (87, 88).

 Delta-like 1/preadipocyte factor 1 is a transmembrane pro-
tein, which belongs to a family of epidermal-growth-factor-like 
repeats containing proteins. Its extracellular domain is proteolyti-
cally cleaved by ADAM17/TACE and released as soluble factor 
circulating in body fluids include amniotic fluid and, hence, its 
name fetal antigen A (FA1) (89–91). Pref-1 is highly expressed in 
preadipocytes and its expression decreases during differentiation. 
Pref-1 overexpression in 3T3-L1 cells blocks adipogenesis (92). 
Pref-1 regulates adipocyte differentiation via FOXA2 (93), KLF6 
(94), and KLF2 (95). Our group has reported that overexpression 
of Dlk1 in human BMSC inhibits adipocyte and osteoblastic 
differentiation (48). Interestingly, Dlk1/Pref-1 inhibited dif-
ferentiation of MSC downstream of C/EBPβ during adipocytic 
differentiation and Cbfa1/Runx2 during osteoblastic differentia-
tion, suggesting that Dlk1/Pref-1 maintains MSC in a progenitor 
state. Importantly, we showed a negative effect of soluble FA1 on 
bone formation in ex vivo neonatal calvaria organ cultures. Also 
transgenic mice with Dlk1 overexpression had reduced fat and 
bone mass (96). We have also recently reported that FA1 acts as 

a link between bone and whole body energy metabolism and it 
interacts with osteocalcin (97).

Additional negative regulators of adipocyte differentiation of 
BMSC include molecules in Wnt signaling pathway that consists 
of several ligands, receptors, co-receptors and transcriptional 
mediators, e.g., β-catenin, which blocks PPARγ and its down-
stream-regulated genes (98, 99).

Low-density lipoprotein receptor-related protein 5 (LRP5) is 
a Wnt co-receptor and is involved in activation of canonical Wnt 
signaling (49, 50, 100). It has been shown to inhibit adipogenesis 
and promote osteoblastogenesis in BMSC. A gain of function 
mutation in Lrp5, a clinical condition known as a high-bone-mass  
phenotype, leads to inhibition of adipogenesis and enhances 
osteoblastogenesis, which is associated with increased bone mass. 
On the other hand, Lrp5 loss of function mutation causes severe 
osteoporosis in mice and humans (49, 50, 100, 101). Recent paper 
of Loh et al. (49) demonstrated enhanced adipogenesis in lower 
body fat, e.g., gluteal adipose tissue in high-bone-mass phenotype 
patients. This finding confirms the results of Palsgaard et al., who 
reported impaired adipogenesis in LRP5-deficient preadipocytes 
due to an interaction between LRP5 and insulin receptor (51).

Bone morphogenetic proteins (BMPs) are members of the 
transforming growth factor β (TGFβ) superfamily that were 
originally identified based on their ability to induce ectopic 
bone formation. BMPs have pleiotropic developmental actions, 
important for stem cell self-renewal and lineage commitment and 
differentiation (102). BMP4 promotes adipogenesis in peripheral 
adipose tissue progenitors by increasing transcription activity of 
PPARγ (18, 103). However, dependent on BMP concentration 
and receptor activation, they exert different lineage differentiation 
effects (104). Low concentrations of BMP-2 and BMP-7 induce 
adipocytic differentiation, whereas high concentrations promote 
differentiation toward chondrocytes and osteoblasts (105, 106). 
BMP signaling through type IB BMP receptor (BMPR-IB) plays 
a crucial role in mediating osteoblast differentiation of BMSC by 
a Dlx5/Runx2-mediated pathway, while activation of the type IA 
BMP receptor (BMPR-IA) in BMSC induces PPARs expression 
and promotes adipocyte differentiation (107, 108).

Another signaling pathway involved in the regulation of adi-
pogenesis is insulin/insulin-like growth factor (IGF-1) pathway 
(55, 56, 109). IGF-1 has pleiotropic functions in several tissues 
with regulatory effects on cell proliferation and cell differentia-
tion. It is the most abundant growth factor in the bone matrix. 
Deletion of IGF-1 in osteocytes caused impaired developmental 
bone growth in mice (110). IGF-1-osteoblast deficient animals 
exhibit impaired bone formation and reduction in bone mass 
(111). Mice treated with recombinant IGF-1 exhibited enhanced 
bone formation and osteogenesis via activation of mTOR signal-
ing (112). In adipose tissue, IGF-1 plays an important role in 
adipocyte differentiation, especially in lineage commitment stage 
where insulin acts predominantly through IGF-1 receptors, which 
are highly expressed in preadipocytes compared to insulin recep-
tors (113). Blocking downstream molecules in insulin signaling 
pathway inhibits adipogenesis in preadipocytes (56). Importantly, 
IGF-1 is also involved in the regulation of energy metabolism and 
glucose uptake in insulin responsive cells. Therefore, IGF-1 exerts 
multiple functions dependent on cellular energy needs. However, 
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its role in the regulation of energy metabolism in BMSC and BM 
adipocytes is not known.

Muscle-secreted proteins, known as myokines, represent a 
group of regulatory molecules with expanding role in crosstalk 
between muscle and different organs in the body and with regula-
tory functions on bone and energy metabolism.

Irisin is a newly identified myokine released from skeletal 
muscle during exercise through peroxisome proliferator-activated 
receptor gamma coactivator 1 (PGC1) activation that mediates 
expression of membrane protein Fibronectin type III domain-
containing protein 5 (FNDC5). This is a precursor molecule for 
irisin, which is subsequently cleaved as the myokine (114). Irisin 
has a browning effect on white adipose tissue via upregulating 
uncoupling protein 1 (UCP1) through p38 MAPK and ERK (57, 
114). Moreover, recent studies demonstrated that irisin positively 
affects skeletal system, i.e., it enhances osteoblastogenesis in vitro 
and in vivo (58, 59).

Fibroblast growth factor 21 (FGF21) has been identified 
as a circulating hepatokine with effects on glucose and lipid 
metabolism. FGF21 is also secreted from adipose tissue and 
skeletal muscle (115). It exerts a positive effect on adipogenesis 
via activation of PPARγ in BMSC and adipose tissue progenitors. 
FGF21-deficient mice exhibit high bone mass and decreased 
fat formation. Reciprocally, mice overexpressing FGF21 exhibit 
reduced bone mass (60, 61). In older men, high serum levels of 
FGF21 are associated with low bone mass (116).

Inflammatory cytokines are mostly produced by immune cells 
and play an important role in the regulation of bone remodeling 
and adipocyte formation.

Transforming growth factor beta is a cytokine of the TGF 
superfamily that promotes preadipocyte proliferation and 
inhibits adipocyte differentiation. Overexpression of TGFβ in 
mice leads to impaired adipose tissue development. On the other 
hand, TGFβ-deficient mice display impaired bone growth and 
mineralization (117). TGFβ mediates its inhibitory function on 
adipogenesis via SMAD3, which acts on C/EBPα (56, 118).

The effects of the pro-inflammatory cytokines: interleukin 
1 (IL1), interleukin 6 (IL6), and tumor necrosis factor alpha 
(TNFα) on preadipocytes and BMSC are similar (62). They 
inhibit adipogenesis by reducing PPARγ and C/EBPα expression 
and by blocking insulin action via decreasing Glut4 expression 
in preadipocytes (119). TNFα and IL1 suppress adipocyte dif-
ferentiation by activation of the TAK1/TAB1/NIK cascade, which 
in turn inhibits PPARγ activity (120). IL1 and TNFα inhibit 
adipocyte cell proliferation by activation of several distinct 
intracellular signaling pathways (e.g., JNK, p38 MAPK) (119, 
121, 122). Moreover, IL6 maintains BMSC in undifferentiated 
state through ERK1/2-mediated mechanism during bone frac-
ture healing (123). On the other hand IL6 enhances osteoblast 
differentiation of BMSC by decreasing Sox2 expression (124). In 
estrogen-deficient mouse model, IL6-deficient mice are protected 
from ovariectomy-induced bone loss (125), suggesting a role in 
mediating estrogen-deficiency-related bone loss (125).

Heme-oxigenase 1 (HO-1) is a rate-limiting enzyme with anti-
inflammatory properties, activated by oxidative stress, which was 
reported to regulate commitment of human BMSC differentiation 
to osteoblastic cells. HO-1 acts as an inhibitor of adipogenesis by 

enhancing Wnt signaling (64). Similar effects were observed in 
ASC of obese mice, which were treated with HO-1 inducer that 
led to decreased adiposity in peripheral adipose and BM along 
with a positive effect on insulin sensitivity (65).

Taken together, the above-mentioned regulatory factors share 
similar signaling pathways for the regulation of adipocyte differ-
entiation in BMSC and ASC. However, some of these factors, e.g., 
BMP, IGF-1, and LRP5 display different effects depending on the 
origin of MSCs, suggesting an important role of local microen-
vironment. These findings are relevant to the design of potential 
drugs for targeting BMSC in the context of regulation of bone 
and energy metabolism. Figure 1 summarizes factors regulating 
BMSC differentiation and their associated signaling pathways.

MiCRO RNA AND ReGULATiNG GeNeTiC 
NeTwORKS iN ADiPOCYTiC 
DiFFeReNTiATiON

Micro RNAs (miRNA) are evolutionary conserved short non-
coding RNA molecules (containing about 22 nucleotides) that 
function in RNA silencing and post-transcriptional regulation 
of gene expression. Accumulating evidence suggests that miRNA 
regulate fate decisions of stem cells, including self-renewal and 
differentiation (126, 127).

Several groups have employed global miRNA gene expression 
profiling during differentiation of human BMSC to identify sev-
eral miRNAs that regulate BMSC fate and that act as a molecular 
switch to control adipocyte and osteoblast differentiation fate. 
Most of miRNAs regulate gene expression of key molecules 
involved in BMSC differentiation, such as PPARγ, C/EBP, Runx2, 
Wnt/β-catenin, Lrp5/6, and so on. For example, recent study of 
Hamam et al. identified miR320 family, whose upregulation in 
human BMSC enhanced adipocyte differentiation. The bio-
logically relevant gene targets for miR-320c are RUNX2, MIB1 
(mindbomb E3 ubiquitin protein ligase 1), PAX6 (paired box 6), 
YWHAH, and ZWILCH (128). Other miRNAs that have been 
reported as regulators of adipogenesis include miR-143, -24, -31, 
-30c, and -642a-3p. More detailed description of their function 
in the regulation of BMSC differentiation is summarized in these 
recently published reviews (127, 129, 130). Thus, targeting differ-
ent miRNAs represents a potential tool for a molecular therapy to 
regulate BMSC differentiation fate.

BONe MARROw ADiPOGeNeSiS iN 
AGiNG, OSTeOPOROSiS, AND 
MeTABOLiC DiSORDeRS

In vivo, it has been shown an inverse relationship between bone 
and fat formation in the BM cavity (1, 131, 132). For examples, 
observed abnormalities of bone remodeling during aging, 
osteoporosis, estrogen deficiency, chronic glucocorticoid (GC) 
treatment, immobilization, anorexia nervosa, and Cushing dis-
ease are associated with increased adipose tissue accumulation 
in the BM and decreased bone mass (3, 133–135). One of the 
cellular explanations that has been put forward to explain this 
inverse relationship between bone and fat tissue mass in the BM is 
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differentiation reprograming of BMSC toward adipocyte instead 
of osteoblastic fate (136–138). Moerman et al. reported that aging 
activates adipogenic and suppresses osteogenic differentiation 
programs in BMSC in mice (139). Molecular mechanism behind 
this reprograming machinery is not completely delineated. It has 
been shown that several extracellular signaling proteins have 
overlapping roles in BMSC adipogenesis and osteoblastogenesis 
by modulating the expression and/or activity of adipocyte-spe-
cific (e.g., PPARs) or osteoblast-specific (e.g., Runx2 and osterix) 
transcription factors. Some of these factors play opposing roles in 
lineage determination, while others function in complementary 
fashion. Schilling et al. using whole genome analyses identified 
several genes that could play a role in osteoblast versus adipocyte 
differentiation of BMSC (138).

Obesity and diabetes are highly prevalent diseases, in which 
bone mass is also affected (140). Several studies have demonstrated 
that metabolic complications of diabetes are associated with 
increased risk for bone fractures. However, it is not clear whether 
these effects are mediated by changes in BM adipose tissue. Bredella 
et al. found positive correlation between visceral adipose tissue and 
BM adiposity as measured in vertebrae of obese premenopausal 
women. Interestingly, this finding correlates with decreased BMD, 
even after correcting for the degree of obesity (141). An in vitro 
study reported that incubating BMSC with sera obtained from 
overweight persons promotes in  vitro adipocyte differentiation 
and diminishes osteoblast differentiation (142), suggesting that 
secreted factors/nutrients present in circulation can affect the 
differentiation process of BMSC (142). In HFD-induced obesity 
in mice, an increased osteoclastic bone resorption associated with 
a lower trabecular bone mass is observed (143). Indeed, saturated 
fatty acids impair osteoblastogenesis, enhance adipogenesis, and 
affect cell survival and proliferation of human BMSC (144, 145). 
Other animal study reported impairment of mitochondrial func-
tion and apoptosis of BMSC in obese mice (146).

An increased BM adiposity has been reported in type 1 and 
type 2 diabetes (T1D and T2D). However, in T1D, there is a 
decrease in bone mass, whereas T2D is characterized by no 
change or higher bone mass and paradoxically increased risk for 
osteoporotic fractures (147–150). Studies are underway to exam-
ine the role of impaired glucose metabolism and its associated 
hyperglycemia and hyperinsulinemia on the biological functions 
of BMSC. This area of research has also been strengthened by the 
discovery of osteocalcin as a bone secreted hormone that regu-
lates insulin secretion, proliferation of β-cells, and overall energy 
metabolism in mice (151, 152) and FA1 as a negative regulator of 
osteocalcin-induced hypoglycemia (97).

TARGeTiNG BONe MARROw 
ADiPOCYTeS TO iNCReASe BONe MASS

Several studies have examined the possibility of reverting the 
adipocyte differentiation fate of BMSC to bone forming osteo-
blasts as an approach to increased bone mass during aging and 
in osteoporosis. A number of molecular studies have investigated 
therapeutic potential of several factors as regulators of BMSC dif-
ferentiation fate, which included hormone replacement therapy/

small molecules with antagonistic/agonistic effect or neutralizing 
antibodies.

An example is sclerostin (SOST), which is a glycoprotein 
produced by osteocytes and acts as an inhibitor of Wnt signal-
ing. SOST inhibits bone formation and increases bone adiposity 
through possibly targeting differentiation of BMSC (153, 154). 
Treatment with humanized antibodies against SOST is currently 
in phase III trials for osteoporosis management (155). Another 
molecule with a similar function as SOST is Dickkopf-1 (DKK1), 
which negatively regulates Wnt signaling (156). Growth factors, 
such as BMPs or activin A, represent other anabolic agents for a 
potential treatment (157). Recent study of Florio et al. reported 
promising results on the use of bispecific antibody targeting SOST 
and DKK1 with an enhanced effect on bone formation in rodents 
and non-human primates (158). However, further clinical studies 
are needed to investigate the effectiveness of combined treatment, 
especially in patients with severe osteoporosis.

Some anti-diabetic drugs designed to improve insulin sensi-
tivity and adipogenesis in the peripheral tissues have unfortu-
nately the side effects on bone mass with increased fracture risk, 
e.g., thiazolidinediones due to partly enhanced BM adiposity 
(71, 159, 160). Thus, one of the research goals is to design anti-
diabetic drugs with minimal negative effects on bone. Recently 
used anti-diabetic drugs in the clinic include the incretin-based 
therapies (GLP-1 receptor agonists, DPP-4 inhibitors) and drugs 
targeting sodium-glucose co-transporter 2 (SGLT2)-inhibitors.  
However, their effects on bone mass and fracture risk need to be 
determined (161).

CONCLUSiON/FUTURe PeRSPeCTiveS

MSC commitment to differentiate into osteoblasts or adipocytes 
and, consequently, the balance between bone mass and BM 
adipose tissue mass is a complex and dynamic process, which is 
regulated and fine tuned by a large number of bioactive molecules. 
The sequential cascade of these processes and how they modulate 
BMSC differentiation is currently under intensive investigation. 
Future studies need to identify the biological functions of BM 
adipocytes not only in relation to bone remodeling but also as 
part of the overall regulation of energy metabolism. The findings 
of novel secreted molecules involved in the regulation of cellular 
fate of BMSC provide new possible anabolic therapies for treating 
clinical conditions of low bone mass and possibly disturbances in 
energy metabolism.
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