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ABSTRACT
Background. Wind, an important abiotic stress factor, affects forests in coastal areas,
causes tree damage and timber loss.
Methods. Two genotypes of Eucalyptus camaldulensis-strong wind-resistant CA5 and
weak wind-resistant C037 were used for RNA-seq analysis to screen for candidate
wind-resistance genes and transcription factors (TFs) by comparing the transcriptome
analysis of the two varieties in response to wind stress.
Results. It showed that 7061 differentially expressed unigenes could be annotated
including 4,110 up-regulated unigenes and 2,951 down-regulated unigenes. Gene
Ontology (GO) analysis revealed that six cellulose pathwayswere involved in response to
wind stress. The unigenes in phenylpropanoid biosynthesis, phenylalaninemetabolism,
and flavonoid biosynthesis pathways were found to be differentially expressed based
on Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. Moreover, 37
differentially expressed genes were functionally annotated to be involved in the
secondary metabolism of phenylalanine (ko00940). Seventy-eight TFs related to the
regulating cellulose and lignin synthesis were expressed differently from the various
treatments. The expressions of C3H, POX, MYB, NAC, Gene008307, and Gene011799
were significantly upregulated in CA5. Overall, the main response of Eucalyptus to
wind stress was associated with cell wall biosynthesis; key genes of cellulose and lignin
biosynthesis pathways and related TFs were involved in the tree response to wind stress.

Subjects Bioinformatics, Molecular Biology, Plant Science
Keywords Eucalyptus camaldulensis, Wind stress, Transcriptional sequencing, Wind resistance
genes

INTRODUCTION
The wind is an important abiotic stress factor that causes forest damage, followed by other
factors such as fires, pests, and diseases (Défossez et al., 2015). Upon reaching their limits
of withstanding wind pressure, specific parts of trees cannot further resist the wind load,
which results in trunk bending, crown and trunk breaking (windbreak), uprooting, and
other injuries (Gardiner et al., 2008; Peltola et al., 2000). Wind damage has caused huge
economic losses in the forestry sector. In Europe, wind damage accounts for 50% of the
forest loss. The wind-induced damage to forests is anticipated to increase, consequently
affecting the forest economy (Défossez et al., 2015). For example, the loss of a considerable
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amount of timber in Finland was witnessed due to storms (Zubizarreta-Gerendiain, Pukkala
& Peltola, 2016;Gregow et al., 2008), and the planting area of Eucalyptus in Brazil decreased
sharply due to the wind-related disasters (Zanuncio et al., 2017). In addition, wind damage
hampers the structure and function maintenance of forest ecosystems in coastal areas;
besides, it impacts the composition, succession, and function of forest ecosystems (Imbert
& Portecop, 2008; Coomes et al., 2018). Based on the Amazon region as an example, the
annual carbon storage loss caused by wind damage is 1.3 pg, while the annual carbon
storage reduction caused by logging is merely 0.2 pg (Espírito-Santo et al., 2014); therefore,
wind damage is the main factor causing the sharp reduction of forest carbon storage
(Jackson et al., 2019). Moreover, wind damage is one of the main environmental factors
that significantly affect plant growth, development, and distribution (Xu et al., 2017).Wind
inhibits the water transport capacity of plants, resulting in water deficiency in leaves, and
limited photosynthesis. Long-term winds significantly influence the growth and wood
properties of trees. Strong winds, such as typhoons, not only shake trees but also affect
their internal structure, which adversely impacts water regulation and photosynthetic
physiology (James, Haritos & Ades, 2006; Ennos, 1997; Gardiner, Berry & Moulia, 2016).
Additionally, trees shed leaves, tend to incline, and are broken and/or uprooted owing to
strong typhoons.

At present, research regarding wind resistance of trees has been mainly focused on
coniferous species such as Acer pseudoplatanus (Zubizarreta-Gerendiain, Pukkala & Peltola,
2016; Duperat, Gardiner & Ruel, 2021), Quercus robur (Jackson et al., 2019),Maritime Pine
(Dupont et al., 2018), Rubber (Edzang et al., 2020;Wu et al., 2012), Eucalyptus (Zanuncio et
al., 2017; Zanuncio et al., 2019; Shang et al., 2017), and coastal protective tree species such
as Casuarina equisetifolia and Acacia (Xu et al., 2014; Wu et al., 2010). Of these, Eucalyptus
is an important plantation tree species with high economic benefits in China. The planting
area of Eucalyptus in China has reached 5.46 million hm2 with an annual output of more
than 45 million m3 of wood, making an important contribution to wood production
(Arnold et al., 2013; Xie et al., 2017). Research on wind resistance of Eucalyptus has been
mainly focused on their growth andwood properties after typhoons. For example,Zanuncio
et al. (2017) measured the wood properties of E. grandis × E. urophylla to evaluate the
resistance of Eucalyptus clones to wind damage. Luo et al. (2009) studied the genetic
variation in growth and wind resistance of 2-year-old Eucalyptus hybrids. Shang et al.
(2017) studied the effects on growth and wood properties with respect to wind resistance
in 50 E. camaldulensis individuals. The results indicated that the wind damage index
heritability was high and close to the heritability of fibre length. The heritability of
individual trees and families was 0.516 and 0.524, respectively (Shang et al., 2017). Some
studies based on field investigation and statistics were conducted in controlled conditions
to evaluate the relationship between the wind damage index and individual tree traits to
determine the factors influencing tree resistance to wind. However, resistance against winds
in standing trees in fields can be attributed to many factors. Therefore, by exclusively using
the conventional method including regression analysis of wind damage and tree traits,
it is impossible to understand the key factors of wind resistance in trees and to elucidate
the underlying mechanism. Abundant genetic resources with respect to wind resistance in
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Eucalyptus species are available (Luo et al., 2009; Shang et al., 2017), and it is important and
urgent to utilize their wind resistance genes and develop new breeding-based varieties.

Plants can respond to external stimuli such as wind in terms of physiology and growth,
which enable plants to withstand further wind challenges (Braam et al., 1997). Some
studies have shown that various signalling molecules and phytohormones, including
intracellular calcium, ethylene, abscisic acid, auxin, and reactive oxygen species have been
implicated in reactions exhibited by physiological and morphological transformations
(Nicoll et al., 1995). However, to understand the mechanical signals, signalling pathways
and physiological response of plants to mechanical stimuli, further research is warranted
(Telewski & Pruyn, 1998; Chehab, Eich & Braam, 2009). The plant cell wall is composed
of cellulose, hemicellulose, lignin, polysaccharides, and proteins, which form a strong
network of filaments, providing mechanical support for cells, tissues, and the whole plant
(Gilbert, 2010). Cellulose, as the main component of the cell wall, significantly promotes
maintenance of the mechanical strength of the stem (Xiang et al., 2010). Studies on lodging
resistance in wheat, rice, corn, and other crops have found that an increase in the cellulose
content can significantly improve the mechanical strength of the stem and enhance its
compressive capacity; varieties with high cellulose content have strong lodging resistance
(Yang et al., 2009; Huang et al., 2014). Additionally, lignin is a secondary metabolite that
can determine the strength of the cell wall and lodging resistance of the stem; it plays a key
role in maintaining the mechanical strength of the stem (Turner & Somerville, 1997; Lewis
& Yamamoto, 1990). Studies on lodging resistance of oat (Welton, 1928), wheat (Tripathi
& Sayre, 2003), rape (Liu & Guan, 2008), and rice (Ookawa & Ishihara, 1993) have shown
that stems with high lignin content have high mechanical strength and strong lodging
resistance, and the lignin content is significantly positively correlated with the lodging
resistance of crops (Thompson, 1963; Zuber & Grogan, 1961). Our previous research found
that Eucalyptus strains with high cellulose and lignin content have strong wind resistance.
Combined with the lodging research in crops, it can be inferred that the content of
cellulose and lignin in trees has an important impact on their wind resistance. Luo et al.
(2009) studied that the wind resistance in 2-year Eucalypt hybrids was only controlled by
additive genes, and the wind resistance of hybrid offspring was only determined by the wind
resistance characteristics of parents. The interaction between parents had no significant
effect on the wind resistance of offspring. The wind resistance index of Eucalyptus hybrids
was controlled by additive genes and the heritability ranged from 0.10 to 0.11. The
heritability of wind resistance index of offspring with Eucalyptus urophylla as a female
parent was higher than that of offspring with Eucalyptus tenuifolia as a female parent. The
heritability of wind resistance index of 1-year-old Eucalyptus camaldulensis was 0.2, and
that of 4-year-old Eucalyptus camaldulensis is 0.52. The heritability of wind resistance index
was different among different Eucalyptus varieties at different ages, indicating that the
smaller the tree, the more susceptible it was to environmental effects. The heritability of
fibre length, fibre width and wood density were higher, indicating that these traits were
less affected by environmental conditions (Shang et al., 2017). Genetic improvement of
wind resistance is an important way to deal with wind damage. Due to the long generation
cycle and high genetic heterozygosity of trees, and most of the target improved traits
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are quantitative traits jointly controlled by multiple gene loci, the genetic improvement
process of tree wind resistance is greatly limited by conventional breeding. So far, no wind
resistance genes have been reported in forest trees, and the key genes for the synthesis and
accumulation of Eucalyptus cellulose and lignin in the process of wind resistance are not
understood. Therefore, in this study, two genotypes–strong wind-resistant CA5 and weak
wind-resistant C037, were selected from E. camaldulensis families based on our previous
research outcome; their cellulose and lignin contents were determined, and wind stress
treatment was provided based on the tree-pulling test (Fredericksen, Hedden & Williams,
1993; Sani et al., 2012). The key candidate genes related to wind resistance in Eucalyptus
were identified by high-throughput transcriptome sequencing (RNA-seq), and the results
of the transcriptome sequencing were verified by conducting quantitative PCR analysis
to provide a technical reference for breeding and efficient utilisation of wind-resistant
varieties.

MATERIALS & METHODS
Plant material
For the trial, E. camaldulensis was planted in August 2012 in the South China Experiment
Nursery, which is located in Suixi County, Guangdong Province. It was built for seed
breeding from provenance forests of Australia and India, including 12 populations
(provenances), 115 families, and more than 1700 individuals. The trial site and
establishment have been described previously by Luo et al. (2014). In this study, the
experimental materials were 7-year-old standing trees of two E. camaldulensis genotypes,
CA5 (strong wind resistance) and C037 (weak wind resistance), whose wind resistance was
measured and estimated based on wind damage caused by several typhoons. In September
2019, wind simulation experiments using tree-pulling tests were conducted in the field.
The specific method involved applying the pulling force to the trunk at a tree height of 4
m by using a winch and cable to tilt the standing tree to 30◦ vertical to the trunk; three
trees were selected and tested for each genotype. The immature xylem of the standing
tree at breast height was taken at each of two time points, 0 h (before treatment) and 24
h (after treatment), and the wind-resistant CA5 had three biological replicates. Due to a
trunk breakage of C037 in the test process, two biological replicates were considered. For
simplicity, the samples of two genotypes extracted before and after treatment were named
as C037_0 h and C037_24 h, and CA5_0 h and CA5_24 h, respectively, and then used for
transcriptome sequencing.

Determination of wood traits
Fibre length and fibre width (FW) were determined by LDA 02 Hi-Res Fiber Quality
Analyzer(OPTEST, Canada). Bending strength referred to a method of testing in bending
strength of wood (GB/T1936.1-2009 of PRC national standards), bending elastic modulus
followed by the method for determination of the modulus of elasticity in static bending of
wood (GB/T19362-2009 of PRC national standards). Strength of structural timber parallel
to grain followed by the method of testing in shearing strength parallel to the grain of
the wood(GB/T 1937-2009 of PRC national standards). Compressive strength parallel to
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grain was a method used to test the compressive strength parallel to the grain of the wood
(GB/T 1935-2009 of PRC national standards). Browning (1967) method was used for the
determination of α-cellulose content and holocellulose content, and Huntley et al. (2003)
method for the determination of lignin content.

Total RNA extraction and cDNA library construction
Total RNA was extracted using the RNAprep Pure Plant Kit (TIANGEN, Beijing, China),
and the concentration and purity of the total RNA samples were detected using aNanoDrop
2000 (Thermo Scientific, Wilmington, DE, USA). The total RNA integrity of 28s/18s and
RNA integrity number (RIN) values were detected by Agilent 2100 Bioanalyzer. Next, the
mRNA was purified from total RNA with Poly-T oligomagnetic beads. The first-strand
cDNA was synthesized with random hexamer primers and M-MuLV reverse transcriptase.
The second cDNA strand was synthesised by DNA Polymerase I and RNase H. AMPure
XP system (Beckman Coulter, Beverly, MA, USA) was used to purify the library fragment.
Phusion High-Fidelity DNA polymerase, Universal PCR primer and Index (X) Primer were
used for PCR. Finally, the PCR products were purified by the AMPure XP system, and the
library quality was evaluated by Agilent Bioanalyzer 2100 system.

Transcriptome sequencing and functional annotation
High-throughput sequencingwas performed on an IlluminaHiSeq6000 platformwith three
technical replicates. The raw reads obtained by transcriptome sequencing were filtered to
obtain clean reads by removing reads containing adapters, reads containing poly-N,
and low-quality reads from raw data. Meanwhile, Q20, Q30, GC content and sequence
repetition level of clean data were calculated. The TopHAT software (Trapnell, Pachter &
Salzberg, 2005) was used to compare the sequence of clean reads with the transcriptome
sequence of the third generation of E. camaldulensis, and accurate position information
of the reference genome was obtained. There were 7 databases for gene annotation: NR
(NCBI non-redundant protein sequences), NT (NCBI non-redundant nucleotide), Pfam
(Protein family), KOG/COG (Clusters of Orthologous Groups of proteins), Swiss-Prot (a
manually annotated and reviewed protein sequence database), KO (KEGG homologous
database), and GO (Gene Ontology). The personalised analysis platform and tools of the
BMK cloud platform were used for in house analysis of transcriptome data and annotation
of TFs.

Single-nucleotide polymorphism (SNP) mining
Using software SOAPsnp (http://soap.genomics.org.cn/soapsnp.html) to get all of the
unigene sequences SNP detection. The genes of different SNPs in CO37 and CA5 were
mapped to the GO annotation file of E. camaldulensis genome, and the Go functional
classification statistics and KEGGmetabolic pathway analysis were performed for all genes.

Analysis of differentially expressed genes (DEGs)
The CuffQuant and CuffNorm components of the CuffLinks software were used to quantify
the transcription and expression levels of genes, and the fragment number per kilobase
transcript (FPKM) was used as the index to measure the transcription or gene expression
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levels (Trapnell et al., 2010). For detecting DEGs, fold change ≥2 and FDR<0.01 were
selected as screening criteria (Benjamini & Hochberg, 1995). After the DEGs were screened,
BLAST analysis was performed between the DEG and NCBI databases (NR), Swiss-Prot,
KEGG, COG, and KOG databases (E- value < 110-5). The DEGs were annotated with
reference to the protein amino acid sequence information with high homology to the target
gene. Goseq R packages based onWallenius non- central hypergeometric distribution were
used to classify the functions of DEGs in the GO database (Young et al., 2010). The KEGG
signal pathway was enriched and analysed using the Kyoto Orthologics-based Annotation
System2.0 (KEGG) signal pathway (Mao et al., 2005).

Quantitative Real-time PCR (qRT-PCR) verification
The cDNA of the transcriptome backup sample was used as a template for gene
amplification. Twelve differentially expressed genes related to cellulose and lignin were
selected to verify the transcriptome data. Primers for qRT-PCR of related genes were
designed using Primer 3.0 software, and 18S rRNA was set as an internal reference gene,
with three biological and three technical replicates. The primer information is included in
Table S1. The cDNA of each sample was diluted and used as a template for the verification
of differential genes by qRT-PCR. The qRT-PCR system is presented in Table S2. The
qRT-PCR procedure was set according to the instructions corresponding to the fluorescent
dye SYBR Green. qRT-PCR was performed using the analytikjena-qTOWER2.2 fluorescent
quantitative PCR instrument. The procedure was as follows: 95 ◦C for 3 min, 95 ◦C for 10
s, and 58 ◦C for 30 s, for 39 cycles. The relative expression of genes was calculated using
the 2−11ct method (Livak & Schmittgen, 2001).

RESULTS
Differential analysis of wood quality index between C037 and CA5
The differences in the bending strength, bending elastic modulus, structural timber parallel
to the grain, compressive strength parallel to the grain, lignin content cellulose and
holocellulose content between CA5 and C037 were very significant (P ≤ 0.01) (Table 1).
The differences in the fibre length, fibre width, α-cellulose content between CA5 and C037
were significant (P ≤ 0.05). According to the fibre and physical mechanics analysis, it is
found that the fibre length is between 0.53–0.60 mm, the fibre width means was 25.40 µm
in the range of 24.00–26.60 mm. Therefore, Nevertheless, there were significant differences
in fibre length and fibre width among different families. Moreover, the cellulose and lignin
content of CA5 was higher than that of C037. Further analysis results showed that lignin
content varied from 19.40% to 26.10%, the average content of Lignin content was 22.32%,
the minimum of HC was 76.91%, the maximum value was 82.84%, and the average HC
was 79.83%. The range of holocellulose content was 77.00%-82.40%, with an average of
79.90%. The results showed that bending strength ranged from 58.00 MPa to 89.00 MPa
with an average of 73.45 MPa, and bending elastic modulus ranged from 5056.00 MPa
to 8470.00 MPa with an average of 6962.17MPa. The minimum value of compressive
strength parallel to grain was 37.10 MPa, the maximum value was 53.10 MPa and the
average value was 45.63 MPa. The minimum value of structural timber parallel to grain
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Table 1 Basic descriptive statistics and ANOVA among between CA5 and C037.

Traits Minimum Maximum Means Skewness Kurtosis P-value Heritability

Bending strength/MPa 58.00 89.00 73.45 −0.035 −3.061 0.000 0.647
Bending elastic modulus/MPa 5056.00 8470.00 6962.17 −0.288 −1.961 0.005 0.505
Structural timber parallel
to grain/MPa

16.20 31.30 24.35 −0.122 −2.694 0.001 0.818

Compressive strength parallel
to grain/MPa

37.10 53.10 45.63 −0.068 −2.329 0.004 0.851

Lignin content/% 19.40 26.10 22.32 0.158 −2.782 0.001 0.686
Holocellulose content/% 77.00 82.40 79.90 −0.161 −2.379 0.002 0.847
α-cellulose content/% 42.30 54.20 47.73 0.414 −1.237 0.020 0.814
Fiber length /mm 0.53 0.60 0.57 −0.416 −1.884 0.020 0.313
Fiber width /µm 24.00 26.60 25.40 −0.343 −1.841 0.012 0.439

was 16.20 MPa, the maximum value was 31.30 MPa, the average value was 24.35 MPa.
There are obvious differences between CA5 and C037. The heritability of structural timber
parallel to the grain, Compressive strength parallel to the grain, Holocellulose content and
α-cellulose content was more than 0.8, indicating that these characters were less affected
by environmental factors. The heritability of fibre length and fibre width was less than 0.5,
indicating that these two traits are susceptible to environmental factors.

RNA sequencing data quality assessment
In total, 67.84 GB of clean data were obtained from 10 samples based on transcriptional
analysis. For each sample, 5.89 GB of clean data were obtained, and the clean read number
of the 10 samples was between 19697418 and 28879406. The variation in the number of
clean bases was from 5893116176 to 8639188918. The GC content of the obtained data after
filtration was between 51.01% and 52.05%. The Q20 and Q30 values were over 97% and
over 94%, respectively. The average number of N (in the base) after filtration (Table S3).
It indicates that the sequencing quality was high and accurate, and the raw RNA-seq data
could be used for subsequent assembly. After a sequence similarity search against eight
databases, we annotated 26588 different assembled unigenes (Table S4).

SNP detection
SNPS were screened from C037 and CA5 samples using SOAPsnp and their locations
were determined. Statistics show (Table S5) that the number of SNPS detected in the
samples of non-wind-resistant strain C037 were 87018, 64805 and 57496, and the number
of SNPS detected in the samples of wind-resistant strain CA5 was 67361, 63584 and 61089
respectively. Further analysis showed that C/T and A/G had the highest frequency of
occurrence, which was more than 25%, while the frequency of other four single nucleotide
variations A/C, G/T, C/G and A/T were less than 10%. Among the six variation types,
the frequency of C/T was the highest, which may be because the methylated cytosine
residues on CpG dinucleotide are easily spontaneously deaminated to form thymine. In
order to further understand the information of SNP locus, the genotype of this locus
and the mutated genotype of each individual were analyzed. According to the number of

Shang et al. (2022), PeerJ, DOI 10.7717/peerj.12954 7/30

https://peerj.com
http://dx.doi.org/10.7717/peerj.12954#supp-3
http://dx.doi.org/10.7717/peerj.12954#supp-4
http://dx.doi.org/10.7717/peerj.12954#supp-5
http://dx.doi.org/10.7717/peerj.12954


reads supporting this locus and the genotype of this locus obtained by GATK3 software,
the genotype was different in the samples of wind resistance. According to the statistical
results, the heterozygosity of C037 was 40.53%, and that of CA5 was 43.16%.

GO classification of genes where SNP loci reside
In order to understand the function of the screened genes containing SNP, the GO
annotation results were further classified. These genes were annotated into 29 functional
regions in 3 categories (Fig. 1), including 90 genes in 13 functional regions of Biological
process, 93 genes in 8 functional regions of Cellular Component and 57 genes in 8Molecular
functions. In biological processes, the most genes were involved in metabolic process (26),
cellular process (25), single organization process (13) and biological regulation (10).
Among the cell components, the genes involved in membrane (21), membrane part (20),
cell and cell part (15) were the most. Among the molecular functions, the most genes
were involved in binding (25) and catalytic activity (21). SNP containing genes was mainly
related to the metabolic process of Eucalytus globulus.

KEGG pathway analysis of SNP locus gene
After processing the KEGG annotation results of 80 SNP containing differences unigene in
the transcriptome data, it was found that 11 genes with known KEGG function have been
annotated into 10 pathways (Fig. 2). Among them, cystaine and methionine metabolism
had two unigenes, and the other pathways had one unigene. The results showed that both
KEGG metabolic pathway analysis and GO classification were related to metabolism.

Screening for DEGs
The DEGs were screened with a standard fold change (FC) and false discovery rate (FDR)
with significant differences across the tested samples (Fig. 3). In total, 7061 DEGs were
detected across the four samples, including 4110 upregulated genes and 2951 downregulated
genes. We found 1828 DEGs in CA5 under wind stress (CA5_0 h vs. CA5_24h), including
571 upregulated genes and 1257 downregulated genes. However, only 271 DEGs were
detected in C037 under wind stress (C037_0 h vs. C037_24h). More DEGs were identified
in CA5 under wind stress compared to that in C037. There were 3687 DEGs in C037_0 h vs.
CA5_0 h before wind stress, of which 2570 were upregulated and 1117 were downregulated.
There were 1275 DEGs in C037_0 h vs. CA5_0 h after wind stress, of which 841 were
upregulated and 434 were downregulated. A total of 697 genes overlapped between
C037_0 h and CA5_0 h and C037_24 h vs. CA5_24 h, and only 73 genes overlapped
between C037_0 h vs. C037_24 h vs. CA5_0 h vs CA5_24 h. The annotated DEGs of the
different groups are shown in Table S6. Based on the generated volcano map, we can
further visualize the significant difference in the expression levels between the CA5 and
C037 samples (Table S7).

In response to wind stress, 762 and 122 DEGs (Table S8) were exclusively detected
in CA5 and C037, respectively; this indicates that wind resistance in Eucalyptus depends
largely on the differential gene expression. After the clustering analysis of 7601 DEGs
detected across these samples, the Clusters of Orthologous Groups of proteins (COG)
and Kyoto Encyclopaedia of Genes and Genomes (KEGG) analyses were conducted for
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Figure 1 Gene Ontology (GO) analysis for genes with SNP.
Full-size DOI: 10.7717/peerj.12954/fig-1

the 726 DEGs specific to CA5 in response to the wind stress. We found that cell wall and
phenylpropanoid biosynthesis pathway genes potentially play a key role in response to
wind stress (Figs. 4; 5). The genes related to cell wall synthesis, especially those involved
in the lignin synthesis pathway, could be the key factors for variation in wind resistance
across the different Eucalyptus varieties.

GO enrichment analysis
GO enrichment analysis of the candidate wind-resistant DEGs in the four groups
revealed that CA5 and C037 were significantly different in their biological processes,
cell composition, and molecular function under wind resistance and control conditions. A
total of 5,377 GO annotation entries were obtained corresponding to 28,859 genes. Upon
further classification and enrichment of the three functional categories, the top five GO
classifications with the most significant differences in gene expression at different time
points and categories were obtained (Table 2). In terms of cellular components, the integral
component of membrane (GO: 0006952) and extracellular region (GO: 0005576) were
significantly enriched in all groups, and the integral component of the plasma membrane
(GO: 0005887) was significantly enriched in C037_0 h vs.C037_24 h, CA5_0 h vsCA5_24 h,
and C037_24 h vs. CA5_24 h. The number of biogenesis genes in CA5 was significantly
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Figure 3 DEGs analysis of C037 and CA5 varieties under wind stress.
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higher than that in C037 cells. In terms of molecular function, the GO terms corresponding
to ADP binding, ATP binding, and iron ion binding were significantly enriched across
all the samples, and the protein serine/threonine kinase activity was found significantly
enriched in C037_0 h vs. CA 50 h, C037_0 h vs. C037_24 h, and CA5_0 h vs CA5_24 h. In
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Figure 4 Cluster of orthologous groups of proteins (COG) functional classification for the obtained
transcriptomic sequences of Eucalyptus camaldulensis. The unigenes have been classified into 20 COG
categories (listed as C to V in the key on the right side of the figure). The y-axis indicates the number of
unigenes in each COG category.

Full-size DOI: 10.7717/peerj.12954/fig-4

the biological processes category, terms for defence response and protein phosphorylation
were significantly enriched across all the samples, and the processes of lignin biosynthesis
were significantly enriched in C037_0 h vs.CA5_0 h, C037_24 h vs.CA5_24 h, and CA5_0 h
vs. CA5_24 h after wind stress treatment. Compared with C037, CA5 exhibited two more
processes of lignin biosynthesis and cell wall biogenesis under wind stress. These findings
indicate that the wind resistance trait in wind-resistant genotypes may be related to cell
wall biogenesis.

KEGG-based pathways enrichment analysis of the related genes
The KEGG-based analysis further revealed that the number of DEGs in CA5 and C037
varied greatly in different physiological metabolic pathways under control and wind stress
conditions (Fig. 6; Table S9). In C037_0 h vs C037_24 h, only pathways associated with
protein processing in the endoplasmic reticulum (ko04141) and glycolysis/gluconeogenesis
(ko00010) were significantly enriched under wind stress. In CA5_0 h vs CA5_24 h,
eight KEGG pathways were significantly enriched under wind resistance. In C037_0
h vs. CA5_0 h, seven KEGG pathways were significantly enriched, and five metabolic
pathways were significantly enriched in C037_24 h vs. CA5_24 h. Among them, stilbenoid,
diallylheptanoid, and gingerol biosynthesis (ko00945), phenylpropanoid biosynthesis
(ko00940), phenylalanine metabolism (ko00360), and flavonoid biosynthesis (ko00941)
were involved in C037_0 h vs. CA5_0 h, CA5_0 h vs. CA5_24 h, C037_24 h vs. CA5_24 h.
The four pathways may be related to the strong resistance of CA5 to wind stress. Moreover,
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Figure 5 Histogram of Gene Ontology (GO) assignment for transcriptomic sequences of the 20 paths
with the highest confidence P-value with 762 genes. The length of each bar (and numbers at the tail of
each bar) indicates the unigenes’ P-values were transformed by -log10 in each sub-category.

Full-size DOI: 10.7717/peerj.12954/fig-5

phenylalanine biosynthesis (ko00940), phenylalaninemetabolism (ko00360), and flavonoid
biosynthesis (ko00941) pathways are all related to lignin biosynthesis. Therefore, it can be
concluded that lignin content and various genes related to lignin synthesis are important
factors, which cause variation in the levels of wind resistance in Eucalyptus.

Differential expression analysis of cellulose synthesis genes
GO classification and enrichment analysis further highlighted the potential involvement of
DEGs in cell biological process (GO: 0030244), cell microfibril organization (GO: 0010215),
cell metabolic process (GO: 0030243), cell catalytic process (GO: 0030245), cell synthesis
(UDP forming) activity (GO: 0016760) and cell synthesis activity (GO: 0016759), that
is, six pathways related to cellulose synthesis upon wind stress. To better understand the
involvement of cellulose synthesis genes in wind resistance in E. camaldulensis, the related
DEGs were further analysed. Upon wind stress treatment, 26 genes related to cellulose
biosynthesis were differentially expressed (Table 3, In the table, EC_newGene is the
abbreviation for Eucalyptus_camaldulensis_newGene.), which were mainly assigned the
following GO terms: cellulase synthase (UDP-forming) activity (GO: 0016760), cellulose
biosynthetic process (GO: 0030244), and cellular microfibril organisation (GO: 0010215).
No significant accumulation of cellulose synthesis genes was observed in C037 before and
after wind stress treatment. Sixteen DEGs that were significantly enriched in CA5 were
downregulated upon wind stress treatment. In total, 39 DEGs were significantly enriched in
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Table 2 GO enrichment of the DEGs between CA5 and C037.

Groups Biological process Molecular function Cellular component

defence response
(GO:0006952)

ADP binding
(GO:0043531)

integral component of membrane
(GO:0016021)

protein phosphorylation
(GO:0006468)

ATP binding
(GO:0005524)

photosystem II oxygen evolving
complex (GO:0009654)

recognition of pollen
(GO:0048544)

protein serine/threonine
kinase activity (GO:0004674)

integral component of plasma
membrane (GO:0005887)

cellular transition metal ion
homeostasis (GO:0046916)

monooxygenase activity
(GO:0004497)

extracellular region
(GO:0005576)

C037_0 h
vs
C037_24h

double-strand break repair
(GO:0006302)

iron ion binding
(GO:0005506)

condensed chromosome
(GO:0000793)

defence response
(GO:0006952)

ADP binding
(GO:0043531)

integral component of membrane
(GO:0016021)

lignin biosynthetic process
(GO:0009809)

protein serine/threonine
kinase activity (GO:0004674)

microtubule
(GO:0005874)

plant-type secondary cell wall
biogenesis (GO:0009834)

ATP binding
(GO:0005524)

plasma membrane
(GO:0005886)

protein phosphorylation
(GO:0006468)

microtubule binding
(GO:0008017)

extracellular region
(GO:0005576)

C037_0 h
vs
CA5_0h

xylan biosynthetic process
(GO:0045492)

iron ion binding
(GO:0005506)

kinesin complex
(GO:0005871)

defence response
(GO:0006952)

ADP binding
(GO:0043531)

integral component of
membrane (GO:0016021)

protein phosphorylation
(GO:0006468)

ATP binding
(GO:0005524)

cell wall
(GO:0005618)

lignin biosynthetic process
(GO:0009809)

protein serine/threonine
kinase activity (GO:0004674)

Microtubule
(GO:0005874)

cell wall biogenesis
(GO:0042546)

iron ion binding
(GO:0005506)

extracellular region
(GO:0005576)

CA5_0 h
vs
CA5_24h

cellular transition metal ion
homeostasis (GO:0046916)

monooxygenase activity
(GO:0004497)

integral component of plasma
membrane (GO:0005887)

defence response
(GO:0006952)

ADP binding
(GO:0043531)

integral component of
membrane (GO:0016021)

protein phosphorylation
(GO:0006468)

monooxygenase activity
(GO:0004497)

extracellular region
(GO:0005576)

lignin biosynthetic process
(GO:0009809)

iron ion binding
(GO:0005506)

integral component of plasma
membrane (GO:0005887)

cellulose biosynthetic process
(GO:0030244)

oxidoreductase activity
(GO:0016705)

photosystem I
(GO:0009522)

CA5_24 h
vs
C037_24h

recognition of pollen
(GO:0048544)

ATP binding
(GO:0005524)

photosystem II oxygen
evolving complex (GO:0009654)

C037_0 h vs. CA5_0 h, of which 37 were upregulated and 2 were downregulated. Further,
all the 11 DEGs in C037_24 h vs. CA5_24 h were upregulated. EC_newgene_41710,
Gene003075, Gene008307, and Gene011799 were upregulated or downregulated in
all groups except C037_0 h and C037_24 h. EC_newgene_68496, Gene008307, and
Gene011799 were upregulated more than 10 times between C037 and CA5 before and
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Figure 6 The top 20 enriched KEGG pathways corresponding to the DEGs in (A) C037_0 h vs C037_24
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size of each circle represents the number of DEGs in that pathway. The bigger the circle, the more DEGs.

Full-size DOI: 10.7717/peerj.12954/fig-6

after wind stress treatment. Therefore, Gene008307 and Gene011799 can be used as key
candidate genes for wind resistance research in the future.

Differential expression analysis of lignin synthesis Genes
KEGG-based pathways enrichment analysis revealed that some DEGs could be involved
in lignin synthesis pathways. For instance, phenylpropanoid biosynthesis (ko00940) was
observed Table S10) (Humphreys & Chapple, 2002). A total of 37 DEGs were annotated as
phenylalanine ammonia-lyase (PAL), 4-Hydroxycinnamoyl-CoA ligase (4CL), cinnamate
3-hydroxylase(C3H), caffeic acid/5- hydroxyferulic acid O-methyltransferase (COMT),
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Table 3 Expression level of differentially expressed cellulose synthesis genes.

No. Gene ID FPKM value

C037_0 h C037_24 h CA5_0 h CA5_24 h

1 Gene003075 28.398 19.048 571.015 205.706
2 Gene011799 27.944 11.366 749.046 201.560
3 EC_newGene_26230 1.275 0.617 0.000 0.064
4 EC_newGene_68240 0.968 0.196 11.482 1.461
5 EC_newGene_68495 1.756 4.296 20.599 3.072
6 EC_newGene_41710 18.063 7.740 513.351 153.859
7 Gene008709 3.280 1.832 6.065 1.907
8 EC_newGene_50309 0.000 0.000 2.760 0.593
9 EC_newGene_64334 7.896 9.077 17.147 19.484
10 Gene004875 29.646 19.262 63.598 33.001
11 EC_newGene_17715 0.000 4.626 23.453 13.142
12 EC_newGene_50014 2.151 1.946 92.386 12.453
13 EC_newGene_49931 23.290 22.420 51.884 49.156
14 EC_newGene_25516 0.494 0.752 4.325 3.113
15 Gene008307 25.093 10.995 460.534 137.980
16 EC_newGene_68242 0.167 0.595 5.320 0.720
17 EC_newGene_42873 0.511 3.246 8.986 1.118
18 EC_newGene_3993 1.449 1.637 9.361 1.980
19 EC_newGene_28579 35.848 41.349 72.731 71.383
20 Gene006185 0.532 0.395 6.326 2.016
21 EC_newGene_2305 1.580 1.113 57.704 7.346
22 EC_newGene_2296 2.299 1.481 2.275 0.981
23 EC_newGene_68520 2.494 3.384 10.237 11.544
24 EC_newGene_68496 0.000 4.027 3.222 0.203
25 EC_newGene_47118 0.547 0.249 19.032 2.536
26 Gene013116 58.964 59.971 133.828 93.281

cinnamoyl-CoA reductase (CCR), cinnamyl-alcohol dehydrogenase (CAD), ferulate 5-
hydroxylase (F5H), caffeoyl-CoA 3-O-methyltransferase (CCoAOMT), and peroxidase
(POX). The expression levels of DEGs across the four samples were analysed (Fig. 7). The
results showed that 8 out of 37 genes were present in the 4 groups. In C037_0 h vs. CA5_0
h, the downstream gene006451 (CAD) was down-regulated; however, the other 30 genes
were upregulated, including EC_newGene_72280, gene002172, gene007373, gene009919,
and gene012455, which were upregulated more than 10 times. In C037_24 h vs. CA5_24
h, all the other 18 key genes in the lignin monomer synthesis pathway were upregulated,
except EC_newgene_70770 (POX) and Gene006451 (CAD). In CA5_0 h vs. CA5_24
h, the downstream regulatory genes EC_newgene_11514 (POX), EC_newgene_13932
(POX), and EC_NewGene_14226 (POX) were upregulated, while the other 20 key genes
in the lignin monomer synthesis pathway were downregulated. EC_newGene_38808,
EC_newGene_42611, EC_newGene_23446, EC_newGene_14226, and Gene012455 were
upregulated more than 30 times across C037 and CA5 before and after wind stress
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Figure 7 Heatmap of the differentially expressed genes of lignin monomer synthesis pathway based
on KEGG phenylpropanoid biosynthetic pathways (KEGG Pathwaymap ID:mtr00940). The gene ex-
pression levels have been transformed by log2, (FPKM+1) and the values have been centred and scaled in
row direction. X-axis, samples; Y -axis, gene names. Each colour represents the corresponding expression
value, that is, the larger the value, the darker the colour, and the higher the expression.

Full-size DOI: 10.7717/peerj.12954/fig-7

treatment. EC_newGene_38808 and EC_newGene_14226, which were upregulated more
than 45 times, could be considered key candidate genes involved in response to wind stress.

TFs related to wind stress
Based on differential expression analysis and the available transcriptomic sequence
information, TFs were predicted across the two genotypes of E. maldulensis. A total of
78 different TFs, which may be related to the regulation of cellulose and lignin synthesis
were obtained (Fig. 8; Table S11). These differentially expressed TFs were primarily
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Figure 8 Differentially expressed TFs between four groups under wind stress.
Full-size DOI: 10.7717/peerj.12954/fig-8

classified as 20 MYB families, 15 NAC families, 12 WRKY families, 12 bHLH families, and
a small number of LIM, MADS, SBP, C3H, and other TFs. Four TFs were downregulated
and 37 TFs were upregulated in C037_0 h vs. CA5_0 h; 17 TFs were upregulated and 4
TFs were downregulated in C037_24 h vs. CA5_24 h, and 11 TFs were up-regulated before
and after C037 vs. CA5 wind stress treatment. Sixteen TFs were upregulated and 31 were
downregulated after CA5 wind stress treatment, while only three TFs were upregulated
after C037 wind stress treatment. This indicated that there was little difference in the
expression levels of C037 before and after wind damage. These TFs are involved in the
regulation of plant growth and development, morphogenesis, stress resistance, and other
biological metabolic pathways.

Homologous evolution analysis was performed between the differentially expressed
MYB and NAC TFs as well as the TFs involved in secondary wall synthesis in Arabidopsis
thaliana (Figs. 9; 10). EC_newGene_8075 exhibited 93% similarity with ATMYB46,
ATMYB6, ATMYB83, EC_newGene_2841, while EC_newGene_35442 showed 99%
similarity with ATMYB58 and ATMYB63 (Fig. 7). Gene004569 and gene010621 exhibited a
100% similarity to ATSND1, likewise, EC_newGene_19196 was 100% similar to ATVND1,
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Figure 9 Phylogenetic analysis of differentially expressedMYB TFs.Using MEGA X software, the phy-
logenetic tree of 20 differentially expressed MYB TFs (including those TFs involved in the secondary cell
wall synthesis in Arabidopsis) has been constructed based on the Neighbor-Joining method.

Full-size DOI: 10.7717/peerj.12954/fig-9

ATVND2, ATVND3. EC_newGene_5820 and Gene004903 exhibited 100% similarity with
ATVND4 and ATVND5, while EC_newGene_27222 and EC_newGene_27223 were 100%
similar to ATSND2 and ATSND3.
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Full-size DOI: 10.7717/peerj.12954/fig-10

Verification of sequencing results by qRT-PCR analysis
To verify the accuracy of the transcriptome sequencing results, the expression levels of
12 different genes related to cellulose and lignin synthesis were analysed by conducting
qRT-PCR (Fig. 11). The qRT-PCR-based expression trends of these genes were consistent
with the results of transcriptome sequencing, and the correlation coefficients ranged from
0.9050 to 0.9997, which are significant and indicate that the transcriptome sequencing data
had high repeatability and quasi-certainty.

DISCUSSION
Transcriptomics in functional genomics is to study the expression and regulation
mechanism of functional genes in specific tissues or cells at different developmental stages
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Figure 11 The expression levels of the 12 candidate unigenes related to cellulose biosynthesis and
lignin biosynthesis as revealed by qRT-PCR and RNA-seq.
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and in different states at the overall mRNA level, so as to clarify biological phenotypes
and functions. Many stress-related gene expression, signal transduction and metabolite
formation are involved in the process of plant tolerance to environmental stress. The
application of RNA-seq technology can comprehensively and dynamically detect the
expression changes of plant genes in various time and space under stress, mine functional
genes and analyze the stress response regulation mechanism, which can provide a lot
of useful information for understanding the complex mechanism of plant tolerance to
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abiotic stress and provide molecular genetic basis for cultivating stress resistant varieties.
In this study, two contrasting varieties of E. camaldulensis CA5 and C037 were used as the
materials. The traits related to wind resistance of lignin content, holocellulose content,
α- cellulose content had high heritability and the genetic of upper and lower generations
was strong. The number of DEGs in CA5 under wind stress was much higher than that
in C037. A total of 726 DEGs specific to CA5 in response to wind stress were analysed.
It was found that cell wall genes and phenylpropanoid biosynthesis play key roles in the
response to wind stress. The results of the GO analysis and KEGG analysis showed that the
genes related to wind stress were mainly related to secondary cell wall synthesis, that is,
cellulose and lignin synthesis and related TFs. The results of this study are consistent with
the research conclusions of crop lodging resistance.

SNP sites based on RNA-sep
In the natural environment, the mutation frequency of plants is very low. The substances
that can induce mutation are usually substances that have certain damage or stimulating
effects on plants. Based on the transcriptome data of wind-resistant strain CA5 and
non-wind resistant strain C037, SNP loci were screened, which confirmed that there were
abundant SNP loci in E. camaldulensis. SNP loci located on genes were annotated. Based on
these annotations, the selected wind resistance related genes or SNPs in the pathway may
be directly related to wind resistance. However, not all SNPs related to traits are located
on genes, and some SNPs located in non-coding regions also play an important role in
biological phenotypes.

Relationship between cellulose anabolism and wind stress
The cell wall of plants has a strong filamentous network structure, which can provide
mechanical support for cells and the whole plant body; therefore, it can promote the
maintenance of stem mechanical strength. The content of the cell wall can reflect the plant
anti-lodging ability to a certain extent (Xiang et al., 2010; Hagiwara et al., 1999). In this
study, 42 functional annotation genes were differentially expressed and were closely related
to cellulose synthesis. The variation trend was consistent with the determination of cellulose
and lignin content in the secondary wall, that is, the expression levels in CA5 were much
higher than that in C037. This is consistent with the previous results corresponding to the
lodging resistance of crops. The increase in cellulose content in wheat straw significantly
improves the mechanical strength of the stem and enhances the compressive capacity of
the wheat stem (Fan et al., 2012). A significant positive correlation was observed between
the breaking resistance of the rice basal stem and the contents of lignin and cellulose
(Yang et al., 2009). High cellulose content is beneficial for improving the stem strength of
soybeans and enhancing their lodging resistance (Deng et al., 2016). Therefore, the cellulose
content in the cell wall and its mechanical properties may have a significant impact on the
wind resistance of trees. In this study, EC_newgene_68496, Gene008307, and Gene011799
were upregulated more than 10 times between C037 and CA5 genotypes before and after
wind stress treatment, which can be considered as key candidate genes for wind resistance
research in the future.
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Relationship between lignin anabolism and wind resistance
Lignin can improve the strength of the cell wall and the mechanical strength of the stem.
The existence of lignin not only enhances the defence ability of plants against biological
stress, but also has great significance in waterlogging resistance, cold resistance, lodging
resistance, and other abiotic stresses (Whetten & Sederoff, 1995). The results of a study on
lodging resistance of crops have revealed that lignin can improve the cell wall strength and
enhance the mechanical strength of the stem, and the content of lignin is closely related
to stem rigidity (Turner & Somerville, 1997). Changing the composition of lignin does not
affect the growth and development of plants (Vanholme et al., 2012); however, increasing
its content can significantly enhance the compressive and lodging resistance in stems.
Moreover, the strength of the lodging resistance is proportional to the extent of mechanical
strength (Jones, Ennos & Turner, 2001; Baucher et al., 2003). For example, the presence of
lignin improves the lodging resistance of wheat, rice, rape, corn, and other important food
crops. The lignin content of varieties with strong lodging resistance is significantly higher
than that of varieties without lodging resistance (Li et al., 2015; Buranov & Mazza, 2008;
Kim & Dale, 2004;Ookawa & Ishihara, 1992). Some studies have shown that the expression
levels of PAL, 4CL, C4H, and C3H in the phenylalanine secondary metabolism pathway
not only affect the synthesis and content of lignin but also affect the biosynthesis of other
secondary metabolites (Baucher et al., 2003). The expression levels of F5H, COMT, and
CCOAOMT have a greater impact on the composition of ligninmonomers, while CAD and
CCR significantly affect the composition of lignin monomers (Boerjan, Ralph & Baucher,
2003). In this study, we identified several DEGs in the lignin monomer synthesis pathway
in the phenylpropanoid biosynthetic pathway (ko00940); the expression levels of PAL,
C3H, 4CL, COMT, CCoAOMT, CAD, F5H, and POX in CA5 were higher than those in
C037, which further indicates that the expression of lignin synthesis genes in wind-resistant
strains was higher than that in C037. These DEGs are likely to be involved in the regulation
of cellulose and lignin content/component changes in E. camaldulensis, which provides a
theoretical basis for screening the major genes affecting wind resistance in E. camaldulensis.
Based on their expression profile, EC_newGene_38808 and EC_newGene_14226 can be
used as key candidate genes for wind resistance research in the future, as these were found
to be upregulated more than 45 times in CA5.

The relationship between TFs and wind resistance
Transcription factors play an important role in the regulatory network of plant stress
resistance (Singh et al., 2002). Some transcription factors participate in the regulation of a
variety of stress responses. The main transcription factor families involved in plant stress
resistance include WRKY family, NAC family, AP2 / ERF family, bZIP family, MYB family,
et. Many TFs are involved in the regulation of wind damage in E. camaldulensis. Among the
78 differential TFs that may be related to the regulation of cellulose and lignin synthesis,
the MYB and NAC families were the most abundant ones. ATMYB83 and ATMYB46
are nonspecific synthesis activators, which directly target genes of SND1 and node genes
regulating secondary wall formation in Arabidopsis thaliana. They regulate lignin synthesis
in addition to the overall synthesis of the secondary cell wall including cellulose and
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hemicellulose. When overexpressed in A. thaliana, it can activate the biosynthetic pathways
of cellulose, xylan, and lignin, and activate the expression of promoter genes related to
secondary wall synthesis (Zhong, Richardson & Ye, 2007; Mccarthy, Zhong & Ye, 2009).
EC_newGene_8075 has 93% similarity with ATMYB83 and ATMYB46; therefore, we can
speculate that EC_newGene_8075 may have similar functions. The specific expression of
ATMYB58 and ATMYB63 in cells with thickened secondary wall material deposition is
regulated by the transcription switch factor ATSND1 and its downstream TF ATMYB46.
They activate gene expression by binding to AC elements on promoters of key enzymes in
the lignin monomer synthesis pathway, such as 4CL and F5H. Hence, they are important
regulators of lignin biosynthesis (Zhou et al., 2009; Hartmann, Sagasser & Mehrtens, 2005).
EC_newGene_2841 and EC_newGene_35442 have 99% similarity with ATMYB58 and
ATMYB63; therefore, it can be speculated that these two TFs have similar functions.
Arabidopsis NAC domain transcription factor SND1 is a key transcription switch that
regulates the synthesis of a secondary wall in fibres, which can activate the expression of
the ATMYB46 gene, induce the highly upregulated expression of secondary wall-related
genes, and promote the deposition of cellulose, xylan, lignin, and secondary wall in
cells (Hartmann, Sagasser & Mehrtens, 2005; Zhong et al., 2011). Studies have shown that
ATSND2 and ATSND3 are secondary TFs that are directly regulated by ATSND1 (Zhong
et al., 2008) and are involved in the regulation of secondary cell wall thickening. It can be
inferred that Gene004569, Gene010621, EC_newGene_27222, and EC_newGene_27223
may have similar functions. Among the TFs which are highly similar to MYB and NAC in
Arabidopsis, EC_newGene_2841(MYB) and EC_newGene_5820(NAC) were upregulated
more than nine times in CA5. The two TFsmay account for the significant differences in the
wind stress resistance between the two genotypes; therefore, these can be used as candidate
genes for further functional verification analysis through overexpression experiments.

CONCLUSIONS
Significant differences of DEG in two extreme wind-resistant genotypes can reveal that
the wind resistance of Eucalyptus depended largely on the differential gene expression.
Plant cell walls are highly complex and dynamic structures that, in addition to providing
mechanical support and supporting growth, need to respond to a variety of environmental
and developmental cues and play an important role in resisting biological and abiotic
stresses. The results suggest that there were abundant SNP loci in E. camaldulensis and
cell wall biogenesis key genes of cellulose and lignin biosynthesis pathways and related
TFs play key roles in wind stress response. Eucalyptus with strong wind resistance had
a high content of cellulose and lignin, it can be inferred that genes and TFs related to
cellulose and lignin synthesis may participate in the regulation of Eucalyptus wind stress.
Gene008307 and Gene011799 of cellulose biosynthesis, EC_newGene_38808 (C3H),
and EC_newGene_14226 (POX) of lignin biosynthesis, EC_newGene_2841 (MYB), and
EC_newGene_5820 (NAC) of transcription factors can be used as key candidate genes for
wind resistance research in the future. This study provides insights into the wind resistance
mechanism and molecular breeding in forests. Identification of the exact mechanisms
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throughwhich cell wall biosynthesis; key genes of cellulose and lignin biosynthesis pathways
and relatedTFs conferswind tolerancewill be important in order to inform the development
of wind tolerant trees. The combination of RNA-seq and DNA sequencing can detect SNP,
RNA editing and expression quantitative trait loci. In particular, the genetic mechanism of
complex traits can be obtained by correlation analysis of genotype data and gene expression
changes. Transcriptomics is associated with proteomics, metabolomics and other omics
for integrated analysis, which can be better applied to the identification of key plant stress
resistance genes. Our next work will combine transcriptomics with other omics to study
the wind resistance mechanism of forest trees more systematically and deeply from many
aspects.
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