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INTRODUCTION
Radiotherapy (RT) is one of the main treatments for head 
and neck cancer (HNC), either alone or combined with 
chemotherapy or surgery. Ionising radiation damages 
tumour cells but it also affects the surrounding healthy 
tissue. Normal tissue toxicity can result in severe compli-
cations, and therefore limits the radiation doses that can 
be safely delivered to the patient. Concomitant chemora-
diation improves local control and survival rates,1 but it 
can also result in toxicities such as mucositis, xerostomia, 
dysphagia or mandibular osteoradionecrosis (ORN).

Mandibular ORN is perhaps not the most frequent 
(5–15% prevalence rate),2 but certainly one of the most 
severe complications in patients with HNC under-
going radiation therapy. In particular, patients with 
oropharyngeal cancer seem to have a higher incidence 
of ORN.3 Ionising radiation damages the mucosa and 
vascularity of the mandible. Any trauma (e.g. surgery 
or dental extractions) caused to a previously irradi-
ated mandible has a higher risk of resulting in necrosis 
of the bone due to poorer healing capabilities caused 
by decreased blood supply to that region.4 Factors 
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Objectives: Mandible osteoradionecrosis (ORN) is one 
of the most severe toxicities in patients with head and 
neck cancer (HNC) undergoing radiotherapy (RT). The 
existing literature focuses on the correlation of mandible 
ORN and clinical and dosimetric factors. This study 
proposes the use of machine learning (ML) methods as 
prediction models for mandible ORN incidence.
Methods: A total of 96 patients (ORN incidence ratio of 
1:1) treated between 2011 and 2015 were selected from 
the local HNC toxicity database. Demographic, clinical 
and dosimetric data (based on the mandible dose–
volume histogram) were considered as model varia-
bles. Prediction accuracy (measured using a stratified 
fivefold nested cross- validation), sensitivity, specificity, 
precision and negative predictive value were used to 
evaluate the prediction performance of a multivar-
iate logistic regression (LR) model, a support vector 
machine (SVM) model, a random forest (RF) model, an 

adaptive boosting (AdaBoost) model and an artificial 
neural network (ANN) model. The different models were 
compared based on their prediction accuracy and using 
the McNemar’s hypothesis test.
Results: The ANN model (77% accuracy), closely 
followed by the SVM (76%), AdaBoost (75%) and LR 
(75%) models, showed the highest overall prediction 
accuracy. The RF model (71%) showed the lowest predic-
tion accuracy. However, based on the McNemar’s test 
applied to all model pair combinations, no statistically 
significant difference between the models was found.
Conclusion: Based on our results, we encourage the 
use of ML- based prediction models for ORN incidence 
as has already been done for other HNC toxicity end 
points.
Advances in knowledge: This research opens a new path 
towards personalised RT for HNC using ML to predict 
mandible ORN incidence.
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of risk for the development of mandibular ORN include 
oral hygiene, drinking alcohol, smoking tobacco,5 dental 
extractions,6,7 mandibular surgery8 and high radiation doses 
to the mandible bone.4,8,9

Although much published work has focused on investigating 
the risk factors associated with mandible ORN, the prediction of 
mandible ORN incidence on a case- by- case basis is still subject 
to significant uncertainty.

The traditional approach to predicting clinical complications 
resulting from RT involves the use of Normal Tissue Compli-
cation Probability (NTCP) models, which have evolved over 
the years from the Lyman–Kutcher–Burman model10 to include 
clinical and demographic factors in addition to dosimetric 
parameters.11 Univariate and multivariate logistic regression 
(LR) models have been widely used to find correlations between 
the incidence of mandible ORN and clinical and dosimetric risk 
factors.4,5,9 More complex supervised machine learning (ML) 
methods, including support vector machines (SVM), random 
forest (RF), adaptive boosting (AdaBoost) and artificial neural 
networks (ANN), have been used to develop NTCP models for 
clinical decision- support12 in HNC RT.13–16 However, these do 
not include mandible ORN in the toxicity end points considered.

This paper compares the performance of different ML methods, 
including LR, SVM, RF, AdaBoost and ANN, in the prediction of 
mandibular ORN incidence.

METHODS AND MATERIALS
Patient selection
Study cases were selected from a database of patients with HNC 
treated with RT maintained by the local clinical oncology team 
between 2011 and 2015 (institutional approval 21 April 2016, 
project number 6333). A total of 48 HNC patients with ORN 
(28 oropharynx, 13 oral cavity, 3 larynx, 1 paranasal sinus and 3 
unknown primaries) and 48 HNC control cases (28 oropharynx, 
9 oral cavity, 7 larynx, 2 hypopharynx, 1 paranasal sinus and 
1 unknown primary) were selected from the HNC database. 
Prescribed radiation doses ranged between 50 Gy in 20 fractions 
and 71.5 Gy in 30 fractions. Low- dose palliative cases, cases that 
were not treated with intensity- modulated radiation therapy 
(IMRT), and cases with incomplete data were excluded. Table 1 
provides a summary of the demographic and clinical character-
istics considered in this study.

Patient follow-up and definition of ORN
The local protocol for HNC patients includes clinical follow up 
for 5 years. Treatment outcomes are assessed with regards to 
tumour control and normal tissue complications. Patients who 
develop ORN at our centre are treated and closely monitored by 
a specialist oral surgical team in a dedicated clinic. The Radiation 
Therapy Oncology Group (RTOG) Late Radiation Morbidity 
Scoring Schema for bone tissue and the Notani17 ORN classi-
fication system were used in this study to score ORN toxicity 
grade at presentation, 3 months, 6 months, 12 months and yearly 
follow- up time points. The median time from the end of RT to 
diagnosis of ORN was 7 months (Tsai et al9 observed a median 

time of 8 months to develop ORN in their cohort). The minimum 
follow- up time in our control group was 13 months. For the 
purpose of this binary classification study, toxicity outcome was 
dichotomised and any grade of ORN was considered as an ORN 
case.

Data preparation
Following local clinical practice, planned dose was recalculated 
using the dose- to- medium calculation method for those cases 
that were originally calculated using the dose- to- water approach. 
A copy of the original treatment plan was used to change the 
treatment planning system dose calculation settings from dose- 
to- water to dose- to- medium. Any CT image artefacts around 
the mandible area (e.g. metal artefacts or beam hardening) were 
corrected by overwriting the CT numbers (i.e. material density) 
prior to dose recalculation. The mandible bone was manually 
contoured and the mandible dose- volume histogram (DVH) 
data exported from the Monaco treatment planning system 
(TPS) for each patient. Dose- volume data were corrected for 
fractionation scheme differences to a standard fraction size of 
2 Gy (i.e. EQD2) assuming an alpha- beta ratio of 3 for late effects. 
Maximum (Dmax) and mean (Dmean) mandible doses and rela-
tive dose–volume levels in the range V40 Gy to V70 Gy in 5 Gy 
increments were considered as the DVH- based dosimetric vari-
ables. Demographic and clinical variables considered are shown 
in Table 1.

Table 1. Summary of demographic and clinical characteristics 
of the two patient groups (ORN and non- ORN) in the study 
cohort

ORNa non- ORN
Gender (male) 34 (71%) 38 (79%)

Age (median) 64 59

Smoking (at RT start) 25 (52%) 19 (40%)

Smoking (previous) 14 (29%) 19 (40%)

Alcohol (at RTb start) 33 (69%) 33 (69%)

Alcohol (previous) 5 (10%) 4 (8%)

Chemotherapy 33 (69%) 33 (69%)

Dental extractions (pre- RT) 30 (63%) 31 (65%)

Dental extractions (post- RT) 5 (10%) 2 (4%)

Surgery (pre- RT) 10 (21%) 18 (38%)

Surgery (post- RT) 1 (2%) 3 (6%)

Tumour site

  Oropharynx 28 (58%) 28 (58%)

  Larynx 3 (6%) 7 (15%)

  Oral cavity 13 (27%) 9 (19%)

  Hypopharynx 0 (0%) 2 (4%)

  Paranasal sinus 1 (2%) 1 (2%)

  Unknown 3 (6%) 1 (2%)
aOsteoradionecrosis.
bRadiotherapy.
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Variable selection
Univariate analysis using the χ2 significance statistical test was 
applied to the categorical variables considered for variable selec-
tion. The discriminatory power of the continuous variables (i.e. 
age and DVH- based dosimetric variables) was assessed with the 
Mann–Whitney U non- parametric test.18

Nested cross-validation
Using the same data sets for hyperparameter optimisation and 
model selection can result in overfitting. In order to avoid this, 
stratified nested k- fold cross- validation (CV) was used in all 
models with k = 5 for both the inner and outer CV folds. In 
addition, for the ANN model, stratified data split was applied at 
each CV fold to the training data set to obtain the final training 
(80%) and internal validation (20%) data sets in the model selec-
tion process. Hyperparameter optimisation was done using the 
sklearn GridSearchCV function. The average accuracy across all 
inner CV folds was calculated for each hyperparameter combi-
nation and the results reported are for the outer CV folds using 
the hyperparameter combination that obtained the highest 
average accuracy.

Model design and training
The predictive accuracy of four supervised ML methods (multi-
variate LR, SVM, RF and GB) was tested using the SciKit- Learn 
package in Python 2.7.15.19

The multivariate LR model was implemented using Python’s 
Scikit- Learn logistic regression classifier module (sklearn.
linear_model.LogisticRegression) with a C parameter of 0.001 
and the “l2” regularisation penalty. The SVM classifier20 was 
implemented using Python’s sklearn SVC class with a radial basis 

function (rbf) kernel, a penalty parameter (C) of 100 and a γ 
parameter of 0.001. The RF classifier21 was implemented using 
the sklearn.ensemble. Random Forest Classifier class with a 
maximum number of estimators of 10, a maximum tree depth 
of 50, a minimum number of samples at a leaf node of 1 and a 
minimum number of samples required to split an internal node 
of 0.5. The AdaBoost classifier22 was implemented using the 
sklearn.ensemble.AdaBoostClassifier class with a learning rate of 
0.0001 and a maximum number of estimators of 10.

The ANN was implemented in Keras with Tensorflow as the 
backend and trained on a Nvidia Titan Xp GPU. It consisted 
of an input layer with the number of input nodes equal to the 
number of variables used, followed by a 200- node hidden dense 
(fully connected) layer with the rectified linear unit (ReLU) acti-
vation function and a 1- node output layer with the sigmoid acti-
vation function for binary classification (ORN or not ORN). A 
dropout layer was added at the end of the network pipeline to 
reduce overfitting.

The Binary Cross- Entropy loss function was used to train the 
ANN and the Adam optimiser was used to minimise the loss 
function. Based on the grid search results, the model was trained 
for 2000 epochs with a batch size of 30, a dropout rate of 0.0 and 
a learning rate of 0.001. The best model was chosen based on 
the highest accuracy achieved with the validation data set during 
training.

RESULTS
Variable selection
The performance of the models was generally enhanced (Table 2) 
when using only the most statistically significant variables as per 

Table 2. Comparison of prediction performance obtained with the five models considered: multivariate LR, SVM, RF, AdaBoost 
and ANNa

Model Variables

Performance measure

Training accuracy Testing accuracy TPRb TNRc PPVd NPVe
LR All 0.76 0.73 0.98 0.47 0.66 0.97

Selected 0.77 0.75 0.90 0.60 0.71 0.88

SVM All 0.88 0.67 0.75 0.60 0.65 0.71

Selected 0.84 0.76 0.96 0.56 0.68 0.94

RF All 0.77 0.60 0.63 0.56 0.59 0.61

Selected 0.78 0.71 0.77 0.66 0.70 0.76

AdaBoost All 0.78 0.74 0.96 0.52 0.67 0.92

Selected 0.78 0.75 0.93 0.56 0.68 0.91

ANN All 0.71 0.66 0.75 0.57 0.66 0.68

Selected 0.88 0.77 0.90 0.64 0.72 0.90

ANN, artificial neural network; AdaBoost, Adaptive Boosting; LR, logistic regression; RF, random forest; SVM, support vector machine.
Results including all variables and only the selected variables (Dmax, Dmean, extractions post- RT and surgery pre- RT) are shown.
aThe figures shown correspond to the average over the five stratified cross- validation folds.
bTrue positive rate (sensitivity or recall).
cTrue negative rate (specificity).
dPositive predictive value (precision).
eNegative predictive value.
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the variable selection process. Based on the univariate analysis 
with the χ2 significance statistical test using a p- value of 0.3, 
dental extractions post- RT (p = 0.26) and surgery pre- RT (p = 
0.13) were included as clinical variables. The Mann–Whitney U 
non- parametric test was applied to all continuous variables with 
a level of significance of 0.05 and showed that age (p = 0.115) 
failed to reject the null hypothesis while Dmax (p = 0.000003) 
and Dmean (0.0002) were found to be the only dosimetric vari-
ables with class discriminating power. Table  2 shows that the 
prediction performance of all models improved when trained on 
the selected variables only.

Model performance comparison
For all models, at each of the 5 outer cross- validation folds, 20 
cases were kept unseen by the model for testing its performance. 
The remaining 76 cases were used for model training in the LR, 
SVM, RF and AdaBoost models. For the ANN model, the training 
data set was further split during training into 60 cases for model 
training and 16 for model validation (80:20). Model performance 
was assessed using the following measures (Table 2): test accu-
racy (proportion of correctly predicted output class cases within 
the test set), true positive rate (TPR, also known as sensitivity or 
recall), true negative rate (TNR, also known as specificity), posi-
tive predictive value (PPV, also known as precision) and negative 
predictive value (NPV).

Based on these results (Table 2), no single model outperforms the 
rest in all measures considered. The ANN model (77%), closely 
followed by the SVM (76%), LR (75%) and AdaBoost (75%) 
models, has the highest overall prediction accuracy on an unseen 
test dataset. The McNemar’s statistical hypothesis test was used 
to determine whether the models compared agree or disagree in 
the same way. After a Bonferroni correction for multiple compar-
isons was applied, the significance threshold was set to 0.005. The 
test results showed that there is no statistically significant differ-
ence between the models (Table 3).

DISCUSSION
Most ORN- related published work has focused on finding 
correlations between ORN incidence and clinical and dosimetric 
variables based on population studies. While it is important to 
understand these associations, the ability to predict incidence on 

a case- by- case basis would be a more valuable clinical application. 
This study presents a clear performance comparison between ML 
prediction models for mandible ORN incidence. The prediction 
accuracies obtained show that ML- based methods can be used to 
assist clinical decision- making for HNC patients undergoing RT. 
We cannot recommend a specific model based on our predic-
tion performance results, as these were not found to be statisti-
cally significantly different. The ANN model showed the highest 
overall prediction accuracy, but it could be argued that this is 
the model with poorest interpretability (even though there are 
tools that can enable some interpretable analysis on ML predic-
tions).23 A simpler and more transparent model (e.g. LR) might 
be preferred for clinical use if the prediction performance is not 
significantly compromised.

Mandible ORN is a rare toxicity and the data sets available are 
naturally small. Low patient numbers make it difficult to attempt 
a multiclass prediction task where not only incidence but also 
ORN severity is predicted. The morbidity caused by ORN (at any 
grade) is such that the prediction of its incidence alone would 
already be an important clinical decision- support contribution. 
However, future work will aim at increasing the size of the study 
cohort.

Overfitting and poor generalisability are common problems 
when testing complex ML and deep learning models on inde-
pendent data sets. We used a fivefold nested cross- validation 
scheme in our evaluation and none of the test data were used 
when training or tuning hyper- parameters for the models that 
were applied to them. This represents a fair internal validation of 
the ML models.

According to the TRIPOD statement,24 prediction studies can be 
classified into three categories: model development, model vali-
dation or a combination of both. The work presented falls into 
the first category, where we describe the first steps towards the 
development of a mandible ORN incidence prediction model by 
comparing different ML models. Future work will aim at the clin-
ical implementation of a mandible ORN incidence prediction 
model. For this, external validation of the results on an entirely 
independent data set will be included.

Table 3. Results from the McNemar’s statistical hypothesis test on all model pair combinations

χ2 (p value) LRb SVMa RFc AdaBoostd

SVM vs. 4.000 (0.754)

RF vs. 5.000 (0.424) 7.000 (0.263)

AdaBoost vs. 5.000 (1.000) 3.000 (1.000) 4.000 (0.267)

ANNe vs. 6.000 (0.607) 3.000 (1.000) 7.000 (0.189) 6.000 (0.791)

The first number is the McNemar’s test statistic (χ2) and the number in brackets is the corresponding p value (probability of observing this, or a 
larger, χ2 value). After a Bonferroni correction for multiple tests, a significance threshold of 0.005 was used. In all model pairs, the tests failed to 
reject the null hypothesis that the performance of the compared models is equal.
aLogistic Regression (LR)
bSupport Vector Machine (SVM)
cRandom Forest (RF)
dAdaptive Boosting (AdaBoost)
eArtificial Neural Network (ANN)
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The next steps of this study are focused on developing a deep 
neural network in order to include other variable types such as 
images and spatial dose information. ML- based approaches have 
previously exploited spatial dose information by using voxel- 
based (VB) methods to extract radiation dose metrics from the 
dose distribution maps as features to be used as input variables in 
a ML algorithm, usually together with clinical and demographic 
variables.14,25 The use of convolutional neural networks (CNNs), 
although widely employed in medical imaging applications, 
has yet to be fully explored for toxicity prediction. An advan-
tage of using a CNN instead of a VB method is that the interpa-
tient image registration may not be needed in the former, as the 
network is in principle capable of learning such variations from 
its training data. Moreover, a CNN is able to learn the image- 
based features that are most useful for the task being trained for. 
Men et al26 have recently showed this based on CT images and 
dose distribution volumes for the prediction of xerostomia in 
patients with HNC treated with RT.

The median Dmax was 69.0 Gy (range 57.6–74.6 Gy) and 58.5 Gy 
(range 23.3–74.8 Gy) for the ORN and control groups, respec-
tively. Chen et al4 found that a total dose higher than 75 Gy 
resulted in a greater risk of ORN for patients with oral cancer. 
Even though our median Dmax is lower than the dose cut- off 
they suggest, we also see a correlation between high radiation 
doses to the mandible bone and incidence of ORN. However, the 
median Dmean within our ORN group was lower than that of 
the control group. Although initially surprising, this could high-
light the need to reduce radiation dose “hot spots” within the 
mandible bone dose distribution. A study published by the MD 
Anderson Head and Neck Cancer Symptom Working Group27 
found exactly the opposite and they observed a higher mandib-
ular Dmean in the ORN group. Their study included oropharynx 
cancer patients only while our study includes a much larger 

variety of HNC sites resulting in a less homogeneous RT treat-
ment range.

The International Commission on Radiation Units and Measure-
ments (ICRU) Report 8328 recommends the transition from 
single spatial- point reporting (e.g. maximum and minimum 
absorbed doses, Dmax and Dmin, respectively) to dose–volume 
reporting (e.g. near- maximum and near- minimum absorbed 
doses, D2% and D98%, respectively). In this study, we used 
single spatial- point metrics because most existing literature 
report the mandible high dose tolerance as Dmax and compar-
ison of results was easier. However, we do acknowledge that the 
transition towards dose–volume reporting metrics is necessary 
as these are more relevant to the IMRT era.

CONCLUSION
This research aims to open a new path towards personalised 
RT for HNC using ML to predict mandible ORN incidence. We 
propose a new approach in the field of mandible ORN toxicity by 
using a prediction model for its incidence on a case- by- case basis 
rather than just determining its potential contributing factors. 
We have shown that this can be successfully done using ML 
methods. We therefore encourage the transition to ML- based 
prediction models for ORN as has already taken place for other 
HNC toxicity end points.
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