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ABSTRACT

Transcriptional regulation by transcriptional regula-
tory factors (TRFs) of their target TRF genes is cen-
tral to the control of gene expression. To study
a static multi-tiered inter-TRF regulatory network
in the human hepatoma cells, we have applied a
Matrix RNAi approach in which siRNA knockdown
and quantitative RT-PCR are used in combination
on the same set of TRFs to determine their interde-
pendencies. This approach focusing on several
liver-enriched TRF families, each of which consists
of structurally homologous members, revealed
many significant regulatory relationships. These
include the cross-talks between hepatocyte nuclear
factors (HNFs) and the other TRF groups such as CC
AAT/enhancer-binding proteins (CEBPs), retinoic
acid receptors (RARs), retinoid receptors (RXRs)
and RAR-related orphan receptors (RORs), which
play key regulatory functions in human hepatocytes
and liver. In addition, various multi-component reg-
ulatory motifs, which make up the complex inter-
TRF regulatory network, were identified. A large
part of the regulatory edges identified by the
Matrix RNAi approach could be confirmed by chro-
matin immunoprecipitation. The resultant significant
edges enabled us to depict the inter-TRF TRN form-
ing an apparent regulatory hierarchy of (FOXA1,
RXRA) ! TCF1 ! (HNF4A, ONECUT1) ! (RORC,
CEBPA) as the main streamline.

INTRODUCTION

Gene expression is primarily controlled at a transcrip-
tional level through physical interactions between tran-
scriptional regulatory factors (TRFs) and their cognate
binding regions (cis-regulatory modules) on their target
genes (1–3). Identification of regulatory edges between
TRFs is vital to unravel a functional transcriptional reg-
ulatory network (TRN) relevant to the biological event in
question (4). Edges between a TRF and its targets under
given conditions can be explored by multiple approaches.
For example, time-course analysis of expression profiles
(5), expression analysis before and after perturbation by
genetic disruption, typically RNAi knockdown with a
target-specific siRNA (6) or gene knockout (7,8), detection
of the physical binding between a TRF and its cis-regula-
tory DNA sequences by cross-linking chromatin immuno-
precipitation (X-ChIP) (1,2) have all been used to deduce
TRF-target edges.
We previously found that RNAi knockdown of a TRF

gene (mouse Tcf2) caused significant perturbations of
expression of a number of genes including several down-
stream TRF genes (9). This drove us to apply RNAi
knockdown to explore an inter-TRF TRN consisting of
various TRFs and their genes as nodes and their regula-
tory interactions as edges.
The RNAi-based systematic gene knockdown has been

primarily employed to screen a variety of genes in ques-
tion, for example, longevity genes (10) and genes related
to growth and viability (11), in lower model animals
such as the nematode Caenorhabditis elegans and the fly
Drosophila melanogaster under the favour of high
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knockdown efficiencies and feasible screening. Genome-
wide siRNA transfection screening was also used to
search for human kinases required for endocytosis
(12,13) and monitor cell viability in HeLa cells (14).
As for TRN analysis, systematic RNAi has been used to

define lineage-specific regulatory networks in C. elegans
(15,16). The use of systematic RNAi perturbation of mul-
tiple TRF genes in TRN analysis has several advantages.
First, RNAi knockdown targeting a specific TRF gene
induces directional regulatory responses in perturbation
of the immediate downstream TRF genes, enabling us to
pursue the directly regulated TRF genes, decreasing the
noise in identifying real regulatory edges. Second, acute
ablation by RNAi could bypass compensatory mecha-
nisms, especially relevant for examining functionally
redundant TRF families (17). Because of the expected
higher redundancy of TRF families in human being, the
application of a systematic RNAi knockdown to the ana-
lysis of TRNs in human cells is highly challenging as com-
pared with those in lower animals. The systematic
perturbation of TRF genes by knockdown of a set of
TRFs with siRNAs aiming at TRN analysis is named
Matrix RNAi here.
In this study, as a model for the Matrix RNAi-based

investigation of an inter-TRF TRN, we focused on the
human hepatoma cell line HepG2 in which several
known liver-enriched TRFs showing high redundancy
are suggested and partly demonstrated to play key roles
in the regulation of hepatic functions and maintenance of
homeostasis (18–20). Extensive studies of the hepatic TRN
focused on several specific TRFs have been made and the
network circuitry was demonstrated (21,22), but the
overall regulatory interrelationships among these liver-
enriched TRF family members remain to be elucidated.
In this report, we show the successful application of
Matrix RNAi approach to identification of a complex
inter TRF-TRN consisting of a number of redundant
family members. We also found novel cross-talks among
the liver-enriched TRF families and a clear hierar-
chical assembly of the network cascades in the human
hepatoma cells.

MATERIALS AND METHODS

siRNA

Stealth siRNAs designed by Invitrogen were used for
RNAi knockdown of TRF genes. Two kinds of stealth
siRNA were tested for their RNAi activities against each
target gene and the one that gave a higher level of knock-
down was selected to be used for Matrix RNAi. Selected
siRNAs were described in Supplementary Table 1.
Negative control 2 (Ambion Inc., Austin, Texas, USA)
was used as the calibrator siRNA.

Cell culturing, transfection and RNA extraction

HepG2 cells (HSRRB JCRB1054) were cultured in
minimum essential medium (Eagle) with 1mM
sodium pyruvate and 10% FBS in 5% CO2 at 378C.
Reverse transfection was performed with 10 nM (final
concentration) of each stealth siRNA, Opti-MEM

(Invitrogen, Carlsbad, CA, USA) and Lipofectamine
2000 (Invitrogen), according to the manufacturer’s
instructions. RNAs were extracted 48 h after transfection
with NucleoSpin (Macherey-Nagel, GmbH & Co. KG,
Düren, Germany), according to the manufacturer’s
instructions. RNA was quantified with NanoDrop
(NanoDrop Technologies, Wilmington, DE, USA).

qRT-PCR

Expression levels of TRF genes both in the cells treated
with the specific siRNA targeting a TRF and with the
calibrator negative control siRNA were estimated by
qRT-PCR in triplicate with each of the specific primer
sets (Supplementary Table 2) and each of the RNA sam-
ples extracted. Glyceraldehyde-3-phosphate dehydrogen-
ase (GAPDH) mRNA level was determined with a
specific primer set (50-GAAGGTGAAGGTCGGAGT-30

and 50-GAAGATGGTGATGGGATTTC-30). A total of
four biological replicates were assayed. Reverse transcrip-
tion reaction was performed with ExScript RT-PCR Kit
(Perfect Real Time, TAKARA BIO) and GeneAmp PCR
System 9700 (Applied Biosystems, Foster City, CA, USA),
according to the manufacturer’s instructions. Quantitative
PCR reaction was done in 10 ml reaction mixture with
SYBR Premix Ex TaqTM (Perfect Real Time)
(TAKARA BIO) on an ABI 7500 Fast real-time PCR
system (Applied Biosystems). PCR parameters consisted
of heating at 948C for 5 s, followed by 40 cycles of 948C
for 5 s and 62.58C for 20 s. The relative amount (expres-
sion ratio) of the target gene mRNA was normalized to
the endogenous GAPDH mRNA using the ��CT

method (23). The difference in the threshold cycle of
sample [�CT (sample)] was measured by subtracting the
threshold cycle of GAPDH mRNA from that of the target
TRF mRNA in the RNA samples extracted from HepG2
cells transfected with the target TRF-specific siRNA. The
difference in the threshold cycle of calibrator [�CT (cali-
brator)] was measured by subtracting the threshold cycle
of GAPDH mRNA from that of the target TRF mRNA
in the RNA samples extracted from HepG2 cells trans-
fected with negative-control siRNA. ��CT was calculated
by subtracting �CT (sample) from �CT (calibrator) and
used for the calculation of expression ratio. Standard devi-
ation (SD) of ��CT in four biological replicates was cal-
culated, and the cut-off value was arbitrarily defined as 2
SD above the mean. Perturbation fold was calculated by
dividing 1.0 by the average expression ratio when it is
smaller than 1.0. When the expression ratio exceeded
1.0, it represented the perturbation fold. To evaluate the
interferon response that might be induced by siRNA
administration, we examined the levels of expression of
several interferon-responsive genes such as OAS1 and
PKR genes. However, no significant changes in their
expressions were detected.

Search for the potential TRF-binding sites

The upstream regions (5.5 kb) extending from –5000 bp
to+500 bp relative to the transcription start sites (TSSs)
of the 21 liver-enriched TRF genes were extracted from
ENSEMBL database. DNA sequences homologous to the
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recognition sequences characterized for each of the 19
TRFs used for Matrix RNAi were searched with specific
matrix identifiers (Supplementary Table 3) of match pro-
gram (24) in Transfac 10.4 (Biobase Biological Databases,
GmbH). The cut-off to minimize false-positive matches
(minFP) was applied for searching the DNA sequences.

TRF-binding assay by X-ChIP/qPCR

The procedures for X-ChIP were essentially as described
previously (9,22,25) with some modifications. The soluble
chromatin prepared from 1� 107 cells was incubated with
anti-TCF1, FOXA1, FOXA2, HNF4A, ONECUT1 or
RXRA-specific antibody (sc-6547, sc-22841, sc-9187,
sc-6556, sc-13050 and sc-553, respectively; Santa Cruz
Biotechnology, Santa Cruz, CA) for more than 12 h at
48C. The chromatin–antibody mixture was incubated
with Dynabeads Protein G (Dynal Biotech, Oslo,
Norway) for 1 h at 48C and the immunoprecipitates were
captured by using magnets. The immunoprecipitates
recovered were washed once with IP wash buffer low
(2mM EDTA, 20mM Tris–HCl pH 8.0, 150mM NaCl,
1% Triton X-100, 0.1% SDS), once with IP wash buffer
high (2mM EDTA, 20mM Tris–HCl pH 8.0, 500mM
NaCl, 1% Triton X-100, 0.1% SDS), once with IP wash
buffer LiCl (1mM EDTA, 10mM Tris–HCl pH 8.0,
250mM LiCl, 0.5% NP-40, 0.5% sodium deoxycholate)
and twice with TE buffer (10mM Tris–HCl pH 8.0, 1mM
EDTA). The washed protein–DNA complexes were
released from Dynabeads Protein G twice with Elution
Buffer (100mM Sodium bicarbonate, 1% SDS). NaCl
was added to the protein–DNA complexes for adjusting
the final concentration of 20mM; then the mixture was
incubated at 658C for 3.5 h for reversal of formaldehyde-
induced cross-linking and treated with 0.05mg/ml RNase
A (Nippon Gene, Tokyo, Japan) at 658C for 30min. After
the addition of Tris–HCl (pH 6.8) and EDTA (pH 8.0) to
final concentrations of 40mM and 10mM, respectively,
the reversed samples were treated with 0.25mg/ml pro-
tease K (Nippon Gene) at 458C for 1 h. DNA released
was then extracted with phenol and phenol:chloroform:
isoamylalcohol (25:24:1), isopropanol precipitated with
Ethachinmate (Nippon Gene), and then dissolved in
100 ml of H2O. DNA obtained by ChIP with specific anti-
body, prepared from the precipitates without any anti-
body and input DNA (total chromatin DNA) were used
as templates for qPCR assay. The procedures of qPCR
were essentially the same as those described in the section
of qRT-PCR. Enrichment of the target DNA fragments
was assessed by subtraction of the CT values observed for
the ChIP samples with specific antibody from the CTs
observed without any antibody (�CT). Sequences of
the primers used for ChIP/qPCR were described at
Supplementary Table 4.

ChIP experiments were performed in triplicate with
each different batch of cell pellets, and qPCRs were per-
formed triplicate with each primer set and each chromatin
sample. The �CT values obtained were averaged for each
of the TRF–TRF gene-edge pairs and the edge pairs that
gave �CT values less than twice of SD values and high
P-values (> 0.05) were excluded from the binding analysis.

The antibodies used for the ChIP of FOXA1 and
ONECUT1 showed lower degrees of specific target
DNA enrichment as compared to others (TCF1,
FOXA2, HNF4A and RXRA). For evaluation of DNA
fragment enrichment in the experiments, we set the thresh-
old to 1.0 �CT and P-value of 0.05.

Statistics

To evaluate the significance of RNAi knockdowns, per-
turbations and enrichment of the specific DNA fragments
that were bound by each of the TRF proteins, a two-tailed
Student’s t-test was used for generating P-values.

RESULTS

Expression levels of the selected liver-enriched TRFs
and evaluation of their RNAi knockdown

Human liver-enriched TRFs used in Matrix RNAi are as
follows: HNF1A (TCF1), HNF1B (TCF2), HNF3A
(FOXA1), HNF3B (FOXA2), HNF3G (FOXA3),
HNF4A, HNF4G, HNF6A (ONECUT1), CEBPA,
CEBPB, CEBPD, PPARA, PPARD, PPARG, RARA,
RARB, RARG, RXRA, RXRB, RXRG, RORA and
RORC. TCF1 and TCF2 share identical DNA-binding
domains but exhibit distinct transcriptional regulatory
properties (26,27). FOXA1, FOXA2 and FOXA3 share
strong homology in their winged-helix/forkhead DNA-
binding domains and can recognize the same target
DNA sequence, but their known roles in transcriptional
regulation of liver-specific genes are distinct from each
other (19). HNF4A is essential for hepatic gene expression
(28) but the function of the structural homolog HNF4G,
approximately 70% homologous to HNF4A (29), is
unclear. ONECUT1 regulates genes coding for enzymes
involved in glucose metabolism (30) as well as HNF4
and FOXA2 genes (31). The interrelationships among
TCF1, FOXA2, HNF4A and ONECUT1 have been
examined by location analysis (21,22). C/EBP family
members (CEBPA, B and D), which are highly homolo-
gous to each other in their DNA-binding basic leucine
zipper regions, are also essential for liver function (18).
Nuclear receptors are key regulators of lipid and glucose
homeostasis in liver (32). Peroxisome proliferator-
activated receptors (PPAR; NR1C) A, D and G regulate
genes involved in lipid metabolism and glucose homeos-
tasis in various tissues including liver (32). These three
PPAR subtypes share a highly homologous DNA-binding
domain (80% identical), whereas their ligand-binding
domains exhibit a lower degree of identity (33). Retinoic
acid receptor (RAR; NR1B) A, B and G, and retinoid X
receptors (RXR; NR2B) A, B and G mediate a variety of
biological effects of retinoids through binding, as homo-
dimers and/or heterodimers, to specific sequences in the
promoters of target genes (34). RARs share highly homol-
ogous DNA- and retinoic acid-binding domains (35). The
RXRs, which also exhibit structural homology, regulate
common target sequences and respond to common ligands
(36). RAR-related orphan receptors (ROR; NR1F) A
and C share 50% sequence identity (37) and are suggested
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to play important roles in the control of metabolic home-
ostasis in liver (38).
We first examined the expression levels of the above-

described 22 liver-enriched TRF genes in HepG2 cells cul-
tured normally and found that all but RXRG gene were
significantly expressed in HepG2 cells. We then evaluated
RNAi knockdown of these 21 TRF genes 48 h after trans-
fection of the respective specific siRNAs using quantita-
tive real-time RT-PCR (qRT-PCR). The 48 h time point
was chosen because RNA levels of both the TRF and its
direct target genes tend to reach minimum 36–48 h after
siRNA transfection (see ref. 8 for the typical example).

Chemically modified siRNAs (Stealth siRNAs;
Supplementary Table 1) were used for RNAi knockdown
of HepG2 TRF genes. Although we attempted knock-
downs of CEBPB and RARB, no highly effective
siRNAs against these TRF genes were obtained.
Therefore, we investigated perturbation of expressions of
the 21 TRF genes by siRNA-mediated knockdown of
the 19 TRF genes in the present Matrix RNAi analysis.
The siRNA-induced changes in expression levels of the
21 TRF genes were quantified by qRT-PCR with specific
primer sets (Supplementary Table 2). Ten nanomolar
siRNAs were sufficient to cause more than 70% knock-
down against all TRF genes but RARA gene (60.3%
knockdown) (Figure 1).

Matrix RNAi and perturbation of each TRF gene

RNAi knockdown of each TRF gene resulted in signifi-
cant expression perturbation of different sets of TRF
genes (Table 1 for an inter-HNFs matrix and
Supplementary Table 5 for the entire data, respectively).
RNAi knockdown and perturbation were evaluated as
follows by the conventional comparative threshold cycle
(CT) method (��CT method) (23). ��CT was calculated
by subtracting �CT (sample) from �CT (calibrator)
(see qRT-PCR in Materials and methods section). We
filtered the perturbation data according to two criteria,
SD and P-value of the ��CT for each edge. The edges
exhibiting mean ��CT smaller or larger than 2 SD and

Table 1. Matrix RNAi among HNFs

Perturbed TRF genes Knocked down TRF gene

TCF1 TCF2 FOXA1 FOXA2 FOXA3 HNF4A HNF4G ONECUT1

TCF1 ��CT –2.6208333 –0.4641667 –1.3508333 –0.67 –1.0008333 –0.9491667 –0.865 –1.47625
��CT SD 0.2166392 0.3597254 0.364969 0.2155686 0.2728902 0.2039744 0.3655958 0.5987373
P-value 5.83E–07 0.038143 0.0004084 0.0057176 0.0001371 0.0010823 0.0024617 0.017984

TCF2 ��CT –1.2591667 –3.0958333 –1.0241667 –0.4608333 0.0908333 –0.21 –0.3291667 –0.9295833
��CT SD 0.3568102 0.5012421 0.3536914 0.2335968 0.1490153 0.2488322 0.4580488 0.8778892
P-value 0.0005702 3.304E–05 0.0194871 0.2262878 0.747752 0.5046373 0.2364003 0.1433739

FOXA1 ��CT –0.875 0.8333333 –2.8466667 –0.06 –0.285 –0.2558333 0.1216667 –0.3483333
��CT SD 0.4781014 0.3389995 0.3731717 0.4891846 0.776543 0.7088416 0.4074505 1.0545216
P-value 0.0066018 0.0044526 1.261E–05 0.8042594 0.4843524 0.4454617 0.5590495 0.4865551

FOXA2 ��CT –0.9733333 –0.2275 –0.5408333 –2.0508333 –0.8491667 –0.5416667 0.2816667 –0.38625
��CT SD 0.3805009 0.5449734 0.3656555 0.6575634 0.8432209 0.7664658 0.6226645 0.6472584
P-value 0.0092891 0.4924436 0.1712209 0.0009421 0.0578368 0.2080605 0.420319 0.5361367

FOXA3 ��CT 0.5058333 –0.1616667 –0.9508333 –1.1141667 –4.6725 –0.0908333 –0.3416667 –0.9470833
��CT SD 0.4289698 0.4932207 0.5931293 0.494027 0.5595853 0.5556228 0.3918171 0.3815078
P-value 0.3825842 0.7652557 0.2896109 0.1194374 0.0004207 0.8144588 0.2667267 0.1582385

HNF4A ��CT –1.24125 –0.0025 –0.6975 –0.3758333 –0.7408333 –2.6116667 –0.2575 –0.8670833
��CT SD 0.1852171 0.2156625 0.3150951 0.2856057 0.3782111 0.1717603 0.3282892 0.6722532
P-value 3.218E–05 0.9831399 0.0058856 0.031243 0.00296 1.017E–05 0.161717 0.0906656

HNF4G ��CT 1.8383333 0.4266667 0.9883333 0.3075 0.9508333 1.5033333 –1.9116667 0.59625
��CT SD 0.5398501 0.4613782 0.3567134 0.3026379 0.3312446 0.2381943 0.5630444 0.4410708
P-value 0.0048796 0.1195892 0.0099967 0.1646301 0.0015777 6.017E–05 0.0025926 0.1667225

ONECUT1 ��CT –2.0233333 1.1308333 –1.3333333 –0.2558333 –0.3725 –0.17 0.5225 –3.4158333
��CT SD 0.2820222 0.475604 0.4150655 0.1899603 0.381325 0.3294729 0.339382 0.4198365
P-value 0.0140675 0.0828868 0.0137168 0.4971287 0.2927379 0.6868694 0.3131551 0.0029555

HepG2 cells were transfected with an individual siRNA species against each of the TRF genes. The total RNA was extracted 48 h after
the transfection and used for qRT-PCR. The changes in expression levels (perturbations) were evaluated by ��CT calculated according to the
method described by Livak et al. [Livak, K.J. and Schmittgen, T.D. Methods, 25, 402–408 (2001)].
Tetraplicated experiments were carried out to obtain the average ��CT, SD and P-value. Only the edges that provided low SD and P-value were
used for drawing a putative perturbation network in Figures 5, 8 and Supplementary Figure 1.

Figure 1. RNAi knockdown of 19 TRF genes in HepG2 cells.
Knockdown ratio was calculated according to the ��CT method (23)
and the averages of the ��CT values in four biological replicates are
indicated with SD (error bar).
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P-values higher or lower than 0.05 were divided into two
separate groups consisting of 295 non-significant and
85 significant edges. When we plotted these edges accord-
ing to their ��CT values, the two separate groups showed
distinct distribution patterns (Figure 2). The non-signifi-
cant group consisting of the edges that exhibited high
SD and/or P-values was found to be the population that
mainly consisted of the edges whose ��CT values were
low and peaked at 0.4-0.5 ��CT (average ��CT 0.471;
Figure 3). By contrast, another group (significant group)
of the edges that exhibited low SD and P-values were
peaked around at high ��CT (1.1� 1.2) and the average
��CT was approximately 1.263 (Figure 3). A total of
85 significant edges consisted of 63 downregulated and
22 upregulated ones.

Assessment of off-target effects onMatrix RNAi-based
TRN analysis

It has been known that siRNAs with only partial comple-
mentarity to mRNAs can also cause a reduction in the
RNA levels (39�43). Because unintended siRNA-
mediated gene silencing (off-target effects) could occur to
affect the robustness of the analysis of specific transcrip-
tional regulation by each TRF, we assessed the probability
of such interfering effects. For this purpose, we knocked
down each of the three selected TRFs (FOXA1,
ONECUT1 and RXRA) with two discrete siRNAs that
targeted different sites in each of the TRF mRNAs. The
RNAi knockdown of each of the target TRF genes and
the perturbation of their downstream TRF genes would be
expected to be well correlated if each of the two siRNA
species used would be specific to each target TRF gene.
We used Stealth siRNAs (Invitrogen) for the present
Matrix RNAi knockdown of liver-enriched TRF genes.
Stealth siRNAs are designed to minimize the off-target
effects and interferon responses by introducing the mod-
ified nucleotides in the passenger strand interfering
it from being incorporated into RISC to function as well
as by selecting a nucleotide sequence of minimum homol-
ogy to any other stretches in the human genome and
transcriptome.
Comparison of the perturbation patterns of the 21 TRF

genes examined in the present study revealed high correla-
tions (Pearson’s product–moment correlation coefficients
0.86, 0.94 and 0.93 for FOXA1, ONECUT1 and RXRA,
respectively) among the perturbation patterns by the two
different siRNAs for each of the three TRFs (Figure 4 and
Supplementary Table 6). These results suggest that there
are no evident off-target effects within these 21 genes
enabling us to use the data for depicting a perturbation
network in the human hepatoma cells.

Perturbation network

RNAi knockdown experiments revealed a regulatory pat-
tern characteristic to each of the TRFs and TRF genes
(Table 1 for an inter-HNFs matrix and Supplementary
Table 5 for the entire data, respectively). When TCF2
or RARA was individually knocked down, upregulation
of various TRF genes was induced in the HepG2 cells.
In contrast, knockdown of TCF1, FOXA1, FOXA3,
CEBPD, PPARA, RXRA, RXRB, RORA and RORC
was biased towards downregulation of their potential
downstream TRF genes. PPARG, RARB, RARG,
RORA and, most typically, HNF4G genes are in almost
all cases upregulated by knockdown of any of the corre-
sponding TRF genes. By contrast, TCF1, TCF2, FOXA2,
HNF4A, ONECUT1, CEBPA, PPARD, RXRA, RXRB
and RORC genes are almost exclusively downregulated
by knockdown of each of several TRFs. Perturbation of
a TRF gene by RNAi can lead to expression changes of its
direct (immediate downstream) and indirect target genes;
therefore, a putative regulatory network inferred by per-
turbation analysis data provides a powerful guide
for the subsequent investigation of the real TRN similar
to the way that TRF binding (ChIP) analysis has demon-
strated (21,22).
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Figure 2. Distribution of perturbation magnitudes between significant
and non-significant edges. The 85 edges showed a low SD (mean> 2
SD) and a low P-value (P< 0.05) in Student’s t-test were selected as
significant edge candidates. The remaining 295 edges, except 19 auto-
regulatory edges, were grouped together as non-significant edges.
The edges in each group were divided according to their perturbation
magnitudes, which were represented by absolute ��CT, in every 0.2
absolute ��CT and the percentages of the number of edges in each
fraction to the total number of the edges were plotted. Perturbation
magnitude was calculated on the basis of the data of qRT-PCR assay
(see qRT-PCR in Materials and Methods section for details). White
bars represent the percentage of the number of significant edges and
black bars are for non-significant edges.

Figure 3. Magnitude of perturbation for high and low SD and P-value
groups. The edges exhibiting a mean ��CT smaller or larger than 2 SD
and a P-value higher or lower than 0.05 were divided into two separate
groups consisting of 85 significant and 295 non-significant edges.
Mean and SD values of ��CTs of high (<2 SD and P> 0.05) and
low (>2 SD and P< 0.05) SD and P-value groups were calculated.
��CT values for knockdown (KD) of the TRF genes are much
larger than perturbation magnitudes, indicating that the influences of
KD of TRF genes on their downstream TRF genes tend to attenuate.
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Perturbation network depicted based on the
Matrix RNAi data (Figure 5 for inter-HNFs and
Supplementary Figure 1 for the entire perturbation
matrices, respectively) showed TCF1, ONECUT1,
HNF4A and RXRA represent key hubs to emit multiple
outputting regulatory signals and accept multiple input-
ting ones in the static HepG2 TRN. RXRA predomi-
nantly functions as a multiple outputting node and
conversely RORC, CEBPA and HNF4G receive regula-
tory information from a lot of TRFs. Besides RORC,

CEBPA and HNF4G, two PPARs (PPARG and
PPARD) appear to be peripherally located because these
TRF genes exclusively function as acceptors and, by con-
trast, PPARA primarily functions as an outputting node
and thus appears to be epistatic in this perturbation net-
work. PPAR and RAR families seem less related to other
TRF families as compared with inter HNFs, RXR and
ROR families, significantly connected to each other.

Demonstration of directional regulatory relationships in
the perturbation network

The directional regulatory relationships between the TRFs
and their target TRF genes as well as their autoregulation
can be strongly supported by integrating the data of RNAi
knockdown and perturbation with that of binding analysis
by using X-ChIP/quantitative real-time PCR (X-ChIP/
qPCR) (44). To evaluate our present Matrix RNAi
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Figure 4. Perturbation of the TRF gene expression by two different
siRNA species. Each of the three TRF genes was individually knocked
down in HepG2 cells by either of the two different siRNAs specific to
each of them, and changes in expression levels of 21 TRF genes were
measured by qRT-PCR. The average ��CT, SD and P values were
obtained from triplicated experiments. Correlation coefficients were
calculated on the basis of average ��CT values.

Figure 5. Perturbation network among HNFs. For depiction of the
putative network, only significant edges (>2 SD and P< 0.05) among
HNFs (TCF1, TCF2, FOXA1, FOXA2, FOXA3, HNF4A, HNF4G
and ONECUT1) were extracted on the basis of Matrix RNAi data
(Table 1). The network graph was drawn by Cytoscape (50). In this
graph, TRFs and TRF genes regulated by them are not distinguished
from each other, but the nodes emitting and accepting an arrow rep-
resent the putative regulators and regulated genes, respectively.
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approach for probing the transcriptional regulatory edges,
we selected 6 TRFs (TCF1, FOXA1, FOXA2, HNF4A,
ONECUT1 and RXRA) and performed X-ChIP/qPCR
analysis of their regulatory edges. Searching the upstream
regions (from –5000 bp to +500 bp around the respective
TSSs) of the Matrix RNAi members confirmed that 67%
of the perturbation-positive edges contained potential
binding sequences for each of the targeting TRFs (see
Supplementary Table 3 for the matrix identifiers).

Three distinct DNA regions of approximately 500 bp in
length, which were located around 500, 1000 and 1500 bp
(1000, 1500 and 2000 bp only in the case of the CEBPA
gene) from the TSS of each of the 21 TRF genes examined,
were amplified from the chromatin of the unperturbed
HepG2 cells with specific primer sets (Supplementary
Table 4). The threshold cycle (CT)-values of the specific
DNA regions derived from the immunoprecipitates recov-
ered with or without the TRF-specific antibodies were
determined and the differences among them (�CT) were
measured for evaluation of enrichment of specific DNA
regions. The data showing high SD values, i.e. �CT< 2
SD, in three separate X-ChIP/qPCR experiments were
excluded from the evaluation of edges. We set the

thresholds of positive TRF binding to �CT=1.0 corre-
sponding to 2-fold enrichment of the TRF-specific DNA
fragments and P=0.05 in Student’s t-test (Supplementary
Table 7).
X-ChIP/qPCR analysis detected a total of 73 edges for

physical TRF–TRF gene interactions besides their self-
interactions (Figure 6). Interestingly, bindings of all
TRFs examined to the upstream region of their own
genes were demonstrated, indicating their autoregulation.
Odom et al. also reported the transcriptional regulatory
circuitry, in the human hepatocyte, which contained
TCF1, FOXA2, HNF4A and ONECUT1 on the basis
of TRF–TRF gene binding assays (21).

Integration of perturbation and ChIP data for the analysis
of the inter-TRF TRN

The edges whose TRF gene bindings were demonstrated
included 30 perturbation-positive edges, making up more
than 41% of the 73 edges deduced by the perturbation
analysis with six TRFs that were tested by both Matrix
RNAi and X-ChIP/qPCR (Figure 7). On the other hand,
binding-positive edges constitute 75% (30 in 40 edges) of
the perturbation-positive edges. The high concordance
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Figure 6. X-ChIP/qPCR analysis of six selected TRFs. TRF–TRF gene binding analysis was performed for six TRFs (TCF1, FOXA1, FOXA2,
HNF4A, ONECUT1 and RXRA) by using the chromatin samples prepared from the siRNA-untreated HepG2 cells. Enrichment of the specific
DNA fragments that are bound by a TRF is indicated by �CT (difference in the CT values observed for the ChIP samples with specific antibody and
those observed without any antibody; see TRF binding assay by X-ChIP/qPCR in Materials and methods section for details). Error bars represent
the SD between three separate experiments. Only the TRF genes exhibited the enrichment threshold (�CT >1.0, mean> 2 SD and P< 0.05) are
shown. Black bars indicate autoregulatory edges.
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between the perturbation and chromatin binding suggests
that the Matrix RNAi approach is highly effective in iden-
tifying real edges between TRFs.

By using these identified significant edges, we depicted
the inter-TRF TRN in HepG2 cells (Figure 8). Thick
lines in Figure 8 are the set of finally validated 30 edges
(25 downregulated and 5 upregulated) and comprise a
static inter-TRF TRN in HepG2 cells. Figure 8 indicates
that TCF1 and FOXA1 share a common set of regulated
TRF genes (RORC, HNF4A, TCF2, ONECUT1,
CEBPA, HNF4G and RXRA (suggested by only pertur-
bation data). There is a negative feedback loop of FOXA1
! TCF1 ! TCF2 a FOXA1. Various reciprocal
regulations were also found between TCF1 and FOXA2,
HNF4A, ONECUT1, RXRA as well as between FOXA1
and RXRA or RXRA and ONECUT1. Moreover, several
regulatory circuitries were also found, for example,
FOXA1 ! TCF1 ! RXRA ! FOXA1, RXRA !
TCF1 ! ONECUT1 ! RXRA, and TCF1 ! RXRA
! FOXA1 ! HNF4A ! TCF1. These molecular regu-
latory patterns characterize the static inter-TRF TRN in
the human hepatoma cells. Figure 9 shows the outline of
the strategy of Matrix RNAi-based inter-TRF TRN ana-
lysis used in the present investigation.

T

Figure 8. A highly probable static inter-TRF TRN in HepG2 cells. The edges presented were identified by Matrix RNAi perturbation. Highly
significant edges confirmed by X-ChIP/qPCR are drawn in thick lines. Rhombus boxes represent TRFs that were tested in X-ChIP/qPCR. TRFs
lacking a significant binding data are excluded from this figure. Autoregulation of all of these six TRFs was demonstrated but not drawn for clarity.
Lines with arrowheads and T-shaped termini show positive and negative regulatory edges, respectively.

30

(11)

43

(9) 
10

(1) 

Binding- 
positive

Perturbation-
positive 

Perturbation- &
binding-positive 

Figure 7. Correlation between TRF binding- and perturbation-positive
edges. A total of 40 regulatory edges that showed a perturbation with a
low 2 SD value and a low P-value (<0.05) targeted by any of the six
TRFs whose chromatin bindings were examined and were selected to
determine the correlation with TRF–TRF gene interaction. Binding-
positive 73 TRF edges that showed more than 1.0 of the enrichment
index �CT with a low 2 SD value and P< 0.05 in Student’s t-test
were also selected. Autoregulatory edges are not included in
this figure because Matrix RNAi cannot identify them through pertur-
bation. Numbers in parentheses indicate the edges that have been
reported in literature (Supplementary Table 8).
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DISCUSSION

The results obtained from this study suggest several
aspects of a static inter-TRF TRN of the human hepa-
toma cells. (1) Most TRF genes were regulated by multiple
TRFs either directly or even indirectly. In particular,
TCF1, CEBPA ad RORC genes are downregulated
upon knockdown of each of more than 10 TRFs, raising
the possibility of their prominent combinatorial regula-
tion. (2) Most of the genes regulated directly by a TRF
are significantly downregulated upon knockdown of the
regulator. (3) The TRN depicted is highly nested and com-
plicated by multiple inputs and outputs, autoregulatory
nodes, reciprocal regulatory edges, regulatory circuitries
and either positive or negative regulatory edges.
Therefore, it is hard to find simple transcriptional regula-
tory cascades. (4) There are a few hubs with key roles in
the TRN. (5) Individual members of each of the TRF
families play different roles in the static HepG2 TRN
irrespective of their structural homologies. (6) The
inter-TRF TRN depicted reveals cross-talks between
HNFs and C/EBPs, PPARs, RARs, RXRs and orphan
receptor RORs. (7) An apparent regulatory hierarchy of
(FOXA1, RXRA)! TCF1! (HNF4A, ONECUT1)!
(RORC, CEBPA) constitutes the main streamline in the
inter-TRF TRN.

The Matrix RNAi has already been proved to be very
useful to identify the TRFs and the regulatory regions of

their target genes that are involved in a combinatorial
regulation (45). To depict the inter-TRN in more detail
including the combinatorial regulations, we need to
increase the number of TRFs to be examined. For this
purpose, the systems for high-throughput RNAi knock-
down and qRT-PCR analysis should be introduced and
cell microarray and multiplex qRT-PCR techniques may
be promising tools to be used. In addition, the high-
throughput ChIP analysis system is also a powerful tool
to probe a big TRN including edges between TRFs and
non-TRF genes that work for exhibiting the functions
characteristic to a specific cell type in question.
It is usually difficult to estimate the specificity of edges

in a given TRN investigated due to the inevitable missing
of a part of the true edges (false negatives). On the other
hand, minimum sensitivity of edge identification can be
estimated on the basis of the accumulated knowledge
about transcriptional regulations in which TRFs in ques-
tion are involved. We assessed 41.7% (30 perturbation-
and binding-positive edges/73 binding-positive edges) of
the minimum sensitivity of the present TRN analysis
with Matrix RNAi and TRF–TRF gene binding analysis
data by searching for the published literatures
(Supplementary Table 8) because 11 in 30 perturbation-
and binding-positive edges have been already reported
(Figure 7). This percentage is significantly higher than
either only the perturbation-positive (1 in 16) or

Selection of a set of TRFs
coexpressed in the cells in question 

Systematic knockdown of TRF genes
and measurement of gene  expression

perturbation (Matrix RNAi) 

Depiction of a perturbation network

Search for the potential TRF binding
sites in the surrounding region of 

each target TRF gene 

Design the specific PCR primer sets

X-ChIP/qPCR validation of edges

A reliable TRN

TRF1

TRF4 TRF3

TRF2

Gene

Gene

Figure 9. Strategy flow of matrix RNAi-based TRN analysis. (Left) The experimental flow chart, (right) top, example of matrix RNAi results;
middle, example of TRF binding results; bottom, example of the validated TRN (TRF1 and TRF4 are autoregulated; black arrows indicate a
positive regulatory edge, and the dashed line with a black circle from TRF2 to TRF1 indicates negative regulation.
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binding-positive edges (9 in 43) (Figure 7), suggesting that
perturbation- and binding-positive edges may be much
more eligible ones as compared with the edges inferred
by only one of the assays.
It should be noted that some edges showed little expres-

sion perturbations, but clear TRF bindings, and others did
high levels of expression changes with modest or poor
enrichments of the target DNA. The regulatory edges
that failed to be confirmed by X-ChIP could be real
ones because the primer sets used in the present experi-
ments might not cover the actual TRF binding sites if they
would be located far from the TSSs. Another plausible
explanation is that weak interactions between TRFs and
their target genes may also be functionally important for
transcriptional regulation as indicated in yeast genome
(46). In addition, binding of a TRF to the regulatory
region of the target gene may not necessarily result in its
fruitful transcriptional regulation (47). Each of the TRFs
that are involved in the combinatorial regulation can dif-
ferentially contribute to the transcriptional regulation
of a target gene. Binding of a TRF to DNA occurs sto-
chastically and in almost all cases through interactions
with other TRFs and transcription factors (TFs) such as
general TFs, cofactors and mediators, explaining at
least partially several discrepancies between the levels of
perturbation and chromatin binding.
Our Matrix RNAi in combination with X-ChIP/qPCR

analysis strongly suggests that a number of TRFs are
involved in transcriptional regulations of TRF genes to
form intricate regulatory circuitries, mediating pleiotropic
regulatory effects. Such complexity may enhance the
difficulty in computational inference of TRNs. Our
experiment-based approach to the identification of the
complicated mammalian TRN was challenged by a com-
putational analysis based on simple perturbation data.
Modular response analysis (MRA) developed by
Kholodenko et al. (48) was found successfully applicable
to the analysis of a signal transduction cascade of MAPK
(49). However, when the MRA analysis was applied to the
matrix RNAi-based TRN analysis, several unreasonable
results were derived. For example, our perturbation data
clearly suggested that TCF1 and HNF4A positively regu-
late CEBPA, but MRA conversely proposed its negative
regulation by these two TRFs. The obvious discrepancy
between the experimental results and computational pre-
dictions might be due to the difference in the complexity of
the analysis object, for example, the number of nodes
(regulators and their regulated genes) or the type of net-
work tested. MRA has been applied to cellular networks
consisting of defining only a few subunits (modules)
that can be analyzed separately.
It is very intriguing to know the species specificity in the

TRN construction. To obtain information about evolu-
tional conservation and divergence in the TRN of liver-
enriched TRF genes between human and mouse, we tried
to do the Matrix RNAi analysis with mouse Hepa 1-6 cell
line; however, because of the inefficient RNAi knockdown
of many mouse TRF genes examined, the amount of data
with high confidence was too small to depict clearly the
mouse TRN. However, several regulatory edges found in
the HepG2 TRN are missing in the Hepa 1-6 cells and vice

versa, suggesting the significant difference between the two
TRNs. At the present time, we do not know the reason for
this difference, either among species (human and mouse)
or among cell lines. The putative evolutionary driving
forces may be co-evolution of TRF genes and conserva-
tion of the TRF’s target DNA elements as well as the
physiological requirements, for example, glucose homeos-
tasis, lipid metabolism and detoxification for hepatocytes.

Maintenance of homeostasis at static states of the cells
may need a complicated TRN containing various regula-
tory circuits to keep its robustness, differing from regula-
tory hierarchical framework predominant in dynamically
differentiating cell systems. Because of the pinpointed
targeting of the specific TRF genes resulting in direct
perturbation effects on their downstream TRF genes, the
Matrix RNAi, in particular by a combination with
X-ChIP analysis, whose strategy is outlined in Figure 9,
should also be useful for probing mammalian dynamic as
well as static TRNs with high complexity.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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