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Abstract

Assessment of bone quality is an emerging solution for quantifying the effects of bone pathology or treatment. Perhaps one
of the most important parameters characterising bone quality is the toughness behaviour of bone. Particularly, fracture
toughness, is becoming a popular means for evaluating bone quality. The method is moving from a single value approach
that models bone as a linear-elastic material (using the stress intensity factor, K) towards full crack extension resistance
curves (R-curves) using a non-linear model (the strain energy release rate in J-R curves). However, for explanted human bone
or small animal bones, there are difficulties in measuring crack-extension resistance curves due to size constraints at the
millimetre and sub-millimetre scale. This research proposes a novel ‘‘whitening front tracking’’ method that uses
videography to generate full fracture resistance curves in small bone samples where crack propagation cannot typically be
observed. Here we present this method on sharp edge notched samples (,1 mm61 mm6Length) prepared from four
human femora tested in three-point bending. Each sample was loaded in a mechanical tester with the crack propagation
recorded using videography and analysed using an algorithm to track the whitening (damage) zone. Using the ‘‘whitening
front tracking’’ method, full R-curves and J-R curves could be generated for these samples. The curves for this antiplane
longitudinal orientation were similar to those found in the literature, being between the published longitudinal and
transverse orientations. The proposed technique shows the ability to generate full ‘‘crack’’ extension resistance curves by
tracking the whitening front propagation to overcome the small size limitations and the single value approach.
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Introduction

The interest in measuring fracture toughness behaviour of bone

tissue is increasing within the bone research community as it is a

quantitative way to evaluate an important bone quality parameter.

Fracture toughness measurement techniques have been used in an

increasing number of studies to quantify the fracture resistance of

bone [1,2,3,4,5,6,7,8]. These studies were able to provide a good

estimate of bone fracture toughness in terms of the critical stress

intensity factor (Kc) and/or the critical strain energy release rate (J-

Integral) while they were also pushing fracture toughness testing to

the limits; in many cases, samples only a few millimetres in size

were investigated due to size and shape constraints of available

tissue samples (Table 1) [1,2,3,4,5,6,7,8].

Beyond these experiments there is a further need for exper-

imental methods to measure fracture toughness in even smaller

samples to allow the quantification of bone fragility in a larger

range of human and animal bones. In addition, bone tissue

fracture toughness behaviour is likely to differ with sample size,

due to the predominance of different hierarchical structures or

defects at different sample sizes (the size effect). Evaluation of the

‘‘size effect’’ in fracture toughness may be crucial for understand-

ing the contribution of different hierarchical levels to the ultimate

fracture resistance of bone. Likewise, fracture toughness of

individual human trabeculae (typical dimensions: length 2–

4 mm; diameter 0.2–0.5 mm) has so far not been carried out as,

until now, no technique has been available to measure fracture

toughness in a sample of this small size. Fracture mechanics are

not directly applicable on samples where the microstructural

features are less than an order of magnitude smaller than the

critical dimensions of the samples (i.e., the crack length and sample

width). However, such measurements could be used for studying

relative differences between single trabeculae or other small scale

samples and so could still provide valuable information about their

toughness. Furthermore, small-animal models (i.e. rat or mouse)

are often used to study the effects of various factors on bone

quality, such as disease, pharmaceutical treatment and genetic or

epigenetic predisposition to bone disease. However, because of the

small dimensions e.g. the femur of small rodent mammals (rats:

30–40 mm long and 3–4 mm diameter; mice: ,15 mm long and

1–2 mm diameter), generating a crack resistance curve (R-curve) is

very difficult and generally only a single-value Kc is measured

instead [9].
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The experimental procedure for determining the crack-exten-

sion resistance (R-curve or J-R curve) of a material requires the

measurement of crack extension (Da; Da = a(i) – a0) that occurs

during loading of a pre-cracked specimen [10]. In the case of sub-

millimetre sized samples this is a very difficult task. To deal with

this problem, two studies have used in-situ environmental scanning

electron microscopy (ESEM) during three-point bending but these,

to the best of our knowledge, were the only studies able to generate

crack extension resistance curves for short (,600 mm) crack

propagations [11,12].

Here we present a new method for generating crack extension

resistance curves in notched small bone samples, i.e. with cross-

sectional dimensions of 1 mm61 mm or less, tested in three-point

bending combined with videography. Our approach is based on

tracking the crack-front propagation via monitoring of the so-

called ‘‘whitening zone’’, which develops in front of the crack-tip.

This approach tracks the actual crack propagation in an indirect

fashion. Micro-cracking, is one of the intrinsic toughening

mechanisms acting in front of the crack-tip during crack

propagation in quasi-brittle materials like bone [13,14,15]. The

‘‘whitening effect’’ is the result of increased light reflection on the

surfaces of the newly formed microcracks within this damage zone

[16]. As the strain increases, some of the microcrack of the damage

zone (also called frontal process zone [15]) are joint together and

the main crack propagates. Subsequently, a new frontal process

zone develops ahead of the propagated crack-tip and the process

continues until the specimen fails [13,15].

The main objectives of this study were (i) to quantify the

correlation between the ‘‘whitening effect’’ and the crack

propagation and (ii) to develop a computer-aided methodology

to generate crack-propagation resistance curves for fracture

toughness evaluation of small bone specimens.

Materials and Methods

This study has been approved by the NHS, Health Research

Authority. NRES Committee South Central - Southampton A.

REC reference: 12/SC/0325.

2.1 Specimen Preparation and Testing
2.1.1 Rat tibiae (whole bone) samples. Whole rat tibiae

were used to access the applicability of the method on small animal

model studies. For this purpose, two whole tibiae were harvested

from 28 day old rats. At this age, the tibia is approximately 2–

3 mm in diameter and about 20–25 mm long. After removal of

soft tissue using tissue tweezers and a scalpel, bones were mounted

on a low-speed saw and both the distal and proximal ends were

removed. Subsequently, bone marrow was removed using a water-

jet, and finally the posterior surface of the midshaft was notched

using; firstly the low-speed saw (IsoMet, Buehler, Lake Bluff, IL,

USA) and secondly a razor blade and diamond suspension, as

described by Kruzic et al [17]. The pre-notched samples were

loaded in a three-point bending rig with a 10 mm span submerged

in Hanks’ Balanced Salt Solution (HBSS) of pH < 7.4. Force was

applied at 0.01 mm/s to failure by the mechanical tester

(ElectroForce3200, Bose, Eden Prairie, MN, USA) with the

posterior, notched surface of the bone in tension. Crack

propagation was recorded using a high-speed camera (Ultima

512, Photron, San Diego, CA, USA) operated at 60 fps with two

fiber optic lights (DC-950H, Dolan-Jenner, Boxborough, MA,

USA) illuminating the specimen from approximately +45u and –

45u from the camera field axis. The camera started recording in

synchrony with the loading test initiation by the use of an external

trigger. During the experiment ‘‘Force - Displacement’’ and

‘‘Force - Elapsed Time’’ channels were recorded. The ‘‘Force -

Elapsed Time’’ channel was used to synchronize the high-speed

video with the ‘‘Force - Displacement’’ channel using the Force as

the reference point between the two channels. In more detail, as

bending and videography experiments started simultaneously, the

first point of the Force - Displacement curve (F02v0) corresponds

to the first point of the Force - Elapsed Time (t02F0). Thus,

Frame(0) corresponds to F02v0. Consequently, knowing the

recording frame rate (i.e. 60fps) the elapsed time of the random

Frame(X) is X/60 second. Having calculated the time and using

Force as reference point, the exact point on the Force -

Displacement curve that a recorded event happened can be

defined as follows: tX/60 corresponds to the force Fx on the ‘‘Force

- Elapsed Time’’ curve (i.e. FX/60) which in turn corresponds to

vX/60 on the ‘‘Force - Displacement’’ curve. This way Frame(X) is

associated with the corresponding F and v of the event.

2.1.2 Human cortical bone samples. Four human femora

(females; aged 43, 47, 80 and 83) were obtained from the

International Institute for the Advancement of Medicine (IIAM)

and stored at 280uC. A butcher’s bandsaw (BG 200, Medoc,

Logrono, Spain) and a low speed precision saw were used for

cutting the femora into single-edge notched three-point bend

Table1. Sample sizes and geometries used by other researchers.

Authors Sample Thickness (mm) Width (mm) Length* (mm) Year Reference

T. L. Norman CT 3,5,7 and 9 17.5 16.8 1995 [30]

D. Vashishth CT 3 14 16.8 1997 [15]

P. Zioupos 3-point bending 4 4 *16 1998 [1]

J. B. Phelps 3-point bending 2 4 16 2000 [2]

sandwich - CT 2 3.5 21

X Wang 3-point bending 2 4 30 2002 [3]

C.Malik CT 5 20.32 *80 2003 [4]

D. Vashishth CT 14 2004 [5]

R.Nalla CT 1.2–3.3 13–18.3 52–73 2004 [6]

J Yan 3-point bending 4 4 45 and 25 2007 [7]

E. Zimmermann 4-point bending 2.0–3.4 3.1–4.9 *12.4–19.6 2010 [8]

*if not reported is calculated as 4*W.
doi:10.1371/journal.pone.0055641.t001

Fracture Toughness via ‘‘Whitening Front Tracking’’
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SE(B) specimens [10] (n = 10) of 0.8–0.9 mm width and height and

10 mm length oriented in the antiplane longitudinal orientation

[18] (Figure 1). Toughness experiments were conducted in three-

point bending as described above except that a bending rig with a

span of 6.15 mm instead of 10 mm was used due to sample size

limitations. The tests were conducted using fully hydrated samples

in air. To ensure hydration (i) all samples were submerged in

HBSS for four (4) hours before the experiments and only removed

just prior to testing (ii) testing time was kept in all cases to less than

1 minute to prevent sample dehydration.

2.2 Whitening-front Propagation Tracking
2.2.1 Calibration and pre-processing. To reduce the

computational power required, one in every 15 frames were

sampled from the captured video. After loading the frames and

load-time-displacement data, the first video frame was used for

interactive pixel size calibration. This was achieved by selecting

the contact points of the bottom (left and right) supports to the

sample surface. The distance between these points corresponds to

a known distance of 6.15 mm (cf. Figure 1) and this process allows

for calculation of displacement values independent of the camera

to sample distance. Next, a rectangular region of interest (ROI)

surrounding the sample notch was selected for processing. Gamma

correction and windowing was applied for video pre-processing

aiming to standardize the image appearance across the different

frames.

2.2.2 Registration and subtraction. A subtraction method

was used to enhance the whitening effect on the video. This

method works on a frame-by-frame basis. First the initial frame is

registered to the current frame using a normalized cross-

correlation method introduced by Guizar et al. [19]. This is a

rigid registration method which provides sub-pixel image regis-

tration without deforming the sample geometry. Next the

difference image was calculated by subtracting the registered

initial frame from the current frame. The same process was then

repeated for all frames and the propagation of whitening across the

sample can be seen in the resulting subtraction video (Videos S1,

Video S2, Video S3).

2.2.3 Whitening front propagation. The whitening front

for each frame was automatically calculated from the correspond-

ing difference image. The whitening region was identified by

thresholding, while morphological opening with a structural

element of 2 pixels in diameter was used to join neighbouring

whitening regions together by removing small dark islands. The

whitening-front was defined as the maximum of the top-left and

top-right extrema of the whitening region. The front displacement

was calculated as the distance between the whitening-front and the

initial tip of the notch. The whitening-front propagation tracking

algorithm is outlined in Figure 2 and an example dataset showing

the whitening progression is presented in Figure 3.

Figure 1. Miniature SE(B) sample preparation from a human femur.
doi:10.1371/journal.pone.0055641.g001

Figure 2. Outline of the ‘‘Whitening Front Tracking’’ algorithm.
doi:10.1371/journal.pone.0055641.g002

Fracture Toughness via ‘‘Whitening Front Tracking’’
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Figure 3. Time-lapsed snapshots of the fracture toughness experiment on an SE(B) sample also presented in video S2. (left) Force –
Displacement curve; (middle) damage localization on the calculated difference image; (right) Calculated whitening front propagation –top-most
white localiser pixel pointed by the white arrow on damage localization picture– red X represents point of failure.
doi:10.1371/journal.pone.0055641.g003

Fracture Toughness via ‘‘Whitening Front Tracking’’
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2.3 Quantification of Correlation between Whitening
Front- and Crack Propagation

The correlation between whitening- and crack-propagation was

quantified using the whole rat tibiae. The notched midshafts were

loaded in the three point bending configuration until the crack

propagation became unstable and resulted in catastrophic failure.

The whitening-front propagation was evaluated using the

described algorithm. Subsequently, each frame of the video was

played back and the user was asked to manually select the

beginning (i.e. the pre-notch) and the end of the developed crack,

which could more easily be identified in the recorded videos of the

whole rat tibiae (cf. Figure 4 and video S3) compared to the small

bone samples. Using this input the crack extension Dacrack was

calculated for each frame. The measurements were repeated five

(5) times to account for intra-observer variability and the

correlation of the resulting mean propagation values between

whitening front and crack-propagation was tested using Pearson’s

correlation coefficient.

2.4 Calculation of J-integral and Keff
The fracture behaviour of bone should ideally be evaluated

using non-linear fracture mechanics, as extensive plastic deforma-

tion is taking place in front of the crack tip [9,20]. Particularly for

millimetre- and sub-millimetre-sized bone sample, this inelastic

zone is often comparable to the sample size. This phenomenon is

known as large-scale yielding [20]. In such a case, the specimen

fracture toughness is best assessed by means of the J-integral [9].

Nevertheless, in the bone mechanics community it is more

common to express bone fracture toughness in terms of the stress-

intensity factor (Kc) [11], which is the equivalent toughness

parameter for a linear elastic material [9]. Thus, toughness was

also expressed in terms of Keff which can be derived from J-integral

values as described below.

For the human SE(B) specimens fracture toughness was

determined using the J-integral and Keff using nonlinear-elastic

fracture mechanics as described by Ritchie et al. [9] and ASTM

standard E 1820 - 01 [10]. In this case J is given by:

J ~ JelzJpl ~
K2(1{n2)

E
z

2Apl

Bb
, ð1Þ

where Jel and Jpl are the contributions of the elastic and plastic

regions, respectively, K is the stress-intensity factor as defined in E

1820 - 01 [10], v = 0.33 is the Poisson’s ratio, B the specimen’s

thickness, b the un-cracked ligament length and Apl the area under

the force (N) vs plastic load-line displacement (mm) curve. E is the

elastic modulus, which for a notched sample with a notch-legth a0

is found by (cf. paragraph 2.5):

E~
S3:m

4:B:(W{a0)
{22:6:a0{72:7:a0

2, ð2Þ

where, S is the support span in mm, B, W and a0 the depth, width,

and the length of the notch in mm, and m the slope of the linear

part of the load – displacement curve in N/mm as defined in E

1820 - 01 [10]. The equivalent (effective) stress intensity was

calculated from J using [11]:

Figure 4. Crack- and Whitening Front- propagation relationship. (top left) Schematic representation of crack- and whitening front-
propagation for three arbitrary time – displacement points (t1,2,3,v1,2,3). (top right) whitening front- and crack propagation relationship. Intra-observer
variability is visualised on the plot by error bars indicating the standard deviation across the five repetitions. Note that both crack tip and whitening
front are propagating in sync with the whitening front being constantly ,400 mm ahead of the crack tip. (bottom) Gamma corrected frames of a rat
tibia sample showing the crack tip (black arrow) and the whitening front (white arrow) propagation during three points bending for the displacement
points v1, v2 and v3. Double arrowed lines represent the distance of the crack tip and the whitening front from the pre-notch.
doi:10.1371/journal.pone.0055641.g004

Fracture Toughness via ‘‘Whitening Front Tracking’’
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Keff ~
ffiffiffiffiffiffiffiffi
JE,

p
ð3Þ

For the generation of the crack-resistance curve (also referred to as

R-curve) the equation 1 is modified as

Ji~Jel(i)zJpl(i) ð4Þ

where Jel(i) and Jpl(i) the elastic and the plastic component of the

load-displacement curve respectively for the given load-displace-

ment point. As before, for the SE(B) sample geometry [10]:

Jel(i)~
K(i)

� �2
1{n2
� �
E

and

Jpl(i)~ Jpl(i{1)z
2

b(i{1)

� �
Apl(i){Apl(i{1)

B

� �� �
1{

a(i){a(i{1)

b(i{1)

� �ð5Þ

Where Apl is the area under the plastic part of the load-

displacement curve as defined in E 1820 - 01 [10], B the

specimen’s thickness and b0~W{ao the initial un-cracked

ligament length and a(i), the crack length defined as

ai~a0zDa: ð6Þ

where a0 is the original notch-length and Da the ‘‘crack extension’’

measured from the uppermost point of the whitening to the

position for the initial notch.

Figure 5. SRmCT imaging of a partially failed bone specimen. (top left) Three-point bending test videography. Comparison between the start-
and end-frame of a three point bending test of a miniature human bone sample. In the end-frame, note the development of the two distinct
whitening zones one close to the notch and the other close to the osteon. Also note the ‘‘absence’’ of visible crack with the use this optical setup;
(top right) Schematic representation of the SRmCT ROI; (bottom) SRmCT analysis of the same sample. The higher resolution of SRmCT revealed a ‘‘clear’’
crack at the surface of the specimen and areas of extensive micro-cracking and diffuse damage formation in the bulk. These areas coincide spatially
with the whitening areas shown in the end-frame of the videography.
doi:10.1371/journal.pone.0055641.g005

Fracture Toughness via ‘‘Whitening Front Tracking’’
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Consequently the stress intensity for a given crack extension,

Keff(i), was calculated from J(i) as.

Keff (i)~
ffiffiffiffiffiffiffiffiffiffiffi
J(i)E,

p
ð7Þ

2.5 2D FE Modelling
Equation 2 gives the elastic modulus, E, as a function of the

measured flexural modulus, Ef, which is calculated using the

equation (4) [21].

Ef ~
S3:m

4:B:W
ð8Þ

where S is the support span, B and a0 the depth and the length of

the notch respectively, m the slope of the linear part of the load –

displacement curve and W is the in-plane width of the specimen.

For a notched sample with a notch-length a0 the in-plane width

is reduced by a0, i.e. W-a0. At the same time, due to the presence of

the notch, the stress field is also changing in comparison to the un-

notched sample geometry. Thus, a direct application of equation 8

for the calculation of Ef in equation 2 cannot be justified. In order

to address this limitation a two-dimensional finite element (FE)

model of the three-point bending experiment used in this study

was developed and the effect of the different notch lengths, a0, to

the measured flexural modulus, Ef, was studied. Computations

were repeated for four different notch-lengths, a0 = 0, 0.075, 0.15

and 0.3 mm, resulting in four different load (N) – displacement

(mm) curves. The calibration of the elastic modulus, E, used in the

model was carried out based on the experimental data by fitting

the output of the model to the experimental load-displacement

curve of the same geometry. Finally, an empirical relationship

between the measured Ef of the notched sample and the E of the

material was determined.

In more detail: the 2D FE model was developed in Abaqus/

CAE 6.12 (Dassault Systèmes Simulia Corp., Providence, RI,

USA) according to the experiment described in the previous

section. The mechanical response of the bone specimen was

assumed to be linear elastic with a Poisson’s ratio of 0.33 and an

estimated Young’s modulus equal to 12 GPa. An experimental

force -displacement curve for a bone sample with a notch-length,

a0, of 0.3 mm was used to calibrate the FE model. The Young’s

modulus was iteratively changed in the FE model until both

simulated and experimental curves were matched. The FE model

was displacements-driven and modulated by a time-dependent

amplitude curve. All the nodes of the supports were fixed in both

translation and rotation, while nodes of the loading roller were

only allowed to displace vertically. The full FE analysis consisted of

one step (option *STEP in AbaqusH), in which the experimental

loading was applied for 2s. An Abaqus/Standard surface-to-

surface contact algorithm [22] was used to enforce the contact

between the loading roller and bone sample as well as between the

bone sample and the supports. The contact was assumed to be

frictionless, the whole mechanical system had a total of 954

elements and all instances in the FE model were meshed with fully

integrated 4-node bilinear plane stress quadrilateral (CPS4)

Figure 6. 2D FE Modelling. (left) strain distribution on a three-point bending notched beams with notch-lengths of a0 = 0, 0.075, 0.15 and 0.3 mm;
(top-left) variation of the specimen’s stiffness, i.e. slope of load – displacement curve, for different notch-lengths; (bottom-left) relationship between
the measured modulus, Eao = n, of a notched sample value and the notch-length.
doi:10.1371/journal.pone.0055641.g006

Fracture Toughness via ‘‘Whitening Front Tracking’’
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elements. Both loading roller and the region of the bone specimen

in contact with it were meshed using approximate element size of

0.1 mm. All the remaining parts were meshed with approximate

element size of 0.2 mm.

2.6 Synchrotron Radiation Micro-Computed Tomography
(SRmCT)

Synchrotron radiation micro-computed tomography (SRmCT)

was carried out at the Diamond Light Source Ltd facility (Didcot,

Oxfordshire, UK) using the imaging station of beam-line I13. This

branch operates at photon energies of approximately 20 keV

resulting in a flux of about 1014 Ph/s/0.1% BW [23]. The beam

Figure 7. Evolution of damage zone (whitening) during the three-points bending test of an SE(B) specimens. (top) Gamma-corrected
and false-coloured frames of a human cortical bone sample showing the sample at the beginning of the test (first frame), at the appearance (second
frame) and the propagation (third frame) of the whitening front during three point bending at different time – displacement points. Sample width
(W) is 930 mm and the pre-notch (a0) is 450 mm. t0,v0 correspond to point where load and displacement equals 0, t1… t2…. (bottom) Schematic
representation of the damage zone formed when bridging and microcracking initiate in front of the crack tip as a result of local stress and strain
concentration. The ‘‘whitening effect’’ is deemed to be the result of increased light reflection on the surfaces of the newly formed micro-cracks within
this damage zone.
doi:10.1371/journal.pone.0055641.g007

Fracture Toughness via ‘‘Whitening Front Tracking’’
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size can be adapted in the horizontal direction by a focussing

mirror placed about 30 m from the source. At about 210 m from

the source, the tomography setup is located providing partial

coherent light over a large field of view. The detector consists of a

scintillation screen, transforming X-rays into visible light. The

visible light image is recorded through visible light microscope

optics on a CCD detector. Objective lenses of the visible light

microscope, the material and thickness of the scintillator screen,

and the binning of the CCD detector can be adapted to the

experimental conditions such as the field of view (sample size),

resolution and exposure times. In our case, the distance between

the sample and the detector was 78 mm. The detector system

magnified the image by a factor of approximately 20 and the CCD

chip was binned 262. Under these conditions, the effective pixel

Figure 8. Initiation of the whitening effect at the initial notch. (top left) Load – displacement curve of a human sample under three point
bending. The green line corresponds to the point when the whitening effect is first detected. Top right and bottom right images show the raw and
the difference image of this point. Initiation of the whitening effect is localized at the difference image. Note that the whitening effect appears on the
surface of the sample when the Load-displacement curve diverges from linearity (red line) and enters the plastic deformation area.
doi:10.1371/journal.pone.0055641.g008

Figure 9. Representative ‘‘crack’’ resistance curves of three human bone samples expressed in terms of J and Keff.

doi:10.1371/journal.pone.0055641.g009

Fracture Toughness via ‘‘Whitening Front Tracking’’
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size is 0.74 m2, providing a spatial resolution of about 2 microns

and a field of view (FOV) of 2 mm. Tomographic scans were

recorded using a photon energy of 16 KeV and an exposure time

of 5 sec. For each tomographic scan 900 projections were taken

over an angular interval of 180 degrees. Reconstruction of

generated sinograms was performed at the Diamond Light Source

Ltd facility using an in-house algorithm. Reconstructed data-sets

were segmented using a global threshold and ring artifacts were

removed manually. Data-sets were visualized using VGStudio

Max (Volume Graphics Inc., Heidelberg, Germany).

Results

3.1 Whitening Front- and Crack Propagation Association
Figure 4 presents the detected whitening front and crack

propagation for a rat tibia sample. As expected [24,25], the

whitened area corresponding to the damage zone, runs ahead of

the crack tip during the whole experiment and is developing with

the same rate as the growing crack (Figure 4 and video S3). The

distance between the crack- and the whitening front varied from

300–400 mm from sample to sample, but this distance was

constant for each sample throughout the whole experiment.

Pearson’s coefficient used for testing the association between the

whitening front propagation and the crack-propagation was

r = 0.97; p,0.001 indicating that the two phenomena are

positively linearly correlated.

3.2 SRmCT Characterisation of the Whitening
In order to gain better understanding of the origin of the

whitening effect, SRmCT imaging of partially cracked specimens

was carried out in Diamond Light Source synchrotron facility.

The results are presented in Figure 5 and Video S4. In this

experiment the crack propagated from the initial notch site

upwards and was arrested from the osteon seen in the top-left of

the frame (cf. video S4). Comparing the start-frame with the end-

frame of the videography (Figure 5; top left) two distinct whitening

zones can be seen in the surface of the end-frame; one close to the

notch and the other close to the osteon. The ‘‘diameters’’ of these

whitening areas were 182 mm and 185 mm respectively.

SRmCT analysis showed that extensive diffuse damage forma-

tion had been formed in two sites within the bulk of the specimen,

while a ‘‘clear’’ crack had been developed on the sample’s surface

(cf. Figure 5; bottom-left). These areas were comprised of multiple

micro-cracks and uncracked ligaments developing at various

depths from the sample’s surface. Importantly, the diffused

damage formation sites coincided with the sites of the whitening

formation on the surface of the sample (Figure 5; bottom and

Video S4).

3.2 Assessment of the Elastic Modulus, E, through Three
Point Bending of a Notched Specimen

The 2D FE modelling showed that assessment of the modulus,

E, through the calculation of the flexural modulus, Ef, of a notched

specimen using equation 8 results in an overestimation; the stress

field developed during the three-point bending of a notched beam

significantly differs to the one of an un-notched beam. Equation 8

assumes linear and equal tensile and compressive stress - strain

relationship with the neutral plane (plane of zero bending stress) at

the middle of the sample [21]. These requirements are not met in

the notched beam setup and thus the equation 8 cannot be directly

applied.

The modelling results of the strain distribution of the notched

beams with notch-lengths of a0 = 0, 0.075, 0.15 and 0.3 mm,

subjected to three-point bending is presented in Figure 6; right.

Note the reduction of the nominal stiffness, m, of the material with

the increment of the notch-length (Figure 6; top-left). After model

calibration, the relationship between the measured modulus value

for a sample with a notch-length of n mm, Eao = n, and the notch-

length is presented in Figure 6; bottom-left. Their relationship is

described by a second order polynomial which when solved for

Eao = 0 results in the empirical equation 2. This gives the elastic

modulus, E, of the material, i.e. the modulus which would have

been measured using an un-notched specimen, as a function of the

initial notch-length, a0, and the measured modulus Eao = n.

3.2 Determination of the Crack Extension Resistance
Curve

Crack-extension resistance curves were generated using mini-

ature SE(B) specimens of human cortical bone. Analyzing the data

collected from these samples, we noticed that, in all cases, failure

(i.e. the point of maximum load) was achieved when the

whitening-front reached the top surface of the sample, even when

the visible crack was just at the beginning of the notch and far

from the top surface (Video S1 and Video S2). Figure 7 shows the

evolution of the damage zone during the three-points bending for

a human cortical bone sample along with a schematic represen-

tation of the whitening area. Note that the ‘‘whitening’’ starts

around the pre-notch and expands upwards, while no visible crack

(in images recorded with the specified camera and lens setup) has

yet been formed. Importantly, the moment which the whitening-

front reaches the top surface, coincides with the moment that the

load-displacement curve diverges from linearity and enters the

plastic deformation area (Video S1, Video S2 and Figure 8 ).

Finally, no instability fracture was observed on any of the samples

even when the specimen was no longer able to support any load.

Determination of ‘‘crack-’’ or more accurately damage-exten-

sion resistance curves were achieved for the above specimens by

using the whitening-front propagation values generated by our

algorithm. The calculated resistance curves expressed in terms of J

and Keff are presented in Figure 9.

Discussion

It is well accepted that bone, as a hierarchically structured

material [26], employs a range of toughening mechanisms at

different length scales [18]. Hence, the nature of failure at the

different length scales should be also governed by the presence or

the absence of some of these toughening mechanisms. In the

macro-scale, cortical bone toughness is highly affected by crack

Figure 10. Schematic representation of the three possible cracking orientation of bone. In the ‘‘breaking’’ configuration, the notch is
oriented perpendicularly to the long axis of the osteons, breaking through them during the propagation. This is the most energy consuming mode
resulting in a steeply rising fracture resistance curves as shown by Koester et al. [11]. In the ‘‘splitting’’ configuration, the notch is oriented parallel to
the long axis of the osteons, splitting them apart during propagation. In this mode the crack is mainly thought to be following the osteonal cement
lines and very small amount of crack deflection is taking place. This results in significantly lower ‘‘crack’’ resistance behaviour in comparison to the
‘‘breaking’’ mode [11]. Finally in the ‘‘separating’’ configuration the notch is oriented perpendicularly to the osteons long axis, as in the ‘‘breaking’’
mode but this time, because of the anti-plane orientation, the crack is thought to be mainly propagating around the osteons following the cement
lines instead of breaking thorough them. This results in resistance behaviour between the two ‘‘extreme’’ modes closer to the ‘‘splitting’’ one.
doi:10.1371/journal.pone.0055641.g010

Fracture Toughness via ‘‘Whitening Front Tracking’’

PLOS ONE | www.plosone.org 11 February 2013 | Volume 8 | Issue 2 | e55641



deflections and twists due to the different structural features of the

bone tissue (namely bone lamellae, osteons, cement lines and

osteocytes lacunae) [11] while at the smaller scales, bridging and

micro-cracking are of higher importance [14,27].

The latter are deemed to relate to the whitening effect during

bone failure which has previously been reported [16,24], but to the

best of our knowledge it has not been used for studying bone

toughness behaviour.

Our results show a positive correlation between the whitening

front- and the crack-tip propagation and SRmCT imaging

provides strong evidence that the developed ‘‘whitening’’ is indeed

associated with extensive micro-cracking and diffuse damage

formation in the bulk of the material. At this point it is important

to note, that the SRmCT analysis took place within an unloaded

sample. It is quite possible that in this state only the permanently

formed micro-damage is present in the sample, as the formation of

strain-induced whitening is a partially reversible phenomenon;

something that has also been reported by other researchers [25].

We propose that the strain-induced whitening can be perceived

as a projection onto the surface of the specimen of the damage

formed within the bulk. By tracking the whitening front, one can

indirectly track the ‘‘true’’ damage propagation whether it occurs

on the surface of the specimen or in the bulk. This information can

then be used to assess the toughness of the material.

In this study, the whitening effect was exploited for the

determination of ‘‘crack’’ extension resistance curves in sub-

millimetre samples. For this purpose miniature SE(B) cortical bone

samples were prepared and their toughness behaviour was assessed

by tracking the whitening front propagation. Interestingly, in all

SE(B) samples failure occurred due to the propagation of the

whitening zone. This can be explained as follows: as our specimens

height, W, never exceeded 900 mm and the pre-notch, a0, was

always around 300–350 mm the available un-cracked ligament (W-

a0) left for testing was , 400–500 mm. From the experiments

studying the correlation between the whitening effect and the

crack propagation in rat bone samples, we find that the whitening-

front is always about 300–400 mm ahead of the crack-tip. In fact,

the total length of the damage zone in human cortical bone can be

as much as 5 mm [20]. Thus, the moment when the whitening-

front approaches the specimen’s top surface the crack has just

started forming on the edge of the notch. This was consistent in all

specimens and brings back the question of crack-tip definition in

bone samples. Today the common view is that the intrinsic

toughening mechanisms, such as micro-cracking, are acting ‘‘in

front’’ of the crack-tip obstructing crack development by

dissipating energy and reducing local strain concentration

[14,28]. Our observation confirms this in the basis that the

damage propagation prevented the crack formation. However, for

the given sample size, this propagation resulted in the failure of the

sample. The latter is not surprising since diffuse damage growth

has been shown to correlate with fatigue [24]. In fact, our SRmCT

imaging experiments showed that the ‘‘whitening’’ corresponds to

extensive microcracking and damage formation in the bulk of the

material and as such could also be considered as part of the front-

most part of the crack. Consequently, in terms of failure resistance,

when an apparent crack is not present (or visible) on the sample

surface the whitening front propagation can be used as the ‘‘crack-

tip’’.

By using the ‘‘Whitening Front Tracking’’ method we have

reproduced fracture toughness curves similar to the ones reported

in literature [1,5,9,11,29]. Koester et al. for example, using in situ

environmental scanning electron microscopy managed to deter-

mine the fracture toughness resistance curves for the transverse

and the longitudinal orientation of the human bone [11]. They

reported significant difference between ‘‘breaking’’ (i.e. propaga-

tion of the crack perpendicularly to the osteons) and ‘‘splitting’’

(i.e. propagation of the crack parallel to the osteons) with

‘‘breaking’’ being tougher. Keff curves for the two modes, for crack

extension up to 950 mm, raised from 0–25 MPa.m0.5 and 0–

2.5 MPa.m0.5 respectively. In this study we used samples oriented

in the antiplane longitudinal orientation which is the third possible

crack propagation orientation in respect to osteon’s long axis

(Figure 10). This cracking mode (we call it ‘‘separation’’) is similar

to the ‘‘splitting’’ mode but because of the higher amount of

deflections (see Figure 10) toughness is expected to be higher than

‘‘splitting’’ but much lower than ‘‘breaking’’. The Keff curve

determined by our method for the same crack extension length

exhibited rising behaviour with values ranging from 0–6 MPam0.5

(Figure 9) capturing this difference between the ‘‘splitting’’ and

‘‘separating’’ modes.

Most importantly, our method overcomes the singe-value Kc

approach [9] used for small samples and allows for the generation

of ‘‘crack’’ extension resistance curves in a simple and fast manner.

Finally, the ‘‘Whitening Front Tracking’’ method could also find

applications on other materials exhibiting the stress-whitening

effect during fracture like polymers, composites and resins.

Conclusions
In this study, we presented a computer-aided method for

generating crack extension resistance curves in miniature bone

samples by means of videography. We show that the whitening

effect, which is caused by the intrinsic mechanisms acting in front

of the crack-tip in the so-called damage or process zone, can be

used to consistently and accurately generate ‘‘crack’’ extension

resistance curves in small bone samples in a simple and fast

manner.

Supporting Information

Video S1 The ‘‘whitening-front tracking method’’;
example 1. Videographic analysis of a three point bending

experiment of a miniature SE(B) cortical bone specimen. The

‘‘whitening’’ is localised through the difference image calculated

between the current and the first frame of the video, in which no

whitening has yet been developed. The whitening-front is then

defined as the maximum of the top-left and top-right extrema of

the whitening region and the ‘‘front’’ propagation is calculated as

the distance between the whitening-front and the initial tip of the

notch. Note that the ‘‘whitening’’ starts around the pre-notch and

expands upwards, while no visible crack (in images recorded with

the specified camera and lens setup) has been yet formed.

Importantly, the moment that the whitening-front reaches the top

surface, coincides with the moment that the load-displacement

curve diverges from linearity and enters the plastic deformation

area.

(WMV)

Video S2 The ‘‘whitening-front tracking method’’;
example 2. Videographic analysis of a three point bending

experiment of a miniature SE(B) cortical bone specimen. The

‘‘whitening’’ is localised through the difference image calculated

between the current and the first frame of the video, in which no

whitening has been developed yet. The whitening-front is then

defined as the maximum of the top-left and top-right extrema of

the whitening region and the ‘‘front’’ propagation is calculated as

the distance between the whitening-front and the initial tip of the

notch. Note that the ‘‘whitening’’ starts around the pre-notch and

expands upwards, while no visible crack (in images recorded with

the specified camera and lens setup) has been yet formed.
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Importantly, the moment that the whitening-front reaches the top

surface, coincides with the moment that the load-displacement

curve diverges from linearity and enters the plastic deformation

area.

(WMV)

Video S3 Whitening front- and crack propagation
association. Videography of a three point bending experiment

of a pre-notched whole rat tibia showing the synchronous

whitening- and crack propagation.

(WMV)

Video S4 SRmCT characterisation of the whitening.
During the three-point bending experiment the crack propagated

from the initial notch site upwards and got arrested by the osteon

seen in the top-left of the frame. During this process, in front of the

crack-tip and close to the pre-notch site two distinct whitening

zones were developed which as showed by the SRmCT analysis

both corresponded to extensive microcracking and diffuse damage

formation in the bulk of the material.

(WMV)
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