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1e motion intent recognition via lower limb prosthesis can be regarded as a kind of short-term action recognition, where the
major issue is to explore the gait instantaneous conversion (known as transitional pattern) between each two adjacent different
steady states of gait mode. Traditional intent recognition methods usually employ a set of statistical features to classify the
transitional patterns. However, the statistical features of the short-term signals via the instantaneous conversion are empirically
unstable, which may degrade the classification accuracy. Bearing this in mind, we introduce the one-dimensional dual-tree
complex wavelet transform (1D-DTCWT) to address the motion intent recognition via lower limb prosthesis. On the one hand,
the local analysis ability of the wavelet transform can amplify the instantaneous variation characteristics of gait information,
making the extracted features of instantaneous pattern between two adjacent different steady states more stable. On the other
hand, the translation invariance and direction selectivity of 1D-DTCWTcan help to explore the continuous features of patterns,
which better reflects the inherent continuity of human lower limb movements. In the experiments, we have recruited ten able-
bodied subjects and one amputee subject and collected data by performing five steady states and eight transitional states. 1e
experimental results show that the recognition accuracy of the able-bodied subjects has reached 98.91%, 98.92%, and 97.27% for
the steady states, transitional states, and total motion states, respectively. Furthermore, the accuracy of the amputee has reached
100%, 91.16%, and 90.27% for the steady states, transitional states, and total motion states, respectively. 1e above evidence finally
indicates that the proposed method can better explore the gait instantaneous conversion (better expressed as motion intent)
between each two adjacent different steady states compared with the state-of-the-art.

1. Introduction

1e 2011World Disability Report points out that there are at
least 30 million amputees in developing countries [1–4]. 1e
prosthesis can allow amputees to maintain the limb balance
and compensate for the body appearance. It also improves
the amputees’ integration into society and restores their
ability to works [5]. 1erefore, the prosthesis designers at-
tempt to use engineering methods to design a variety of
prostheses that meet the needs of amputees.

1e motion intent recognition via the lower limb
prosthesis requires identifying the gait instantaneous con-
version (known as transitional pattern) between each two
adjacent different steady states of gait mode. Current re-
search studies on this issuemainly rely on the human surface
electromyographic signals (sEMGs) [6] or mechanical sig-
nals [7].1e sEMGs [8], which are collected by the biological
electrode attached to the skin surface, can reflect the muscle
contraction and relaxation. Due to the characteristics, the
motion intent recognition based on sEMGs has been widely
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studied during these years. For example, Huang et al. [9]
proposed a sEMGs-based human motion recognition
method, which successfully recognized 7 daily motion states.
By calculating a set of statistical features (average value and
standard deviation) and using the linear discriminate
analysis (LDA), it is reported that the average recognition
accuracy has reached 92.6% [9]. Note that, although the
sEMGs can better reflect the strength of muscle contraction,
they are easily affected by the nerve atrophy and electrode
position [10].

1e signals collected bymechanical sensors can avoid the
above drawbacks of sEMGs, so they are widely used for the
motion intent recognition in recent years. 1e mechanical
signals [11–13], which are collected by the accelerometers,
gyroscopes, pressure sensors, or other devices, can reflect the
kinematics and power information (e.g., acceleration, an-
gular velocity, joint angle, and ground contact force). In the
study of motion intent recognition based on mechanical
signals, Liu et al. [14] defined 15 motion states based on 5
steady states with three different speed levels. In this method,
by using the data fusion theory, the intraclass correlation
coefficient (ICC) of the data is calculated. 1en, the motion
states are recognized by the hidden Markov model (HMM),
which results in an accuracy of 95.8%.

In this paper, we propose an improved motion intent
recognition method based on the mechanical signals via
intelligent lower limb prosthesis. 1e main contributions of
this paper are listed as follows:

(1) We introduce the one-dimensional dual-tree com-
plex wavelet transform (1D-DTCWT) to study the
transitional pattern between two adjacent different
steady states so as to identify the motion intent of the
lower limb amputees. 1e wavelet transform has the
ability of the time-frequency local analysis, which
can amplify the instantaneous variation character-
istics of gait information, making the extracted
features of instantaneous pattern more stable.

(2) Because of the continuity of human lower limb
movement, it is meaningful to explore the continuity
features of the discrete signal before classifying the
amputee’s motion intent. Fortunately, the transla-
tion invariance and direction selectivity of 1D-
DTCWTcan help to explore the continuous features
of patterns. 1e extracted features thereby can better
reflect the inherent continuity of human lower limb
movements, which further improves the recognition
accuracy.

(3) 1e method in this paper has been compared with
some proposals in the related literature, and most
existing intent recognition methods usually adopt a
set of statistical features to classify the motion pat-
terns. We have used 1D-DTCWT to select the in-
herent continuity features of motion for intent
recognition and achieving good recognition
performance.

2. Related Works

2.1. Mechanical Signal-Based Motion Intent Recognition.
1ere are a variety of mechanical signals-based methods for
the motion intent recognition of the unilateral lower limb
amputee. Traditional intention recognition methods typi-
cally follow such a framework. 1ey firstly collect the sensor
data from the affected side and then extract a set of statistical
features from the processed data for the pattern recognition.
For example, Zheng et al. [15] combined the pressure sensor
and inertial measurement unit to collect the affected side
data, extracted the mean, maximum, and standard deviation
as features, and used SVM classifier to recognize the six
steady-state patterns, with a recognition rate of 92.7%.
However, this method does not involve the identification of
transitional states. Young et al. [16] collected the data by
using an inertial measurement unit and a pressure sensor
from eight amputees’ affected sides. By selecting statistical
features (mean and variance values) and using a deep belief
network (DBN) classifier, the recognition accuracy of 13
motion states has reached about 90%. Note that, the above
method uses the collect data from the affected side, which
will result in the lag of motion intent.

With the rapid development of wearable technology,
wearable devices [17, 18] are becoming smaller and more
convenient to carry, which is conducive to placing sensors
on the healthy side to collect data. Su et al. considered that
mapping the healthy sidemotion data collected by the sensor
to the prosthesis control system makes the prosthesis to
predict the motion changes in advance, so that the move-
ment of the amputee can be more stable and smoother by
improving the corresponding control strategy. 1erefore, Su
et al. proposed methods to place the sensors on the healthy
side for recognizing the motion intent of the unilateral lower
limb amputee [19–21].

Su et al. [19] redefined the motion pattern of intelligent
lower limb prosthesis, proposed to place the sensor on the
healthy side to collect data, and used statistical features
(mean, variance, maximum, and minimum) and SVM
[22–26] classifier to perform feature extraction and classi-
fication. 1e recognition accuracy of 13 motion states rea-
ches 95.12% (ten able-bodied subjects). Subsequently, Su
et al. [20] used the Gaussian mixture model-hidden Markov
model (GMM-HMM) to recognize the motion intent based
on the angular velocity and acceleration signals obtained by
the inertial sensor. 1e recognition accuracy of 13 motion
states reaches 96.92% (ten able-bodied subjects). To avoid
artificial selection of features, Su et al. [21] used a con-
volutional neural network (CNN) to self-select features for
recognizing the motion intent of lower limb amputee. 1e
recognition accuracy of 13 motion states reached
94.15% ± 3.04% (ten able-bodied subjects) and
89.23% ± 4.21% (one amputee subject). 1e above methods
do not consider the continuity of human lower limb
movement; it is important to study the continuity features of
the discrete signal before classifying the motion intent.
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2.2. Motivation. Most intent recognition methods usually
employ a set of statistical features to classify the transitional
patterns. However, the statistical features of the short-term
signals via the instantaneous conversion are empirically
unstable, which may degrade the classification accuracy. 1e
reduction of recognition accuracy may increase the prob-
ability of amputee wrestling. 1erefore, it is necessary to
select stable motion features to improve the recognition
accuracy of motion intention.

1e key problem of lower limb prosthesis movement
intent recognition is to study the gait instantaneous con-
version (known as transitional pattern) between each two
adjacent different steady states of gait mode. Wavelet
transform can analyze the localization of time (space) fre-
quency and gradually refine the signal through expansion
and translation operation, so as to finally achieve time
subdivision at high frequency and frequency subdivision at
low frequency. It can automatically adapt to the require-
ments of time-frequency signal analysis, so as to focus on any
detail of the motion signal. 1e local analysis ability of the
wavelet transform can study the instantaneous variation
characteristics of gait information, making the extracted
features of instantaneous pattern between two adjacent
different steady states more stable.

Considering the continuity of human lower limb mo-
tion, it is necessary to functionalize discrete motion data to
obtain the continuous features of human motion. Firstly,
1D-DTCWT can provide details in six different directions,
which is conducive to the study of transitional modes.
Secondly, the half sampling delay between filters in 1D-
DTCWT can make it approximately translation invariant
and effectively suppress the aliasing of motion data, so as to
explore the continuity characteristics of motion. 1erefore,
the translation invariance and direction selectivity of 1D-
DTCWT can help to explore the continuous features of
patterns, which better reflects the inherent continuity of
human lower limb movements and further improves the
recognition accuracy. Based on the above considerations, we
introduce the 1D-DTCWT to solve the motion intent rec-
ognition via lower limb prosthesis.

3. Materials and Methods

In this section, we introduce the principles of 1D-DTCWTin
detail, relevant definitions about the motions, the proposed
motion intent recognition methods, data source and pro-
cessing, and experimental classification strategy.

3.1. 1D-DTCWTMethod. In 1998, Kingsbury [27] proposed
DTCWT to perform complex wavelet transforms using real
wavelet transforms to solve the problem that complex
wavelet transform cannot be completely reconstructed. It
not only offers the benefits of traditional wavelet transforms
but also maintains support for multiple resolutions and
time-frequency localized analysis [28–30].

1e basic principle of 1D-DTCWT is derived from the
Fourier transform. 1e wavelet function of 1D-DTCWT is
shown in equations (1) and (2). 1e two real wavelet
functions are used as real and imaginary parts of a plural
form expression. 1e real and imaginary parts are ap-
proximate Hilbert transforms of each other.

Ψ(t) � Ψh(t) + jΨg(t), (1)

Ψg(t) ≈ H Ψh(t)􏼈 􏼉. (2)

In equation (2), H ·{ } is the Hilbert transform operator.
1D-DTCWTuses two parallel discrete wavelet trees, tree

a and tree b (see Figure 1), independently to generate
transformed real and imaginary parts. 1ere is a delay be-
tween the trees, so the data obtained by real and imaginary
transforms complement each other. Because tree a and tree b

are transformed in parallel, the calculation processes for the
trees are also independent of each other during decompo-
sition and reconstruction. Tree a wavelet and scale coeffi-
cients are as shown in the following equations:

d
Re
j (n) � 2j/2

􏽚
+∞

−∞
(t)Ψh 2j

t − n􏼐 􏼑dt, (j � 1, 2, . . . , J),

(3)

a
Re
J (n) � 2J/2

􏽚
+∞

−∞
x(t)Ψh 2J

t − n􏼐 􏼑dt, (4)

where J is the total number of decomposition layers. Sim-
ilarly, the wavelet and scale coefficients for tree b are shown
in the following equations:

d
Im
j (n) � 2j/2

􏽚
+∞

−∞
x(t)Ψg 2j

t − n􏼐 􏼑dt, (j � 1, 2, . . . , J), (5)
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Im
J (n) � 2J/2

􏽚
+∞

−∞
x(t)Ψg 2J

t − n􏼐 􏼑dt. (6)

Finally, the reconstruction expressions of 1D-DTCWT
are shown in the following equations:

dj(t) � 2(j− 1)/2
􏽘

∞

n�−∞
d

Re
j (n)Ψh 2j

t − n􏼐 􏼑 + i 􏽘
∞

n�−∞
d

Im
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t − n􏼐 􏼑⎡⎣ ⎤⎦, (7)

aJ(t) � 2(J− 1)/2
􏽘
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Im
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􏽥x(t) � 􏽘

J

j�1
dj(t) + aJ(t). (9)

Equation (9) can be expressed as the plural form as
follows:

􏽥x(t) � 􏽥x
Re

(t) + i􏽥x
Im

(t). (10)

1e signal amplitude envelope of 1D-DTCWT is

􏽢x(t) �

��������������

􏽥x
Re

(t)
2

+ 􏽥x
Im

(t)
2

􏽱

. (11)

In short, 1D-DTCWT consists of a cluster of wavelet
basis functions which can analyze signals in any time or
space domain. We adopt the 1D-DTCWT method to fit
collected discrete motion data into a continuous curve and
apply its local analysis capabilities to enlarge the instanta-
neous variation characteristics of gait information. 1D-
DTCWT uses two-way complex wavelet transform with a
binary tree structure to support translation invariance and
direction selection, so it captures the continuous features
hidden in the data that better reflect the continuity of human
lower limb movement.

3.2. Human Lower Limb Motion States. Human lower limb
motion has continuity and periodicity. According to the
different roles played by the lower limb, the gait cycle is
divided into the stance phase and the swing phase.

(i) Gait cycle: the gait cycle in horizontal ground
conditions begins with the initial contact of the heel
of one foot landing on the ground and ends when
the same heel next lands on the ground

(ii) Swing phase: within a gait cycle, the swing phase is
the time required to move the nonweight-bearing
foot forward, from the time the toe leaves the
ground until the same heel lands again

(iii) Stance phase: within a gait cycle, the stance phase is
the time when the foot from the swing phase bears

weight, reckoned from the time the heel lands on the
ground until the toe lifts again

(iv) Steady state: steady state describes motion taking
place over constant terrain conditions

(v) Transitional state: it is the transitional state from an
initial motion mode to another motion mode under
different terrain conditions

(vi) Transitional step: it starts from the toe off time of
one foot in the previous terrain and ends at the heel
landing of the same side foot in the latter terrain

From the perspective of pattern recognition, in order to
facilitate the performance analysis of the test algorithm, our
work requires distinguishing three types of motion.

1e first type comprises the 5 steady states: level walking
(LW), stair ascent (SA), stair descent (SD), ramp ascent
(RA), and ramp descent (RD), as shown in Table 1.

1e second type comprises the 8 transitional states: level
walking to stair ascent (LW-SA), level walking to stair de-
scent (LW-SD), level walking to ramp ascent (LW-RA), level
walking to ramp descent (LW-RD), stair ascent to level
walking (SA-LW), stair descent to level walking (SD-LW),
ramp ascent to level walking (RA-LW), and ramp descent to
level walking (RD-LW), as shown in Table 2.

1e third type comprises the 13 total motion states
combining the steady and transitional states. 1e 5 steady
states are the most basic human lower limb motion states in
daily life. 1e 8 transitional states reflect changes in terrain
encountered in daily life.

3.3. Motion Intent Recognition Methods. 1rough experi-
mental test and comparison, we use the moving average
filter with the window width of 5 frames (sampling fre-
quency of 96 Hz) to process the motion data (as shown in
Figure 2).
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Figure 1: 1D-DTCWTdecomposition and reconstruction, where h0(n), h1(n), g0(n), g1(n), 􏽥h0(n), 􏽥h1(n), 􏽥g0(n), and 􏽥g1(n) denote filters,
↓2 indicates interleaved sampling, and ↑2 indicates interpolation: (a) decomposition process; (b) reconstruction process.
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Firstly, we through 1D-DTCWT to fitting processed
discrete motion data into continuous curve (shown in
Figures 3 and 4). Observing the blue fitting curve in Figure 3,
it can be seen that the fitting curves of different motion states
have different shapes, so using 1D-DTCWT can be divided
into different motion states. 1e 1D-DTCWT has local
analysis capabilities that can amplify the local information of
motion so that it can better study the instantaneous variation
characteristics of gait information.

Secondly, the analysis of the reconstruction of different
layers of 1D-DTCWT revealed that the five-layer recon-
struction makes the curve fitting difference of motion modes
most obvious shown in Figures 5 and 6, where the ordinate

represents acceleration and the abscissa represents the time
interval. 1erefore, we selected these ith-layeri � 5 in this
paper) of low-frequency coefficients as the continuous
features of human lower limb motion that best retains the
continuous information of the motion.

At last, SVM is selected to classify and recognize 72
(3×6× 4, where 3 represents three sensors, 6 is composed of
triaxial acceleration and triaxial angular velocity, and 4
represents the number of five-layer low-frequency coeffi-
cients of 1D-DTCWT) dimensional feature vector. 1e
proposed overall motion intent recognition process is shown
in Figure 7. 1e general framework of the proposed motion
intent recognition method is shown in Algorithm 1.
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Figure 2: Acceleration signals of LW-SA (sensor data at the thigh): (a) original signal; (b) filtered signal.

Table 1: Steady states.

Number Abbreviation Details
1 LW Level walking
2 SA Stair ascent
3 SD Stair descent
4 RA Ramp ascent
5 RD Ramp descent

Table 2: Transitional states.

Number Abbreviation Details
1 LW-SA Level walking to stair ascent
2 LW-SD Level walking to stair descent
3 LW-RA Level walking to ramp ascent
4 LW-RD Level walking to ramp descent
5 SA-LW Stair ascent to level walking
6 SD-LW Stair descent to level walking
7 RA-LW Ramp ascent to level walking
8 RD-LW Ramp descent to level walking

Computational Intelligence and Neuroscience 5



3.4. Data Source and Processing. 1is article uses the data set
of literature [21]. 1e experiments recruited ten able-bodied
subjects and one transfemoral subject. 1e ten able-bodied
subjects (five males and five females), varied in age (18–30),
height (1.58–1.83m), and weight (40–86 kg). 1e trans-
femoral subject was 67 years old and had been wearing his
Teh Lin-model prosthesis for 12 years. 1e experimental
environment includes a staircase with a step height of 16 cm
and a ramp with a slope of 10°. All experimental data were
collected under physician’s guidance. 1e experimenters are
responsible for collecting and recording the time series data
generated by the sensor. In the actual test, lower limb
amputees will automatically adjust the step sequence when
performing transitional states. 1e step sequence of ex-
perimental data collection is shown in literature [21].

1ree inertial sensors from Noitom Perception Legacy are
placed on the thigh, shank, and foot of subject healthy. Each
inertial sensor consists of a three-axis accelerometer and a three-
axis gyroscope, and the sampling frequency is 96Hz. For the five
steady states, we determined the starting point of the toes
leaving the ground according to the ground contact state se-
quence obtained by the inertial sensor and then extracted the
data corresponding to the transitional state. For the eight
transitional states, the ground contact state obtained by the
inertial sensor was used to find the starting point of the
transitional step, and the window data were extracted from the

starting point of the transitional step. 1e extracted window
length data come from the swing phase. 1D-DTCWTuses two-
way complex wavelet transform with a binary tree structure.
1erefore, the frames of the window length are even number.
After experimental test and comparison, the optimal number of
frames is set to 46 frames in this paper.

3.5. Classification Types. In order to verify the robustness
and effectiveness of the algorithm, this paper adopts user-
independence and user-dependence strategies (Table 3).
K-fold cross validation is used to evaluate the prediction
performance of the model; 10-fold cross validation is a
commonly-used method in action recognition field [31]. We
conducted user-dependent classification tests on the ten
able-bodied subjects and one amputee subject. For the ten
able-bodied subjects, we used 10-fold cross validation to
evaluate the performance of the algorithm. Specifically, the
data sets were divided into 10 equal-sized subsets. 1e ex-
periment used the union of nine subsets as the training set
and the remaining subset as the test set. For the amputee
subject, 90% of the samples were randomly selected as
training data, and the remainder were selected as test data.
To test the independence of the algorithm, we performed a
user-independent classification test on the ten able-bodied
subjects. In the user-independence test, we randomly
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Figure 3: Acceleration signal fitting in steady states (sensor data at the thigh), where the ordinate represents acceleration (g) and the abscissa
represents number of frames: (a) LW; (b) SA; (c) SD; (d) RA; (e) RD.
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selected samples from nine able-bodied subjects as the
training set and the remaining subject’s data as the test set.

4. Experiments and Results

4.1. Experimental Results

4.1.1. User-Dependent Classification. Figure 8 shows the
confusion matrix of steady states for user-dependent classifi-
cation. 1e confusion matrix describes the classification accu-
racy of each motion state, with the correctly classified test

samples located on the diagonal. For the able-bodied subjects,
the testing accuracy reached 98.91% ± 0.19% in steady states.
Figure 8(a) shows that stair descent (SD) had a slightly lower
recognition than the other four steady states. Steady states such
as stair descent (SD) were sometimes unrecognized as ramp
descent (RD) due to the high degree of similarity between the
movements in steady states. For the amputee subject, the testing
accuracy reached 100% ± 0.00%. 1e result may be related to
the length of time the amputee subject wears the prosthesis. 1e
steady states are such commonmovements in daily life, and it is
very important for amputees tomore accurately recognize them.
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Figure 4: Acceleration signal fitting in transitional states (sensor data at the thigh), where the ordinate represents acceleration (g) and the
abscissa represents number of frames: (a) LW-SA; (b) LW-SD; (c) LW-RA; (d) LW-RD; (e) SA-LW; (f) SD-LW; (g) RA-LW; (h) RD-LW.
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Figure 9 shows the confusion matrix of transitional
states for user-dependent classification. For the able-
bodied subjects, the testing accuracy reached
98.92% ± 0.12% in transitional states. Figure 9(a) shows
that the recognition accuracy of level walking to ramp
descent (LW-RD) was slightly lower than that of the other
transitional states. Level walking to ramp descent (LW-
RD) was sometimes mistakenly recognized as level
walking to stair descent (LW-SD) possibly because the
movement postures of ramp descent (RD) and stair de-
scent (SD) are similar and difficult to distinguish. For the
amputee subject, the testing accuracy reached
91.16% ± 1.28%. 1e decrease in results was likely related
to the adjustment of the stepping order of the amputee
when making transitional steps.

Figure 10 shows the confusion matrix of motion states for
user-dependent classification. For the able-bodied subjects,
the testing accuracy reached 97.27% ± 0.14% in motion
states. Figure 10(a) shows that the recognition rate of stair
descent to level walking (SD-LW) was slightly lower than that
of the other motion states. 1e transitional state of stair
descent to level walking (SD-LW) was sometimes mistakenly

recognized as the steady state of stair descent (SD). 1is may
be due to the inertia of stair descent to level walking (SD-LW)
that results in similar postures between stair descent (SD) and
stair descent to level walking (SD-LW). For the amputee
subject, the recognition accuracy reached 90.27% ± 1.23%.
Since data collection involves privacy protection, ethical re-
view, and so on, data on amputees aremore difficult to obtain.
1is reduction in recognition accuracy may be related to the
smaller amount of data for amputees. As the motion states
increase, it may lead to insufficient classifier training, thereby
affecting the recognition accuracy.

4.1.2. User-Independent Classification. As mentioned above,
data on amputation subjects are difficult to obtain, so in-
dependent user experiments were conducted on ten able-
bodied subjects. 1e recognition results for steady states,
transitional states, and motion states were 90.60% ± 5.96%,
82.01% ± 5.56%, and 82.01% ± 5.56%, respectively. Figure 11
shows the tree diagram of part of the experimental results for
the able-bodied subjects’ user-dependent classification. 1e
recognition results of most subjects fluctuate around the
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Figure 5: 1D-DTCWT reconstruction of steady states (sensor data at the thigh), where the ordinate represents acceleration (g) and the
abscissa represents number of frames.
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Figure 7: Motion intent recognition process.

Input: discrete motion behavior data collected by inertial sensors (three-axis data of angular velocity and acceleration of thigh, shank,
and foot).
Output: recognition accuracy of motion intent
(1) Use moving average filter to process collected discrete motion behavior data
(2) 1e processed data are decomposed by 1D-DTCWT
(3) Select ith-layer (i � 5) of low-frequency coefficients from 1D-DTCWTas the continuous features, forming 72 (3×6×4) dimensional

feature vector
(4) Use SVM for motion states classification
(5) Adopt the confidence level to analyze the experimental results
(6) return recognition accuracy of motion intent

ALGORITHM 1: 1e proposed motion intent recognition.
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average value of recognition accuracy. Due to the individual
differences of subjects, the recognition rate of individual
subjects may have been slightly lower.

4.2. Analysis of Results. Table 4 shows how our method
compares with other research methods for motion intent
recognition. From the position of the sensor, literatures
[14, 16, 32] collect data on the affected side. 1e methods in
this paper and literatures [19, 21] use the same identification
strategy; that is, the sensors are placed on the healthy side to
collect data. When the movement of the affected side does
not occur, the movement of the healthy side is identified and

mapped to the affected side to identify the movement in-
tention of the amputee. 1erefore, the movement intention
of the amputee can effectively avoid the lag problem, and the
recognition rate is slightly higher than that of literatures
[19, 21].

From the perspective of feature extraction, literatures
[14, 16, 19, 32] use statistical features (e.g., mean, standard
deviation, and variance) and literature [21] uses CNN self-
selection features. Most intention recognition method se-
lects a set of statistical features from discrete motion data to
classifying motion patterns. However, the statistical char-
acteristics of short-term samples are empirically unstable,
which may reduce the classification accuracy. 1e self-
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Figure 10: Confusion matrix of motion states for user-dependent classification: (a) able-bodied subjects; (b) amputee subject.
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selection feature of CNN can not accurately reflect the
continuity of lower limbmovement. Consider that the key of
motion intent recognition is to study the transitional pattern
between each two adjacent different steady states of gait
mode. 1erefore, it is necessary to use 1D-DTCWT to
functionalize the discrete motion behavior data and use its
local analysis ability, the translation invariance, and direc-
tion selectivity to explore the continuity features of transi-
tional state stability. 1e experimental results finally indicate
that the proposed method can better explore the gait in-
stantaneous conversion (better expressed as motion intent)
between each two adjacent different steady states compared
with the state-of-the-art.

In terms of recognition accuracy, the recognition ac-
curacy of 5 steady states, 8 transitional states, and 13 motion

states in this method is higher than that in other literatures.
1e improvement of recognition accuracy can reduce the
probability of wrestling and make the amputee’s movement
more smooth and stable.

Table 5 shows the comparison of different methods using
the same data set. Taking into account the differences in gait
between the able-bodied and amputee subjects, we per-
formed this experiment for the subjects separately. Due to
the inherent continuity of human lower limb movement, the
use of statistical learning methods to extract a set of sta-
tistical features and CNN method self-selection features
cannot more accurately reflect the continuity of lower limb
motion. 1is paper uses the translation invariance and di-
rection selectivity of 1D-DTCWT to explore continuous
features closer to the nature of motion.
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Figure 11: Tree diagram of able-bodied subjects’ user-independent classification: (a) steady states; (b) transitional states; (c) motion states.

Table 3: User-independent and user-dependent classification strategies.

Classification
type Subjects Training data Testing data Cross validation

User-dependent

Ten able-bodied
subjects

90% of ten able-bodied subjects
sample

10% of ten able-bodied subjects
sample

Across subjects
(×10)

One transfemoral
subject 90% of subject sample 10% of subject sample Within subject

(×10)

User-
independent

Ten able-bodied
subjects Samples from nine subjects Samples from one subject Across subjects

(×10)
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5. Conclusions and Discussion

In this paper, we propose a method of motion intent recog-
nition using 1D-DTCWT, which is able to explore continuous
features of stability for use in intelligent lower limb prosthesis.
1e proposed method is demonstrated to be able to solve the
problem of the unstable statistical features of the short-term
signals obtained by instantaneous conversion and to better
study the gait instantaneous conversion between each two
adjacent different steady states of gait mode. Moreover, con-
tinuous features excavated by 1D-DTCWT are more in line
with the continuity of lower limb motion. 1e experimental
results based on user-dependent and user-independent clas-
sification strategy have demonstrated the effectiveness and
feasibility of the proposed method.

Although this research provides an alternative method
for motion intent recognition in lower limb prosthesis, there
are still some limitations. Firstly, future research should
collect data on more amputees to improve the application of
motion intent recognition field. Secondly, 1D-DTCWT will
be integrated into the deep learning framework as a kernel
function to self-select appropriate features to recognize the
motion intent of the lower limb amputee. Finally, the effect
of stride length on the motion intent recognition in lower
limb amputees should be considered.
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Table 4: Comparison of our method with other methods under user-dependent classification.

Reference Subjects Position of
sensors Feature extraction Classifier

Type of motion state
Accuracy

Steady Transitional
Young et al.
2016 [16]

Eight transfemoral
amputees Prosthesis Statistical features DBN 5 8 90.00%

Liu et al. 2017
[14]

1ree able-bodied
two amputees Prosthesis Statistical features HMM 5 \ 95.80%

Zheng et al.
2017 [32]

Six transfemoral
amputees Prosthesis Statistical features SVM+QDA \ 8 94.90%

Su et al. 2020
[19] Ten able-bodied Healthy side Statistical features SVM 5 8 95.12%

Su et al. 2019
[21]

Ten able-bodied Healthy side Self-selected features from
CNN Softmax 5 8 94.15% ± 3.04%

One amputee 89.23% ± 4.21%

Our method

Ten able-bodied

Healthy side Five-layer low-frequency
coefficients of 1D-DTCWT SVM

5 — 98.91% ± 0.19%
— 8 98.92% ± 0.12%
5 8 97.27% ± 0.14%

One amputee
5 — 100% ± 0.00%
— 8 91.16% ± 1.28%
5 8 90.27% ± 1.23%

Table 5: Comparison of our method with other methods with the same data set under user-dependent classification.

Subject Position of sensors Feature extraction Classifier
Type of motion state

Accuracy
Steady Transitional

Ten able-bodied Healthy side Mean, variance, and so on SVM 5 8 95.12%
Ten able-bodied Healthy side — GMM-HMM 5 8 96.92%
Ten able-bodied Healthy side Self-selection feature of CNN Softmax 5 8 94.15% ± 3.04%
One amputee 89.23% ± 4.21%

Ten able-bodied

Healthy side Five-layer low-frequency
coefficients of 1D-DTCWT SVM

5 — 98.91% ± 0.19%
— 8 98.92% ± 0.12%
5 8 97.27% ± 0.14%

One amputee
5 — 100% ± 0.00%
— 8 91.16% ± 1.28%
5 8 90.27% ± 1.23%
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