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Abstract

Technology platforms originally developed for tissue engineering applications produce valuable models that mimic three-dimensional (3D)
tissue organization and function to enhance the understanding of cell/tissue function under normal and pathological situations. These mod-
els show that when replicating physiological and pathological conditions as closely as possible investigators are allowed to probe the basic
mechanisms of morphogenesis, differentiation and cancer. Significant efforts investigating angiogenetic processes and factors in tumori-
genesis are currently undertaken to establish ways of targeting angiogenesis in tumours. Anti-angiogenic agents have been accepted for
clinical application as attractive targeted therapeutics for the treatment of cancer. Combining the areas of tumour angiogenesis, combina-
tion therapies and drug delivery systems is therefore closely related to the understanding of the basic principles that are applied in tissue
engineering models. Studies with 3D model systems have repeatedly identified complex interacting roles of matrix stiffness and composi-
tion, integrins, growth factor receptors and signalling in development and cancer. These insights suggest that plasticity, regulation and 
suppression of these processes can provide strategies and therapeutic targets for future cancer therapies. The historical perspective of the
fields of tissue engineering and controlled release of therapeutics, including inhibitors of angiogenesis in tumours is becoming clearly 
evident as a major future advance in merging these fields. New delivery systems are expected to greatly enhance the ability to deliver drugs
locally and in therapeutic concentrations to relevant sites in living organisms. Investigating the phenomena of angiogenesis and anti-
angiogenesis in 3D in vivo models such as the Arterio-Venous (AV) loop mode in a separated and isolated chamber within a living organism
adds another significant horizon to this perspective and opens new modalities for translational research in this field.
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Introduction

Tissue engineering (TE) was defined in the 1980s from a 
broad and general perspective as ‘the application of the princi-
ples and methods of engineering and life sciences towards the
fundamental understanding of structure–function relationships
in normal and pathological mammalian tissues and the devel-

opment of biological substitutes to restore, maintain or
improve functions’. More widespread awareness of the term
appears to have followed with perhaps the single most cited
and influential paper in the field, a review paper by Langer 
and Vacanti [1].
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Three-dimensional (3D) culture has played a key role in the
innovation of tissue engineering and sparked the design and devel-
opment of scaffold- and matrix-based culture systems. These cell
culture approaches, in contrast to conventional tissue culture plas-
tic, provide more physiological geometries and microenvironments
that more closely recapitulate the natural extracellular matrix
(ECM) cells found in vivo. Accordingly, TE approaches are to
become promising and influential in other biomedical research
areas. For instance, TE constructs provide physiological models of
human tissue that allow for studying disease pathogenesis as well
as screening the effect and toxicity of drugs in vitro. As a result, the
use of these tissue equivalents may significantly contribute to the
development of new therapeutics.

The functional properties of cells can be explored and manipu-
lated to an extent that is not possible in either 2D cultures or ani-
mal experiments. In particular, early events of tumour growth
before effective vascularization appear to be closely reproduced.
Indeed, within a short timeframe, 3D cultures of tumour cells
develop hollow cores that resemble the necrotic areas of 
in vivo cancers; areas that are usually observed at a distance from
nutrient and oxygen supplies. In the context of the development of
a vascular supply, it has become apparent that 3D cultures are also

better suited than 2D culture techniques to study phenomena rele-
vant to angiogenesis itself. Although in vitro studies of angiogene-
sis offer limited possibilities, we and others demonstrated how
properties of a 3D fibrin matrix were conductive towards growth of
suspended endothelial progenitor cells in a fashion that lumen-
containing blood vessel-resembling structures developed, a feature
certainly not achievable in 2D culture [2, 3]. As far as tumour phys-
iology is concerned, the proliferation of tumour cells cultured in 3D
is typically slower and hence more physiological than that of mono-
layer cultures. Another important advantage of 3D cultures is that
the interaction of different cell-types can be explored. For instance,
infiltration of tumour spheroids by endothelial cells has been
demonstrated and it depends not only on the production of pro-
angiogenic factors by tumour cells but also on the expression of
cadherins by endothelial cells [4].

Several reviews and research articles [5, 6] have accurately
summarized and demonstrated that conditions and characteristics
of the 3D microenvironment significantly influence and control
tumorgenesis. Thus, synthetic and at the same time biomimetic
matrices rooted in TE technology platforms may be utilized as 3D cell
culture systems to improve in vitro and in vivo tumour modelling
[7–9]. On the other hand, investigating mechanisms supporting
tumour growth, e.g. in tumour angiogenesis, may be applicable 
to be supportive in tissue engineering applications, e.g. when it
comes to the formation of a vascular network, exploiting the role of
endothelial lineage cells as well as pro-angiogenic growth factors
[2, 10, 11]. The development of anti-angiogenic therapies and
novel drug delivery systems including growth factor or cell therapy
based systems is therefore closely related in the study of angio-
genetic phenomena. Therefore, an in vivo model allowing the study
of developing blood vessels under isolated, well characterized and
manipulatable conditions, almost like under in vitro conditions but
with the benefit of integration in a living organism, would be
extremely suited to study blood vessel development from a tissue
engineering as well as a tumour angiogenesis background.

In this context, the arteriovenous loop model in an isolation
chamber allows 3D vessel ingrowth into matrices of different ori-
gin and appears to be a very suitable solution to the above men-
tioned questions. This offers many-fold opportunities to not only
study the process of angiogenesis but also modulate this process
with either pro-angiogenic agents such as growth factors or
endothelial progenitor cells or anti-angiogenic agents. By appro-
priate alterations of the conditions and contents of the AV loop,
one may also be able to create a standardized, isolated environ-
ment for tumour growth were angiogenic phenomena could be
studied at the same time.

In this article, we will review the current literature as well as
present examples based on our work on prostate cancer; in par-
ticular, how TE technology platforms, originally developed for
tissue regenerative applications, may be employed in cancer
research. Specifically, we will describe how synthetic bioin-
spired hydrogel systems may be useful as 3D cell culture mod-
els to study specific biological questions related to prostate
cancer cells. In a second example, we will show how bone
 tissue engineering platforms [12] can be applied to study the
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Fig. 1 The so-called ‘first-generation scaffolds’ have been studied over
the last 5 years in different clinical applications. FDA approved mPCL
scaffolds (Osteopore International, Singapore) have been implanted to
regenerate the iliac crest after autograft was taken for spinal fusion sur-
gery. Burr hole plugs are used for cranioplasties and deformable but at
the same time strong enough sheets for orbital floor reconstructions.
Reprinted with permission from Wiley Interscience.
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Fig. 2 Images of the human osteoblast construct (hOB) 2 days post seeding with prostate cancer cell lines. (A) SEM images at different maginification
(40�, 300� and 1000�, from top to bottom) showing morphology and distribution of the cancer cells on hOB constructs. (B) CLSM images of the 
co-cultures stained with anti-pan Cytokeratin (cancer cells, green labelling) and Phalloidin (osteoblasts, red labelling).
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underlying causes of prostate cancer and its progression to bone
metastases. From a translational research point of view, a novel
3D in vitro and an in vivo system based on tissue engineered
human bone is proposed to further understanding of prostate
cancer mechanisms, utilizing the role of prostate-specific
 antigen as a biomarker of proteolytic bone interactions in the
bone metastasis process.

Finally, the AV loop isolation chamber angiogenesis will be pro-
posed as an interface model that was originally developed as a plat-
form technology to fabricate pre-vascularized grafts following a
classical tissue engineering strategy. However, we now plan to use
this highly reproducible model as an environment that could be
altered towards a standardized isolated vascularized tumour bed.

History of tissue engineering

Today, the term regenerative medicine is often used synony-
mously with tissue engineering and recently the Society of Tissue
Engineering was renamed ‘Tissue Engineering and Regenerative
Medicine Society International’ (http://www.termis.org).

In 2003, the National Science Foundation (NSF) published a
comprehensive report entitled ‘The Emergence of Tissue
Engineering as a Research Field’, which gives a thorough descrip-
tion of the history of this field. Widespread awareness of the term
TE appears to have occurred for the first time with perhaps the
single most cited and influential paper in the field, a review paper
by Langer and Vacanti in 1993 [1]. Today’s scaffold- and matrix-
based TE concepts involve the combination of a scaffold with cells
and/or biomolecules and promotion of the repair and/or regener-
ation of tissues (Fig. 2).

Two decades later, one can conclude that the major outcome
of TE were awareness of the key role of three-dimensionality, and
the consequent development of biomaterials-based strategies
that facilitated cell culture in this new dimension. This aspect has
dramatically advanced the field of TE allowing development of
constructs in vitro that histologically and functionally mimicked
native tissue (e.g. skin, bone). Specifically, advances in TE have

led to the design of scaffold- and matrix-based culture systems
that better represent the geometry, chemistry and signalling envi-
ronment of the natural ECM. Although less heralded today than
the direct clinical applications, TE may offer a potentially power-
ful tool box in other biomedical research areas. For instance, it
provides physiologically relevant in vitro models of human tissue
that can be employed to explore disease pathogenesis in cancer
and/or to screen drug effects for the development of molecular
therapeutics [13].

Hence, the objective of this article is to present how technol-
ogy platforms and specifically 3D culture systems based on tissue
engineered constructs (TECs) can be applied to cancer research
based on the current literature and our own work in the area of
prostate and ovarian cancer. We review the literature as well as
present our approaches accompanied with some preliminary data
sets demonstrating how tissue engineering technology platforms
allow for enhanced in vitro and in vivo tumour modelling which
will greatly enhance future cancer research. As an example, we will
demonstrate how bone engineering platforms can be applied 
in studying bone metastasis related to prostate cancer in vitro and
in vivo. In addition, it will be illustrated how a synthetic biomimetic
hydrogel system is applied to study biological questions related to
ovarian cancer.

Physiological and structural aspects 
of 2D versus 3D culture in cancer
research

All cells are embedded in a 3D microenvironment in the body.
However, for many decades nearly all tissue cells including most
tumour cells have been studied in two-dimensional (2D) Petri
dishes, 2D multi-well plates or 2D glass slides coated with various
substrata [14]. However, cells in tissues reside within multicellu-
lar 3D environment consisting of a range of ECM macromolecules
(including many types of collagens, proteoglycans, laminin and
other matrix proteins) depending on the type of tissue.
Specifically, the native ECM is a heterogeneous collection of cova-
lent and non-covalent molecular interactions comprised primarily
of proteins and glycosaminoglycans (GACs). Covalent bonds con-
nect chondroitin sulphate, heparan sulphate, and other sulphated
GAGs to core proteins to give proteooglycans (PGs). Non-covalent
interactions include electrostatic associations with ions, hydration
of the polysaccharide chains, binding of link modules of PGs to
hyaluronan and triple helix formation to generate collagen fibrils.
They allow both attachment between cells and the basal 
membrane and access to oxygen, hormones and nutrients as well
as removal of waste products and other cell types associated in
tissues [3, 14, 15].

Hence, there are several key drawbacks to 2D cell cultures. First,
the movements of cells in the 3D environment of a whole organism
typically follow a chemical signal or molecular gradient. Molecular

© 2009 The Authors
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Fig. 3 Left panel: OB scaffold � PC3-N (�40 days of culture). Right
panel: OB scaffold � LNCap (�40 days of culture).
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gradients play a vital role in biological differentiation, determination
of cell fate, organ development, signal transduction, neural informa-
tion transmission and countless other biological processes.
However, it is nearly impossible to establish a physiological 3D gra-
dient in 2D culture [16]. Furthermore, cell motility can be greatly
influenced by chemical and physical properties of a 3D matrix, a fea-
ture that cannot be satisfyingly mimicked in 2D cultures.

Secondly, cells isolated directly from higher organisms fre-
quently alter their metabolism and gene expression patterns in 2D
culture. It is clear that cellular structure plays a major role in deter-
mining cellular activity through spatial and temporal ECM protein
and cell receptor interactions that naturally exist in tissues and
organs. The cellular membrane structure, ECM and basement
membrane significantly influence cellular metabolism via the pro-
tein–protein interactions. The adaptation of cells to a 2D Petri dish
requires significant adjustment of the surviving cell population not
only to changes in oxygen, nutrients and ECM interactions, but
also to alter waste disposal [14, 16].

The third reason entails cells growing in a 2D environment sig-
nificantly altering production of their own ECM proteins, often
undergoing morphological and phenotypic changes. It is not
unlikely that the receptors on the cell surface could preferentially
cluster on parts of the cell that directly expose to culture media
rich in nutrients, growth factors and other extracellular ligands,
whereas the receptors on the cells attached to the tissue culture
plate surface may have less opportunity for clustering. Thus, the
receptors might not be presented in correct orientation and clus-
tering and this may presumably also affect the autocrine and/or
paracrine signals between cells [3, 14].

State of the art of 3D culture systems
in cancer research

Awareness of in vitro 3D cell cultures to more closely mimic
tumour cell growth and responses in vivo (e.g. to anticancer treat-
ments), compared to cell monolayer, is dated back to the 1970s
when Sutherland et al. generated multicellular spheroids to explore
cancer cell behaviour and their resistance to antitumour treatments
[17]. Similarly, less than a decade later, Miller et al. found that
tumour cells grown as spheroids within collagen gels, exhibit
greater anticancer drug resistance, compared to cancer cells grown
on tissue culture plastic [18]. From an anatomical and physiologi-
cal point of view, cancer cells cultured in 3D via spheroid or hydro-
gel cultures mimic in vivo tumours to a significantly higher extent
compared to monolayer cultures. In particular, early events of
tumour growth before effective vascularization appear to be closely
reproduced in those 3D culture systems. Usually, 3D cultures of
tumour cells develop hollow cores that resemble the necrotic areas
of in vivo cancers: areas that are usually observed at a distance
from nutrient and oxygen supplies. In addition, the proliferation of
tumour cells cultured in three dimensions is typically slower and
hence more physiological than that of monolayer cultures [14].

Despites early landmark research outcome outlining the key
role of three-dimensionality in cell culture for in vivo like
responses, it is quite surprising that over 85% of the cancer
research groups (internal data Medline search) still routinely use
monolayer cultures in their research projects, and therefore fail to
realize that they apply only a suboptimal culture system to answer
their raised biological questions.

More recently, however, there have been a growing number of
research groups that have become increasingly aware of the limi-
tations of conventional 2D monolayer cultures and have adopted
3D cell culture systems. Currently, multicellular spheroids are still
one of the most commonly employed 3D cell culture models to
study the cancer cell in vitro and assess antitumour drugs [19–21].
Despite their pivotal role in exploring different aspects of cancer
cell biology (e.g. multicellular resistance to anticancer drugs [22],
multicellular spheroids have some limitations, mostly because
these 3D cell aggregates lack the important interaction with the
extracellular microenvironment [23, 24]. In this regard, matrix-
embedded cancer cells, probably the other most frequently
employed 3D cell culture approach, may more intimately mimic
conditions and extracellular microenvironments cells reside in vivo.
Naturally derived reconstituted ECM protein-based hydrogels,
MatrigelTM (a laminin-rich matrix purified from animal tumours
[25, 26] and collagen gels [18, 27]) represent to date the gold stan-
dard matrices in 3D cancer cell research. During the last two
decades, the pioneering work by Bissell, Brugge and coworkers
has definitely contributed significantly to pave the way towards a
paradigm shift that cancer cells cultured in 3D within a matrix,
compared to monolayer, may more accurately express in vivo
like conditions [28–32]. Using normal and cancer epithelial breast
cells cultured within the gold standard naturally derived matrices,
they have unequivocally demonstrated the importance of 3D cell-
ECM interactions in influencing cell behaviour [28, 31, 32]. For
instance, cell culture in 3D is a prerequisite in order to phenotypi-
cally discern normal and malignant cells [33]. Interestingly, 
they also discovered that abnormally growing and proliferating
human breast cancer cells (i.e. that formed irregular cell colonies)
could be reverted to a normal phenotype (i.e. changed multicellu-
lar arrangement to polarized acini) by altering their interaction with
the extracellular environment in 3D through blocking of overex-
pressed �-integrin receptors [6]. Additionally and most impor-
tantly, these outcome could also be confirmed in in vivo animal
models [6, 34, 35].

Essentially, these landmark studies have significantly con-
tributed to further outline the importance of the contextual condi-
tions cells are exposed to, to understand their behaviour, and in
particular, how 3D cell culture models, in contrast to cell culture
plastic, offer a more comprehensive and in vivo like option to
study cells in vitro. Accordingly, as Bissell stated in one of her
review articles, in addition to the cell genotypic characteristics, the
other ‘half of the secret of the cell lies outside the cell’ [28].
Besides three-dimensionality and the key role of cell–matrix inter-
actions, the interplay between tumour and tissue-specific cells
represents another environmental condition that may significantly
influence tumour formation and growth.

© 2009 The Authors
Journal compilation © 2009 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd



1422

The use of naturally derived matrices has considerably advanced
the understanding of fundamental interplay between cells and their
extracellular microenvironment. However, there is wide consensus
that these matrices display some limitations and drawbacks [30]. In
particular, their composition varies from batch to batch which may
affect experimental reproducibility [36, 37], and their characteristics
(e.g. biological, biochemical and biophysical) are not easily accessi-
ble to modification because of the intrinsic features of their 
precursors. In order to overcome these limitations, the cancer biol-
ogy community is increasingly seeking alternative matrices to natu-
rally derived gels to better mimic the tumour environment [30]. 
In the next section we describe some pivotal examples of 3D cell
culture matrices in cancer research that were adopted from material
technology platforms originally developed for tissue regeneration
applications. In addition, we also expand on these works and
describe a new approach to study development and metastasis 
formation in bone originating from prostate cancer.

New tissue engineering-routed 
scaffolds for 3D culture

As outlined in the previous section microenvironmental conditions
play an important role in tumorigenesis. Accordingly, controlling
the extracellular milieu in which cancer cells are cultured may sig-
nificantly contribute to elucidating mechanisms of cancer forma-
tion and growth, as well as sensitivity to antitumour drugs. In this
context, currently used naturally derived gold standard matrices
for 3D cancer cell cultures show some limitations mainly concern-
ing their reproducibility and the flexibility of the design and modi-
fication of their characteristics.

Emerging biomaterials-based approaches in regenerative med-
icine and tissue engineering have pioneered the production of scaf-
folding matrices with malleable characteristics, thereby enabling
cell culture in more controllable 3D microenvironments. In this
section, we focus on examples of materials originally conceived for
in vivo tissue regeneration that have been recently applied for can-
cer research as 3D cell culture models. Biologically passive, porous
and rigid scaffolds made from hydrolytically degradable poly (lac-
tide-co-glycolide) acid polymers were used as 3D structures to cul-
ture human oral squamous carcinoma cells. Cancer cells cultured
in these 3D structures gave rise to tumour-like masses with char-
acteristics (e.g. growth, expression of tumour specific markers,
etc.) that, in contrast to monolayer and – to some extent –
matrigel-cultured cells, expressed a very similar behaviour com-
pared to animal models [38]. Hydrogels are also being increasingly
used as 3D cell culture models as, compared to rigid polymeric
scaffolding materials, they may more closely mimic the actual
physiological environment in which cells reside in vivo [39]. Recent
advances in bioengineering and biomaterials science have enabled
functionalization of (semi)-synthetic hydrogels to include features
found in the natural ECM [7–9, 40] and allow systematic studying
their involvement in cancer development.

For instance RGD-functionalized alginate gels were used as 3D
cell culture models to specifically explore the implication of the
engagement of tumour cell integrins in angiogenic signalling in vitro
and in vivo [41]. Commercially available Extragel, consisting of
chemically modified hyaluronan and gelatin cross-linked with poly-
ethylene glycol (PEG), has potential as a tunable 3D cell culture
matrix in cancer cell research [42, 43]. These matrices have been
already utilized as delivery vehicle for tumour cells for the creation
of orthotopic human tumour xenografts in animal models [44–47].
Zhang, Stupp and coworkers independently reported the discovery
of a self-assembling peptide system that can undergo spontaneous
physical cross-linking into nanofibre scaffold hydrogels by alter-
ation of salt concentration at physiological pH. Structurally, these
peptide-based synthetic hydrogels resemble the natural ECM, and,
if desired, can also incorporate bioactive peptides to incentivize cel-
lular responses [48, 49]. These matrices have been applied in a
range of in vitro and in vivo studies [50, 51], and the commercially
available Puramatrix, originally developed in Zhang laboratories
(Boston, MA, USA), have been also used as 3D cell culture matrices
in cancer research [52, 53].

Another synthetic hydrogel system, arguably one of the most
versatile in term of modularly design biological, biochemical and
mechanical properties, has been pioneered by Hubbell, Lutolf and
coworkers [9, 54, 55]. These biomimetic PEG-based hydrogels have
shown in vivo performance comparable to naturally derived matri-
ces [56] and high design flexibility of their characteristics enabling
to systematically study mechanisms governing cell migration in 3D
[54, 57]. We have adopted these hydrogel systems in our group to
explore the behaviour of prostate cancer cells cultured in 3D. In par-
ticular, we are employing biomimetic hydrogels that are formed
from peptide functionalized multi-arm PEG via the FXIII-catalysed
cross-linking mechanism [55, 58]. By means of the same reaction
during material formation bioactive molecules (e.g. RGD [58] and
growth factors [55] can be stably incorporated in the hydrogels. In
addition, sensitivity of these matrices to proteolytic degradation can
be precisely controlled through design of specific matrix metallo-
proteinase substrates within the hydrogel network [58].

Although the molecular composition of the ECM is a well-
known regulator of cellular responses, physical properties of the
matrix in 3D models can also play surprisingly important roles. In
particular, recent evidence points to direct roles for the stiffness
(compliance) of the ECM in regulating multiple cellular functions.
Also described as rigidity, elasticity or pliability, this property is
sensed by cells through bidirectional interaction with the sur-
rounding ECM. Cell surface integrin receptors and the contractile
cytoskeleton pull against the ECM to sense the stiffness of the
microenvironment. Biologically, cells need to sense and respond
appropriately to their local microenvironment. The stiffness of
microenvironments is variable; examples include loose versus
dense connective tissue, soft (skin, lung, etc.) versus hard tissues
(such as bones) and early versus late stages of wound healing.
Hence, the capability to control the mechanical properties of our
PEG-based hydrogel system allow us to investigate whether differ-
ent cancer populations of tumour cells in 3D structures might
favour a soft or harder environment.

© 2009 The Authors
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Endothelial progenitor cells 
and tumour vasculature

Angiogenesis and vascularization of tissues have been the focus
of research wherever blood vessel formation was either desirable
– such as in ischemic or bioartificial tissues – or unwanted – such
as in tumours. Endothelial progenitor cells (EPCs) are precursor
cells capable of differentiation into mature endothelial cells and
have been shown to play an important role in angiogenesis as well
as vasculogenesis in a multitude of disease states. Recent
research has also highlighted their impact on angiogenetic phe-
nomena in tissue engineering, particularly in 3D in vitro cultures.
In this context, we (Fig. 4) and others demonstrated how proper-
ties of a 3D matrix were conducive towards growth of suspended
endothelial progenitor cells in a fashion that lumen-containing
blood vessel-resembling structures developed, a feature certainly
not achievable in 2D culture [2, 3].

EPCs are chemotactically recruited to the site of ischemia, dif-
ferentiate and contribute to new blood vessel growth which can
either occur by angiogenesis, i.e. proliferation and sprouting of
existing blood vessels, or vasculogenesis, i.e. de novo clonal for-
mation of blood vessels from the aforementioned cells. EPCs,
however, are not only crucial for neo-vascularization, but also
exert a significant influence on existing blood vessels due to their
highly pro-angiogenic features including angioinductive growth
factors [59].

This role in blood vessel formation is not only applicable to dis-
ease states such as myocardial infarction or lower extremity
ischemia, but also to angiogenetic phenomena in tumour growth.
Therefore, research into endothelial progenitor cells has focused
on their angiogenic properties, on the one hand to enhance blood
vessel formation in disease states such as tissue ischemia, e.g.
myocardial infarction and lower extremity or tissue engineering,
and, on the other hand, on their prominent role in tumour blood
vessel growth.

© 2009 The Authors
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Fig. 4 (A) Isosurface rendering of micro-CT scan from a rat AV-loop following Microfil® – perfusion and explantation, demonstrating dense vascular
sprouting originating from the AV-loop. (B) First application of the AV-loop sheep model using fibrin as a matrix: intra-operative aspect of micro-
anastomosed AV-loop in the sheep’s groin placed into a custom made isolation chamber, which is then filled with biocompatible fibrin matrix. (C) Intra-
vital imaging of AV-loop in the sheep model: by super-imposing serial MRI – scans and segmented angio-CT – scans the increase of vascular sprout-
ing from the sheep AV-loop in concordance with increased perfusion within the chamber can be visualized intravitally. (D) Murine embryonal EPCs were
suspended in a 3D fibrin matrix and constructs were subjected to histological analysis after 8 days. Cell proliferation in numerous multicellular clusters,
some of them forming lumen-like structures, can be appreciated. Magnification 25-fold.  (E) A detailed view confirms presence of multicellular clusters
of EPCs. Magnification 200-fold. (F) Morphologic observations are confirmed by the presence of Ki-67� EPCs, identified by their pink staining, indicat-
ing cell proliferation within the fibrin matrix. Magnification 200-fold.
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Angiogenesis and – as a therapeutic strategy – inhibition of
angiogenesis (anti-angiogenesis) are intensively investigated in
the context of tumour growth [60]. Due to their affinity to newly
forming blood vessels, these cells could be employed as a means
to serve as drug delivery systems and transport pro- or anti-
angiogenic substances to the area of vascularization. Gene trans-
fer to endothelial progenitor cells has become a valid method to
change the angiogenic properties of endothelial progenitor cells in
tissue engineering as well as tumour research [61, 62].

In vivo models

Microenvironmental conditions regulate tumour genesis and
biomimetic in vivo model systems are necessary to study how
cancer and metastatic spread is dependent on these conditions.
Tumour aggressiveness is enhanced by altered 3D cell-cell and
cell–ECM interactions in connection with the development of
central hypoxia and signalling between cells residing within 
spatially distinct niches. These conditions are not fully reflected
by several currently applied in vivo model systems [63]. These
facts highlight the demand to develop a new generation of
improved models amenable to detailed cellular and molecular
biology studies.

However, tissue engineers also need to keep in mind that using
a permissive matrix that promotes tissue remodelling might be
preferred to over engineering the final form of a complex tissue.
Similarly, exact mimicry of the complexity of the native ECM may
be unnecessary and a pragmatic biomimetic approach may be suf-
ficient. In other words, it may be adequate to provide a TEC as
simple as possible and then utilize the patient’s own body as a
bioreactor. However, it is important to assemble the correct com-
ponents inside a TEC, namely scaffold, exogenous cells and/or
growth factors [64]. Nonetheless, the limiting step is angiogene-
sis, and both microvascularization and macrovascularization are
required to provide nutrients and oxygen in 3D to the TEC. The
sequential release of multiple growth factors is one way to achieve
this outcome and this concept is studied by several TE groups
around the world. One of the leading groups in the field reported
the application of their originally developed technology platform
for the in vivo engineering of human 3D tumours [13]. They used
biodegradable scaffolds fabricated in combination with carcinoma
cells recreated microenvironmental characteristics representative
of tumours in vivo. Remarkably, the angiogenic characteristics of
tumour cells were dramatically altered upon 3D culture within this
system, and corresponded much more closely to tumours formed
in vivo. The group could also show that cells in this model were
also less sensitive to chemotherapy and yielded tumours with
enhanced malignant potential.

The Rosenblatt/Kaplan group was the first to report the appli-
cation of a bone tissue engineering platform into an animal model
to study the mechanism of bone metastases [65]. Silk scaffolds
were coupled with bone morphogenetic protein-2 (BMP-2),
seeded with bone marrow stromal cells (BMSC) and maintained in

culture for 7 weeks, 4 weeks and 1 day before implantation in a
mouse model of human breast cancer metastasis from the ortho-
topic site. Following injection of SUM1315 cells into mouse mam-
mary fat pads, tumour burden of implanted tissues was observed
only in 1-day scaffolds. Scaffold development and implantation
was then reinitiated to identify the elements of the engineered
bone that contribute to metastatic spread. Migration of SUM1315
cells was detected in four of four mice bearing scaffolds with
BMP-2 treatment and with BMSC treatment, respectively, whereas
only one of six mice of the BMP-2/BMSC combination showed evi-
dence of metastatic spread. Histology confirmed active matrix
modelling and stromal cell/fibroblast infiltration in scaffolds as
positive for the presence of metastasis. These results show the
first successful integration of engineered bone in a model system
of human breast cancer metastasis.

CaP is the most common cancer and the second leading cause
of male cancer deaths. Despite its common occurrence, the
underlying cause of this cancer and its progression to bone
metastases remains poorly characterized. An ideal in vivo model
would reproduce the genetic and phenotypic changes that occur
with human cancer cells seeding in human bone as close as pos-
sible. Recently developed mouse models indicate that CaP cells
have a preference for human bone. While mouse tibia invasion
models provide important data on bone-CaP cell interactions in vivo,
they do not allow ‘homing’ of CaP cells and are not considered a
direct metastatic model [66]. Human foetal long bone chips
implanted subcutaneously into the flanks of SCID (severe com-
bined immunodeficient) mice provide a more appropriate human-
specific bone microenvironment with intact anatomic and
hematopoietic features. However, this model also has major limi-
tations; firstly, the implanted human bone chips often get vascu-
larized poorly and hence the dead bone does not reflect the real
clinical situation; secondly in case of poor bone quality it is very
difficult to control size and shape of the bone core implants which
makes it difficult to establish a reproducible model; thirdly is it
more appropriate to use cancellous or cortical bone.

Hence, our interdisciplinary research programme is in the
process of creating a novel ‘all human’ model in which tissue engi-
neered human bone is transplanted into immuno-deficient non-
obese diabetic/severe combined immunodeficient (NOD/SCID)
mice and compared to the standard bone chip model. By using
this model, we will test the hypothesis that distinct ‘tool kits’ are
used by CaP metastasizing to human tissue engineered bone. In
addition, we are identifying components within bone stroma that
are essential for metastasis and osteotropism genes expressed by
bone in response to the presence of CaP.

Arteriovenous loop isolation chamber
for tumour angiogenesis research

Among various techniques that have been investigated to over-
come the problem of early angiogenesis in TE products the
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microsurgical implantation of small calibre vessels in different
models is one of the possible means to overcome current lim-
itations of applied tissue engineering. Numerous experiments
with this type of approach have gained insights into basic 
principles of angiogenesis and consequently methods of anti-
angiogenesis [10, 11, 67–69]. As a result, the rat arteriovenous
loop model provides a unique standardized, isolated, well char-
acterized and manipulatable environment that is vascularized
over time by a defined main axis of blood vessels. We and oth-
ers have [10, 11, 67–71] demonstrated the potential of this
system to provide blood vessel ingrowth into a clinically
approved fibrin matrix as well as hard matrices of different
composition. We also demonstrated that this isolated defined
environment is accessible to manipulation and responds to
pro-angiogenic stimuli such as recombinant growth factors.
These features make the presented model a very attractive tool
not only for tissue engineering purposes, but also to dissect
mechanisms of tumour angiogenesis by establishing a tumour
within the chamber followed by analysis of the newly forming
vascular network associated with it. In this context, anti-
angiogenetic treatments and their impact on blood vessel for-
mation from the AV loop and/or tumour growth may also be
investigated in the future.

Taken together, this model, initially established as a tool to
enhance the multitude of tissue engineering techniques in
research and in therapeutic applications, may be transformed
towards a platform to investigate mechanisms of tumour growth
as far as they relate to tumour angiogenesis and thereby offer new
insights towards therapies in an effort to improve treatment
options for cancer patients.

Conclusion

Technology platforms originally developed for tissue engineering
applications produce valuable models that mimic 3D tissue organi-
zation and function to enhance the understanding of cell/tissue func-
tion under normal and pathological situations. These models show
that when replicating physiological and pathological conditions as
closely as possible investigators are allowed to probe the basic
mechanisms of morphogenesis, differentiation and cancer.
Significant efforts investigating angiogenetic processes and factors
in tumorigenesis are currently undertaken to establish ways of tar-
geting angiogenesis in tumours. Anti-angiogenic agents have been
accepted for clinical application as attractive targeted therapeutics for
the treatment of cancer. Combining the areas of tumour angiogene-
sis, combination therapies, and drug delivery systems is therefore
closely related to the understanding of the basic principles that are
applied in tissue engineering models. Studies with 3D model sys-
tems have repeatedly identified complex interacting roles of matrix
stiffness and composition, integrins, growth factor receptors and
signalling in development and cancer. These insights suggest that
plasticity, regulation and suppression of these processes can provide
strategies and therapeutic targets for future cancer therapies. The
historical perspective of the fields of tissue engineering and con-
trolled release of therapeutics, including inhibitors of angiogenesis in
tumours is becoming clearly evident as a major future advance in
merging these fields. New delivery systems are expected to greatly
enhance the ability to deliver drugs locally and in therapeutic concen-
trations to relevant sites in living organisms. Targeted therapies of
cancer may become more efficient by these possible achievements.
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