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Abstract

In mammals, goal-directed and planning processes support flexible behaviour used to face

new situations that cannot be tackled through more efficient but rigid habitual behaviours.

Within the Bayesian modelling approach of brain and behaviour, models have been pro-

posed to perform planning as probabilistic inference but this approach encounters a crucial

problem: explaining how such inference might be implemented in brain spiking networks.

Recently, the literature has proposed some models that face this problem through recurrent

spiking neural networks able to internally simulate state trajectories, the core function at the

basis of planning. However, the proposed models have relevant limitations that make them

biologically implausible, namely their world model is trained ‘off-line’ before solving the tar-

get tasks, and they are trained with supervised learning procedures that are biologically and

ecologically not plausible. Here we propose two novel hypotheses on how brain might over-

come these problems, and operationalise them in a novel architecture pivoting on a spiking

recurrent neural network. The first hypothesis allows the architecture to learn the world

model in parallel with its use for planning: to this purpose, a new arbitration mechanism

decides when to explore, for learning the world model, or when to exploit it, for planning,

based on the entropy of the world model itself. The second hypothesis allows the architec-

ture to use an unsupervised learning process to learn the world model by observing the

effects of actions. The architecture is validated by reproducing and accounting for the learn-

ing profiles and reaction times of human participants learning to solve a visuomotor learning

task that is new for them. Overall, the architecture represents the first instance of a model

bridging probabilistic planning and spiking-processes that has a degree of autonomy analo-

gous to the one of real organisms.

Author summary

Goal-directed behaviour relies on brain processes supporting planning of actions based

on their expected consequences before performing them in the environment. An impor-

tant computational modelling approach proposes that the brain performs goal-directed
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processes on the basis of probability distributions and computations on them. A key chal-

lenge of this approach is to explain how these probabilistic processes can rely on the spik-

ing processes of the brain. The literature has recently proposed some models that do so by

‘thinking ahead’ alternative possible action-outcomes based on low-level neuronal sto-

chastic events. However, these models have a limited autonomy as they require to learn

how the environment works (‘world model’) before solving the tasks, and use a biologi-

cally implausible learning process requiring an ‘external teacher’ to tell how their internal

units should respond. Here we present a novel architecture proposing how organisms

might overcome these challenging problems. First, the architecture can decide if explor-

ing, to learn the world model, or planning, using such model, by evaluating how confident

it is on the model knowledge. Second, the architecture can autonomously learn the world

model based on experience. The architecture represents a first fully autonomous planning

model relying on a spiking neural network.

Introduction

In mammals, the acquisition and consolidation of instrumental behaviour involves two sets of

processes, one underlying flexible goal-directed behaviour, used in particular to find solutions

to new problems or to face changing conditions, and the other one related to habits, forming

stimulus-response behaviour used to efficiently, but inflexibly, face familiar conditions [1–3].

As also highlighted in the computational literature [4], goal-directed behaviour ismodel based;

that is, it relies on an internal representation of the external world (in particular of the transi-

tion probabilities between its states; the so called world model) to internally simulate the conse-

quences of actions, or action sequences, usable to achieve desired world states (goals) before

executing them in the environment (planning) [5–10] (note that here goals are intended as

internal representations of desired world states [11], rather than in the broader meaning of

world/body states to which the organism homeostatically converges [12]). When the agent

pursues a new goal and has a world model to do so, goal-directed processes allow the solution

of the task on the basis of planning. Indeed, the world model represents the general goal-inde-

pendent dynamics of the world, in particular how it responds to the agent’s actions. The simu-

lated achievement of the new goal based on the world model might be possibly marked by an

internal reward [13] and to an external observer the agent appears to solve the new task ‘on the

fly’ or ‘by insight’. Instead, habitual behaviour ismodel free, in the sense that it relies on actions
directly triggered by stimuli (habits) and does not require a world model anticipating their out-

comes [4, 9, 14]. Habits are task dependent as they can only lead to specific desirable world

states. Thus, given a new desired state, repeated experience is needed to discover and learn by

trial-and-error the new stimulus-response associations leading to it.

In the brain, goal-directed behaviour relies on ventral/associative basal ganglia and pre-

frontal cortex areas supporting the representation of goals and the world dynamics; instead,

habitual behaviour relies on motor basal ganglia and sensorimotor/premotor cortices able to

acquire stimulus-response associations by reinforcement learning [14–18]. The brain pro-

cesses underlying goal-directed behaviour have been interpreted within different computa-

tional frameworks. A current influential view of the brain, rooted in Helmholtz’ pioneering

contributions on perception [19], considers it a probabilistic or Bayesian machine that copes

with the uncertainties of the world by representing it in terms of probability distributions and

probability inferences on them pivoting on the Bayes rule [20, 21]. This view of the brain has

been progressively extended to cover all aspects of cognition, from perception to action and
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decision making (e.g., [22, 23]). In line with this view, it has been proposed that the brain also

implements goal-directed behaviour and planning through probabilistic representations and

inferences, and this has been shown through specific models developed within an approach

called planning as inference (e.g., [24–26]). This approach uses world representations expressed

as probability distributions and performs action selection based on a probability inference

maximising the expectation of the desired world state (more details in Sec 1).

The models of planning as inference commonly use probability distributions that directly

involve high-level aspects of cognition and behaviour, for example observations, world states,

and actions; moreover, the inferences on these distributions are based on sophisticated mathe-

matical manipulations of the parameters of the distributions, for example those based onHid-
den Markov Models (HMMs), or on numerical approximations of them. This gives rise to a

fundamental challenge for these models [21, 27–29]: how can the probability distributions and
inference processes supporting goal-directed processes be grounded on the low-level spiking events
of neurons in the brain?

An important possibility is that the needed probability distributions rely on the probability

distributions of neuron spikes, sampled by the actual spikes; and that the connections between

neural populations, undergoing experience-dependent plasticity, support the conditional

probabilities underlying probabilistic inferences [25, 30–34]. In this respect, spikes can be seen

as sampling probability distributions analogously to what happens in particle filters [35–37].

These are algorithms that use a set of values (‘particles’) to represent the distributions of sto-

chastic processes such as HMMs (particle filters draw a set of random values –the ‘particles’–

for each probability distribution to represent, consider the dependencies between different dis-

tributions by ‘propagating’ the particles between them, and use value weights and re-sampling

mechanisms to approximate complex distributions and take observations into account; [37]).

In this respect, the model presented here relies on a general principle, also shared with previ-

ous models [38–40], termed here emergent generativity. We refer emergent generativity to the

process for which the stochastic events of spiking neurons, happening at the micro/low level,

are amplified by neural mechanisms to generate alternative cognitive contents, at the macro/

high level, that support adaptive behaviour (e.g., alternative possible imagined percepts,

believes, and courses of action). This concept is further discussed in Sec 3.2.

Although planning as inference was previously modeled with a firing-rate neural network

[41], only recently recurrent spiking neural network models have been used to implement

planning as inference [38, 39, 42]. These models, which are the state-of-the-art in the field, use

recurrent neural networks to represent the world model. Here different groups of neurons rep-

resent different world states, for example different places in a navigation maze, and their lateral

connections encode the possible transitions between states that the agent might cause with

action. The spikes of the world model sample the prior probability of the state sequences fol-

lowed by the agent if it explores the environment randomly, and of the rewards associated to

the sequence (e.g., a reward of 1 when a target state is achieved). A second neural layer of spik-

ing neurons that encodes the ‘context’, intended as the current and target states, sends all-to-

all connections to the world model and can condition the probability distribution it expresses.

The neural solution to the inference problem relies on the update of the connections linking

the context to the world model so that the distance (Kullback-Leibler divergence) between the

prior probability distribution of the state sequences converges to the desired posterior proba-

bility distribution maximising the reward. The actions needed to follow the state sequences

sampled from the posterior distribution are inferred by inverse kinematics, either offline [38]

or using a dedicated neural layer [39]. Another related model [40] reproduces goal-directed

behaviour with an analogous recurrent spiking neural network. Here the actions that corre-

spond to a decision-state are reciprocally linked by inhibitory connections to implement
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decision making. For a given task, reward units ‘inject’ activation into terminal actions, and

this activation diffuses backward towards the upstream actions to represent the anticipated

value attributed to them. This value is then used for action selection.

These models represent an important first step in modelling how the brain might imple-

ment planning as inference, but much remains to be understood since planning in animals

involves several interdependent complex processes such as the formation of goals, their moti-

vational activation, the acquisition of world models, the formulation of plans at multiple levels

of abstraction, the performance of actions, and the coordination of these different processes

[43].

In this work we contribute to face these issues by tackling two important problems not

solved by the state-of-the-art models considered above. The first problem is: how can the brain
acquire the world model while at the same time using it for planning? The model-free literature

on reinforcement learning [4] studies the important problem of the exploration-exploitation

trade-off where an agent must decide whether to take random actions to explore the environ-

ment and learn the policies that lead to rewards, or to exploit those policies to maximize

rewards. A problem less studied involves a situation where model-based/goal-directed agents

have to face an analogous but different trade-off [44–46]. In particular, when these agents

solve new tasks they have to decide if exploring to refine the world model, or if exploiting such

model to plan and act. Here we consider the early phases of the solution of new tasks, involving

either a new environment or a new goal, and hence focus on the latter type of exploration-

exploitation trade-off. This problem has been recently faced in a principled way [46] within

the probabilistic framework of active inference [22]. However, the proposed solution is appli-

cable only to very simple scenarios where hidden-states are few and are given to the agent,

rather than being autonomously acquired; moreover, and importantly for our objective, the

solution has not been grounded on brain-like mechanisms. On the other side, current state-of-

the-art models implementing planning as inference based on spiking networks either learn the

world model before solving the target task [38, 39] or use a hardwired world model [40], and

so they do not face the problem altogether. How the brain manages to learn and use the world

model at the same time is hence a fully open problem.

The second problem we face here, not solved by the current planning-as-inference spiking

models, is: how could the brain learn the world model in an unsupervised fashion? Currently

there are no biologically acceptable solutions to this problem as the current state-of-the-art

models either learn the world model off-line through supervised learning techniques [38, 39]

or are given a hardwired model [40].

Here we propose a model architecture facing both problems limiting the current planning-

as-inference spiking-network models. The architecture tackles the first problem by proposing

a novel arbitration mechanismmeasuring the uncertainty of the world model on the basis of

the entropy of the posterior probability distributions expressed by the neurons forming it (cf.

[47, 48]). When this uncertainty is low, planning continues, otherwise exploration actions are

performed. Recently, it has been shown that the contextual learning and use-for-planning of

the world model encounter a difficult problem for which the world model can prematurely

converge to sub-optimal solutions (‘bad-bootstrapping’ problem, [46]).

A second novelty of the architecture is the solution of the second problem. The solution is

in turn based on three innovations. First, the integration of the unsupervised STDP learning

rule proposed in [49] into the recurrent spiking neural-network world model. This allows the

world model to learn at the same time the hidden causes of observations and the probabilistic

time dependencies between them. This is a notable advancement in terms of biological plausi-

bility with respect to current models using supervised learning mechanisms that directly acti-

vate the internal units to encode hidden causes [38–40]. This also represents a computational
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advancement as the only recently proposed (non-spiking) probabilistic model tackling the

model-based exploration/exploitation problem [46] assumes to know the hidden causes of

observations. The second mechanism relies on the idea that the world model is a HMM that

‘observes’, learns, and predicts sequences of items formed not only by percepts but also actions.

Actions are in particular ‘observed’ by the world model after being selected by planning or

exploration processes. This idea was suggested by evidence indicating that various brain areas

receive (‘observe’) both sensory and motor information, for example the parietal cortex [50,

51], the prefrontal cortex [43], and the hippocampus [52]. This, integrated with the third

mechanism introduced below, allows the world model to autonomously select actions without

the need of an auxiliary component selecting actions on the basis of state sequences (e.g., as in

[38]). The third mechanism is based on the conditioning of the posterior probabilities of the

world model on the pursued goal. This implies that with no goal conditioning the world

model represents the prior probabilities of arbitrary state-action sequences, while when a goal

is selected (‘clumped’) the model represents the posterior probabilities directly producing

action-sequences leading to the goal.

The model was validated by testing it against the results reported in [15, 16] where human

participants learn to solve a visuomotor learning task. In particular validation checked if the

learning processes of the world model led to match human performance, and if the planning

time spent by the arbitration mechanism reproduced the reaction times exhibited by human

participants. The target experiment was also investigated with a model in [48]; however, this

model did not aim to bridge planning as inference to spiking network mechanisms. To our

knowledge, our model is the first of this type to be validated with specific detailed behavioural

data.

The rest of the paper is organised as follows. Section 1 describes the model architecture and

functioning and the visuomotor learning task used to validate it. Section 2 presents the results

of the model tests, in particular by comparing the model performance and reaction times with

those of human participants of the target visuomotor task, and by showing the mechanisms

that might underlie such performance. Section 3 discusses such results in the light of the litera-

ture. Finally, Section 4 draws the conclusions. Particular attention has been paid to make the

paper accessible to a wide interdisciplinary audience, as requested by the journal; this was also

facilitated by leveraging the heterogeneous background of the authors.

1 Methods

This section first illustrates the task used to test the model [15, 16] and gives an overview of its

architecture and functioning. Then it explains the HMMs relevant for this work, the spiking

neural network equivalent to a HMM used to implement the world model of the architecture,

the arbitration and exploration components of the architecture, and the procedure used to

search its meta-parameters. The initial draft of this paper was published in [53].

1.1 Target experiment

In the task used to test the model [15, 16], human participants are supposed to discover the

correct associations between three different stimuli and three possible motor responses chosen

from five possible ones (Fig 1). During the experiment, three different colours are projected on

a screen in a pseudo-randomised order, in particular through twenty triplets each involving

the three colours (each triplet is thus formed by three ‘trials’). After each colour perception,

the participants have to respond by pressing one of five buttons of a keyboard with their right

hand. Once this action is performed, a feedback on the screen informs the participants if the

association between the colour and the performed action was correct or wrong. The goal of the
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participants is to obtain a ‘correct’ feedback for each colour by selecting the corresponding

‘correct action’. Unbeknown to the participants, however, the correct action for each colour is

not set a-priori but is established dynamically during the experiment to obtain a fixed number

of exploration actions for the three colours among the different participants. In particular, for

each colour stimulus ‘S’ a fixed number of ‘incorrect feedback’ outcomes are given to the par-

ticipants before considering the performed action as correct: thus, for S1 a ‘correct’ feedback is

given at the second action (hence after one error), for S2 at the fourth action (after three

errors), and for S3 at the fifth action (after four errors). The colour stimulus considered as S1,

S2, and S3 is itself established dynamically as the first colour, not yet associated to a correct

action, presented within respectively the second, fourth, and fifth triplet. Notice that with this

procedure the participants are not supposed to explore all the possible colour-action associa-

tions but rather to only discover, and then exploit, the colour-action association needed to

accomplish the ‘correct feedback’ goal. The task has been designed to differentiate between

two phases of the participants’ behaviour: an initial exploration phase where they are expected

to search the correct colour-action associations, and a second exploitation phase where they

are supposed to repeat the found correct associations until the end of the task.

1.2 Goal-directed behaviour model: Overview of the architecture and

functioning

1.2.1 Architecture. Fig 2 gives an overview of the architecture and functioning of the

model. The architecture of the model is composed of a spiking neural network for planning

formed by four different layers, a spiking neural network for exploration formed by two neural

layers, and a non-neural arbitration component. The four layers forming the core neural net-

work, which supports planning by instantiating a HMM, are now considered more in detail.

Input layer. The input layer contains ten neurons, three encoding the stimuli (colours), five

encoding the actions (different possible finger presses), and two encoding the outcome (cor-

rect or incorrect feedback). The input layer sends all-to-all afferent connections to the neurons

of the associative layer.

Goal layer. The goal layer is composed of neurons encoding the goals to achieve, here two

neurons encoding the two goals of the visuomotor task: ‘obtain a correct feedback’ and ‘obtain

an incorrect feedback’ (the use of the latter is explained later). To commit to achieving a cer-

tain goal the agent activates the corresponding neuron on the basis of internal mechanisms

not simulated here. Goal neurons send all-to-all efferent projections to the associative

neurons.

Fig 1. The visuomotor learning task used to validate the model. Three colour stimuli are presented to the participants in a pseudo-random order, in particular in

triplets each containing each colour exactly once. The action consists in pressing one out of five possible buttons with the right hand. The figure refers to an ideal

participant who never repeats an error for the same colour and always repeats the correct action after discovering it. The four pictures refer to respectively the actions

after one, two, four, and five triplets: a red cross and a green tick-mark refer to incorrect and correct colour-action sequences respectively. The colour receiving the first

action in the second triplet is marked as the ‘first stimulus’ (S1), and such action is considered the as correct one for it. The colour different from S1 receiving the first

action in the fourth triplet is marked as the ‘second stimulus’ (S2), and such action is considered as the correct one for it. The colour different from S1 and S2 receiving

the first action in the fifth triplet is marked as the ‘third stimulus’ (S3), and such action is considered the correct one for it.

https://doi.org/10.1371/journal.pcbi.1007579.g001

PLOS COMPUTATIONAL BIOLOGY A spiking neural-network model of goal-directed behaviour

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007579 December 8, 2020 6 / 32

https://doi.org/10.1371/journal.pcbi.1007579.g001
https://doi.org/10.1371/journal.pcbi.1007579


Associative layer. The associative layer, forming the core of the model, is composed of 400

neurons, all connected to each other but without self-connections. The associative layer

receives the mentioned afferent connections from the input and goal layers, and sends all-to-

all efferent connections to the neurons of the output layer.

Output layer. As the input layer, the output layer is composed of ten neurons each one rep-

resenting one of the stimuli, actions, and outcomes of the task. The output layer receives the

mentioned afferent connections from the associative layer.

Together the four layers instantiate a neural HMM implementing the world model used for

planning. In particular, the input and output layers together form the observation part of the

HMM, and have an identical structure. Given that the connections of real neurons are unidi-

rectional, we used the two layers to implement separately the two functions played by the

observation part of the HMM, namely the input from the external environment and the possi-

ble generative reconstruction of such input based on internal causes. The associative layer

encodes the probability distribution over the hidden causes of the observations and the proba-

bilistic temporal dependencies between them. The goal layer can condition the latter distribu-

tions to possibly increase, with learning, the probability of sampling simulated colour-action-

feedback sequences that lead to the desired goal. An important feature of the HMM imple-

mented by the model is that, as in [49], each of the three events of each trial (colour, action,

feedback) is represented by a sequence of active HMM nodes that encode not only one of the

events but also the time step when it is present. For example, after learning a certain group of

Fig 2. Architecture and functioning of the model: Components and information flow. The architecture is formed by a planning component (representing input

patterns, hidden causes of input patterns within an associative layer, expected events including actions, and goals), an exploration component selecting actions when

planning is uncertain, and an arbitration component deciding when to plan, explore, or act. The figure also shows the timing of the processes taking place during a

trial, with the first two left graphs showing the Planning (exploitation) and (possibly) Exploration phases and the right two graphs showing the Action execution and

Learning phases. Blue arrows represent an example of information flow travelling stable connections during the Planning phase and red arrows represent information

flows travelling connections that are updated during the Learning phase.

https://doi.org/10.1371/journal.pcbi.1007579.g002
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neurons encodes an action and the neurons of the group fire in sequence for a certain number

of time steps corresponding to the action duration.

Alongside the planning components, the architecture is formed by the following additional

components used for exploration and arbitration.

Exploration component. This component is formed by two layers of spiking neurons,

namely (a) an input layer encoding the combinations of colours and goals (3 × 2 neurons cor-

responding to 3 colours and 2 goals), and (b) an output layer encoding the five possible finger-

press actions (five neurons).

Arbitration component. This component, currently not implemented with neural mecha-

nisms, decides when to plan, explore, or act in the world. The decision is made on the basis of

the level of knowledge of the world model, measured as the average entropy of its probability

distribution during the last ‘planning cycle’ (explained below). When entropy is lower than a

certain threshold, and a goal has not been found, planning continues, whereas if a goal has

been found the corresponding action is performed in the environment. If entropy is above the

threshold then the control is passed to the exploration component that selects the action to

perform in the world.

1.2.2 Functioning. The functioning of the model is summarised in Algorithm 1. The

model experiences multiple trials of the task (lines 1-3 of the algorithm): 60 trials (20 colour

triplets) with the goal set to ‘achieve a correct feedback’ (this reflects the target experiment

[15]) and 60 trials (other 20 colour triplets) with the goal set to ‘achieve an incorrect feedback’

(as explained below, these additional trials are used to produce a prediction). Each trial of the

task lasts for a certain number of discrete time steps (here 15). Each trial involves four phases

of functioning of the architecture: the planning phase, (possibly) the exploration phase, the

action execution phase, and the learning phase.

Algorithm 1 Pseudo-code of the model functioning.
1: loop VisuoMotorTrials 2 {1, 2, . . ., 120}
2: if (VisuoMotorTrials � 60) then Goal  AchieveCorrectFeedback
3: else Goal  AchieveIncorrectFeedback
4: EntropyThreshold  EntropyMax, Planning  TRUE, Action = NULL
5: InitialState  Observe(Environment)
6: while Planning do ⊳ Planning phase
7: ForwardSampling(InitialState)
8: Entropy  ComputeEntropy(AssociativeLayerActivation)
9: if (Entropy > EntropyThreshold) then
10: Planning  FALSE
11: else
12: if (SampledOutcome = Goal) then
13: Action  SimulatedAction()
14: Planning  FALSE
15: else
16: UpdateGoalAssociativeConnections()
17: LowerEntropyThreshold()
18: if (Action = NULL) then ⊳ Exploration phase
19: Action  ComputeExplorationAction()
20: PerformActionInEnvironment (Action) ⊳ Action phase
21: Outcome  Observe(Environment)
22: TrainWorldModel(InitialState, Action, Outcome) ⊳ Learning phase
23: if (Outcome = Goal) then
24: UpdateGoalAssociativeConnections()
25: else
26: TrainExplorationComponent(InitialState, Action, Outcome)
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At the beginning of each trial the system observes a colour (lines 5). After the colour obser-

vation, the model performs a variable number of ‘planning cycles’ (planning phase, line 6).

During a planning cycle, which lasts 15 steps as the actual trial (as in [49]), the input layer is

activated with the observed colour for the initial 5 time steps and then is switched off. As a con-

sequence, the associative-layer neurons fire in sequence to simulate a possible colour-action-

feedback concatenation (line 7).

During one planning cycle, the arbitration mechanism operates as follows. The sequential

neuron sampling causes a certain activation (membrane potential) of the neurons of the asso-

ciative layer, encoding the probability over the hidden causes: this probability distribution is

used to compute the entropy at each step, and this entropy is then averaged over the sampling

steps forming the whole planning cycle. This average entropy is considered as the measure of

the uncertainty of the world model (line 8). If this uncertainty is higher than a certain thresh-

old, the arbitration component stops planning as not enough confident on the knowledge of

the world model (lines 9-10). Instead, if the uncertainty is lower than the threshold the arbitra-

tion component checks if the sampled sequence has produced a state (‘read out’ in the output

layer) that matches the goal (lines 11-14), and if this is the case it stops planning and performs

the action in the environment. Instead, if the arbitration component is confident on the world

model but the sampling has not produced a sequence that matches the goal, it performs two

operations before starting a new planning cycle: first, it updates the goal-associative connec-

tions so as to lower the goal-conditioned probability of the wrong sampled sequence (line 16);

second, it lowers the entropy threshold of a certain amount to ensure that across the planning

cycles the probability of terminating the planning process progressively increases (line 17): this

avoids that the model gets stuck in planning. As soon as the planning process terminates, if the

model has not found an action that leads to the goal then the action is selected by the explora-

tion component (lines 18-19).

After this, the agent engages again with the environment. In particular, the action selected

either by the planning process or by the exploration component is performed in the environ-

ment (line 20). Consequently, the environment produces an outcome (correct/incorrect feed-

back) perceived by the agent (line 21). Based on the observation of the initial state (colour),

performed action (finger press), and outcome (correct/incorrect feedback) from the environ-

ment, the world model learns (line 22). In particular, it learns the internal representation

(hidden causes) of the observations (input-associative connections), the possible time depen-

dencies between them (internal connections of the associative layer), and the generation of the

observations (associative-output connections). Moreover, if the performed action has led to

actually accomplish the goal in the environment, the goal-conditioned probability of the sam-

pled successful sequence is increased (goal-associative connections; line 24). Instead, if the

action failed then only the exploration component is trained to lower the probability of select-

ing the same action in correspondence to the experienced initial state and goal (line 26).

Note that when a trial starts, the architecture performs a planning cycle to evaluate entropy:

this hypothesis is based on the fact that the task is novel. In a more general case where the

agent might also encounter familiar tasks a common habit/planning arbitration process might

evaluate if a habit is available to solve the task before triggering planning and the planning/

exploration arbitration process considered here.

Note also that in case of goal-failure the goal-associative connections are updated during

planning to exclude the multiple sampling of the same wrong sequence and action; instead, in

the case of goal-achievement such connections are updated after the action is successfully per-

formed in the environment, rather than in simulation during planning: this avoids a training

based on the possible false-positive errors of planning (false-negative errors are less likely dur-

ing planning as the world model learns on the basis of the ground-truth information from the
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world). The exploration component is instead trained after the failure of the action executed in

the world to avoid to repeat the selection of the actions found to be wrong (this mechanism is

analogous to the ‘inhibition-of-return’ found in visual exploration, leading to exclude from

exploration already explored items [54]); the component is instead not trained in case of suc-

cess as this would amount to habitual learning not possible in few trials. These hypotheses

were isolated through the search of the conditions for the correct reproduction of the target

human data of the visuomotor task while fulfilling the challenging constraint that planning has

to take place while learning the neural world model.

Based on these mechanisms, at the beginning of the visuomotor test the model tends to

sample random neuron sequences within the associative layer as the world model has no

knowledge on the environment. The arbitration component thus soon passes the control to

the exploration component that decides which action to execute, and this is performed in the

environment. With the accumulation of experienced trials, the world model improves by

learning the hidden causes of observations (colours, actions, feedback) and the time dependen-

cies between them. This leads the arbitration component to measure a higher confidence in

the world model, so planning continues and samples, with a higher probability, the (hidden

causes of) colour-action-feedback sequences that actually exist in the world. When a planning

cycle simulates an action that predicts a goal achievement in the output layer, and the action is

actually successful when performed in the environment, this leads to increase the goal-condi-

tioned probability of sampling such sequence again so that the next time the same colour is

encountered the sequence is readily selected by the planning process.

1.3 Goal-directed behaviour model: Detailed functioning

1.3.1 The hidden Markov model represented by the world model. This section first

illustrates the graphical models corresponding to theHidden Markov Models (HMMs) and the

Partially Observable Markov Decision Processes (POMDPs) on which planning as inference is

grounded, and then explains the particular HMM instantiated by the world model of our

architecture. Next the section illustrates the spiking neural network used to implement this

world model and links it to the probabilistic aspects of HMMs.

Fig 3 shows a HMM [49, 55] represented through a graphical model. A HMM assumes that

the agent cannot directly access the world states (they are ‘hidden’ to it) but only infer them on

the basis of noisy observations. In particular, the model represents the world states with a dif-

ferent probability distribution, over the possible hidden causes, for each time step. The state

probability distribution at each time step is assumed to depend only on the state of the previ-

ous time step (Markov property); the probability distribution over observations is assumed to

depend only on the current state. An agent can use a HMM representing the world dynamics

to internally simulate possible sequences of states that the environment might traverse, e.g. to

represent the places seen while moving through a corridor or the positions of a displaced

object.

Building on HHMs, POMDPs again assume that the agent can access the states of the world

only indirectly through noisy sensors (they are ‘partially observable’) but they also consider the

agent’s behaviour, in particular the probability distributions of actions at different times.

Action probability distributions are conditioned on the internal representations of states (thus

forming probabilistic policies), and over perceived rewards. Rewards are considered as addi-

tional observations and assumed to depend on other events such as the world states (different

models can make different assumptions on rewards). POMDPs can be used to implement

planning by conditioning probability distributions on high rewards (or on a reached goal
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state), and then by inferring the probability distributions of the state-action sequences causing

them with a high likelihood (planning as inference, [24–26]).

A HMM considers the hidden causes of world states, ht, and observations of them, ot, as

random variables at the time steps t 2 {0, 1, . . ., T} forming the sequencesH = {h0, h1, . . ., hT}

and O = {o0, o1, . . ., oT}. The joint probability of these sequences can be expressed and fac-

torised as follows given the assumptions on the probability independencies of the model

shown in Fig 3A:

pðH;OÞ ¼ pðh0Þ � pðo0Þ �
YT

t¼1

½pðotjhtÞ � pðhtjht� 1Þ� ð1Þ

This formula highlights the two key elements of the HMM, namely the generative model of

how the world states (hidden causes) cause the observations, p(ot|ht), and the prediction model
of how a world state causes the following state p(ht|ht−1) (in the neural implementation of the

HMM we will equivalently consider the probabilities p(ot|ht−1), and also p(ht|ot−1), to follow

the general rule of physical causality for which the current state of any part of the neural net-

work and of the world can depend only on the past state of other parts of the network or the

world).

The HMM has parameters θ that are adjusted on the basis of collected data (observations)

so that the probability distribution p(O|θ) converges towards the empirical distribution from

the world, p�(O):

y
�
¼ arg min

y

DLðp�ðOÞkpðOjyÞÞ ð2Þ

where DL(.k.) is the Kullback-Leibler divergence between the two distributions and θ� are the

searched optimal parameter values of the model. This problem cannot be solved in closed

form and so θ� are commonly searched numerically, in particular through an expectation-max-
imisation (EM) algorithm. Here we refer to how this is done in versions of HMMs [49, 56]

most similar to the neural implementation of HMMs considered here. For these models, the

EM algorithm converges towards the solution by alternating an estimation step (E-step) and a

maximisation step (M-step): broadly, the E-step samples a sequence of specific values of the

hidden causes,H0, based on the posterior distribution p(H|O0, θ) dependent on the actual

observations O0; the M-step adjusts θ to increase p(H0|O0, θ). In the E-step, the sampling ofH0

Fig 3. Graphical models of some probabilistic models usable to represent the dynamics of the world in planning systems. Nodes represent

probability distributions and directional links represent conditional dependence between probability distributions. (a) Hidden Markov Models

(HMMs): these are formed by state nodes ‘s’ and observation nodes ‘o’. (b) Partially Observable Markov Decision Processes (POMDPs): these are

also formed by action nodes ‘a’ and reward nodes ‘r’ (different versions of these models are possible based on the chosen nodes and their

dependencies). (c) The HMMs considered here, where the planner knows the currently pursued goal ‘g’ and observes not only states but also actions

(note that the task considered here involves a sequence of independent state-action-state experiences).

https://doi.org/10.1371/journal.pcbi.1007579.g003
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given O0 can be approximated by forward sampling [57], i.e. by sampling the ht distributions in

sequence, staring from h0, given the fo0
0
; o0

1
; ; ::: o0tg values observed until t.

1.3.2 The spiking neural-network world model. The neural implementation of the world

model instantiating the HMM is based on two learning processes. The first process, involving

the input-associative connections, learns the hidden causes of different observations as proba-

bility distributions of the spikes of the neurons of the associative layer. The second process,

involving the connections internal to the associative layer, learns the temporal dependencies

between the hidden causes of observations as conditional probability distributions of the spikes

of the neurons of the associative layer taking place at succeeding time steps.

The membrane potential of each neuron of the associative layer reflects the activation that

would result from the typical connectivity pattern of cortex and other areas of the brain,

formed by neurons that reciprocally inhibit each other through inhibitory interneurons. This

connectivity pattern tends to keep a constant overall firing rate of the layer. In detail, the mem-

brane potential uk of a neuron k of the model is:

ukðtÞ ¼ ûkðtÞ � iðtÞ ð3Þ

where i(t) is the common inhibition received by all neurons caused by the inhibitory interneu-

rons to which they project (this inhibition process is abstracted with a soft-max function, see

below), and ûkðtÞ is the total activation received from other neurons:

ûkðtÞ ¼
XI

i¼1

wki � siðt � 1Þ þ
XG

g¼1

wkg � sgðt � 1Þ þ
XA

a¼1

wka � saðt � 1Þ ð4Þ

where wki are the input-associative connection weights, wkg are the goal-associative connection

weights, wka are the internal associative connection weights, si(t), sg(t), and sa(t) are the incom-

ing spike signals (s 2 {0, 1}) from the neurons of respectively the input, goal, and associative

layer. In the simulations reported in the paper, we also added a Gaussian noise (standard devi-

ation �) to the membrane potential ûkðtÞ of associative and output neurons to check the

robustness of the model: this did not alter the results with respect to the model not encompass-

ing such noise.

We then assume, as in [49, 58], that the firing rate vk(t) of a neuron k, reflecting its spiking

probability, is exponentially dependent on the membrane potential:

vkðtÞ ¼ v � eukðtÞ ð5Þ

where v is a constant scaling the firing rate. This implies the following dependency of the neu-

ron firing rate on the activation from other neurons and on the inhibition from the common

inhibition:

vkðtÞ ¼ v � eðûkðtÞ� iðtÞÞ ¼ v �
eûkðtÞ

eiðtÞ
¼ v �

eûkðtÞ
PL

l¼1
eûlðtÞ

ð6Þ

where v now shows to be the total constant firing rate of the population and i(t) is assumed to

be:

iðtÞ ¼ ln
XL

l¼1

eûlðtÞ ð7Þ

The spiking models we are considering [38, 49] were implemented by assuming continuous

time and an inhomogeneous Poisson process to generate the timing of the spikes. However,

here we used the version of the model proposed in [38] that considers discrete time steps, a
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time-binned binary Excitatory Postsynaptic Potentials (EPSP), and a winner-take-all competi-

tion to generate a spike at each step. Although having less biological features, this simpler ver-

sion of the model facilitates the analyses and derivations and at the same time preserves (and

possibly strengthens) the probabilistic interpretability of the spiking networks considered. By

assuming v = 1, Eq 6 becomes a soft-max function that abstracts a lateral inhibition-based win-

ner-take-all neural competition. Indeed, now the layer constant total firing is
PK

k¼1
vðkÞ ¼ 1

and v(t) can be interpreted as v(t) = pt(k), with pt(k) being a categorical probability distribution

indicating the likelihood that the neuron with index k fires a spike at time t while the other

neurons remain silent. Following [49], the neurons also had a refractory period r obtained

by subtracting from uk(t) a value decaying exponentially at each step t (t = 0, 1, 2, . . .) as

r ¼ r0 � exp � t
t

� �
(where r0 = 1.1, τ = 9.5). This feature revealed very important to allow the

emergence of groups of neurons encoding the input patterns as latent causes. The output layer,

receiving afferent connections from the associative layer, is formed by a set of neurons behav-

ing as the associative layer neurons.

The weights of the connections linking the input-associative layers, the associative-output

layers, and the associative neurons between them, are updated through a Spike-Timing Depen-

dent Plasticity (STDP) rule [59–62]. In particular, we used the following STDP learning rule

from [38, 49] to update a connection weight wpost,pre linking the pre-synaptic neuron pre to the

post-synaptic neuron post:

Dwpost;preðtÞ ¼ z � spostðtÞ � ðe� wpost;pre � spreðt � 1Þ � cÞ ð8Þ

where z is a learning rate parameter, Δwpost,pre is the size of the connection weight update,

spost(t) and spre(t − 1) are respectively the spike activations (s 2 {0, 1}) of respectively the post-

synaptic neuron in the current time step and the pre-synaptic neuron in the last time step, and

c is a constant (c 2 [0, 1]). The learning rule operates as follows. The rule updates the weight

only when the post-synaptic neuron fires (spost(t) = 1). When this happens, but the pre-synaptic

neuron does not fire (spre(t − 1) = 0), then wpost,pre decreases of −z � c. This leads the post-synap-

tic neuron to form negative connections with all the pre-synaptic neurons that tend to not

fire before it fires. Instead, if the pre-synaptic neuron fires before the post-synaptic neuron

(spre(t − 1) = 1), then wpost,pre increases if c < e� wpost;pre and decreases otherwise. This implies

(as it can be seen by solving for Δwpost,pre(t) = 0 and setting spost(t) = 1 and spre(t − 1) = 1) that

wpost,pre will tend to converge to the positive point w�post;pre ¼ � lnðcÞ reached when e� wpost;pre ¼ c.
Overall, for a given neuron the rule thus tends to form positive incoming connections from

neurons that fire just before it fires, and negative connections from all other neurons.

The connections that the model learns are the means through which the system implements

conditional probabilities. For example, initially the associative units k, each representing possi-

ble hidden causes of observations, tend to fire with a certain prior probability distribution, say

p(k). The formation of input-associative connections allows an observation i to generate the

posterior conditional probability distribution p(k|i) that for example implies an increased

probability of selection of the hidden cause k.

Within the associative layer, the learning rule leads to form a connectivity that supports a

sequential activation of the neurons encoding the hidden causes of the observations, where the

sequence reflects the temporal order in which the observations, reflecting the world states, are

experienced by the HMM. The reason is that once the hidden causes are formed, based on the

input-associative connections, then they tend to fire in sequence under the drive of the obser-

vations. As a consequence, the learning rule leads each associative neuron to connect with the

associative neurons that fired before it and to form negative connections with those that did

not fire before it. In this way, the connections within the associative network tend to form
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chain-like neural assemblies. These connections are hence able to represent the temporal

dependencies between hidden causes, for example between a and k corresponding to two suc-

ceeding observations, as conditional probabilities p(k|a). Importantly, if the system observes

different events following the initial observation of the trial (e.g., different actions and different

outcomes after a certain initial colour), the world model will exploit its stochastic neural pro-

cesses to represent such possible alternative sequences of events. This is at the core of the archi-

tecture’s capacity to internally simulate alternative courses of actions and events and hence to

plan in a goal-directed manner.

The same learning rule is also used to train the associative-output connections. Initially, the

output layer expresses a probability distribution, say p(o), that tends to be uniform and so

when sampled it generates unstructured observations. With learning, the world model

strengthens some connections between the spiking sequences sampled within the associative

network and the observations activating the output layer. When the associative-layer world

model samples an internal sequence of spikes, this leads to generate the observations on the

basis of the reconstruction probability p(o|k).

When the planning process has to generate an action to perform, or a predicted feedback to

compare with the goal, the generated event at the output layer is considered to be the one that

fired the most during the planning cycle. In cases where the system should generate sequences

of events involving multiple actions and predicted states, one should consider other ‘reading

out’ mechanisms, for example one where an event is generated each time the units encoding it

fire a minimum number of spikes in sequence.

The goal-associative connection weights are updated on the basis of the failure to achieve

the goal during planning and in the case of success when the action is performed in the envi-

ronment. The weight update is done on the basis of the following reinforcement learning rule:

Dwkg ¼ Z �m � ETk �
wmax � jwkgj

wmax

� �

� sg ð9Þ

where η represents the learning rate,m is the pseudo-reward, equal to 1 if the sequence

resulted in a successful goal matching (when executed in the environment) and −1 if it resulted

in a failure (during planning), ETk is the Eligibility Trace of the associative unit k, equal to 1

for units that have fired at least once during the planning cycle/trial and to 0 otherwise, and

wmax is the maximum absolute value that the weight can reach (wmax = 0.5), and sg is the activ-

ity of a goal neuron. The goal-associative connections allow the goal g to condition the proba-

bility distribution over the hidden causes, p(k|i, a, g). With learning, this allows the goal to

condition the probability of the sampled hidden causes sequences so as to increase the likeli-

hood of those that involve the correct action. Moreover, when the goal changes, the model is

able to modify the conditioned probability of the sequences so as to increase the probability of

sampling a different sequence, based on the same world model, achieving the new desired

goal.

1.3.3 Arbitration and exploration components. The arbitration component decides if

continuing to plan or to pass the control to the exploration component and/or to perform the

action selected by either the planning or the exploration process. The component makes these

decisions on the basis of a key information, namely an estimation of the level of knowledge of

the world model for the given trial depending on the observed colour. This knowledge is

related to the fact that the world model has possibly learnt that some sequences of events

(action-feedback) might follow the initial observation. A good level of knowledge means that

the probability mass of the distribution pt(k|i, a, g) during the planning cycle steps t is concen-

trated on few possible hidden causes. The measure of this knowledge at a given time step t can
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thus be based on the entropy of the probability distribution expressed by the associative layer:

Htðkji; a; gÞ ¼ �
XK

k¼1

ptðkji; a; gÞ � lnðptðkji; a; gÞÞ ð10Þ

where the maximum value of such entropy isHmax = ln(K) corresponding to a uniform proba-

bility distribution where each k neuron of the layer has the same probability of firing p(k) = 1/

K. The measure of the uncertainty H of the world model in a given planning cycle lasting T
time steps is in particular defined as:

H ¼
1

T

XT

t¼1

Htðkji; a; gÞ
Hmax

� �

ð11Þ

At the end of each planning cycle, the arbitration component computes H, compares it with

an entropy threshold HTh(t), compares the action-outcome z with the pursued g, and selects

one of three possible functioning modes of the architecture:

• H<HTh(t) and z 6¼ g. The goal-associative connections are updated and a new planning

cycle starts.

• H<HTh(t) and z = g. Planning stops and the action of the last planning cycle that caused the

anticipation of the goal is executed in the world (without activating the exploration

component).

• HTh(t)<H. Planning stops and the exploration component selects the action to perform.

The entropy threshold decreases linearly with each planning cycle so that the exploration

component is eventually called to select the action if the planning process fails to reach the

goal multiple times:

HThðtÞ ¼ � � ðf � dÞ ð12Þ

where � is the value to which the entropy threshold is set at the beginning of the trial (and the

planning process), δ is its linear decrease, and f is the number of failed planning cycles per-

formed in the trial.

The exploration component is a neural network formed by two layers. The first is an input

layer formed by 6 neurons encoding the elements of the Cartesian product between the possi-

ble 3 colours and 2 goals. The second is an output layer formed by 5 neurons representing the

possible actions, receiving all-to-all connections from the input layer. When the exploration

component is called to select the action, the input layer is activated according to the current

colour-goal combination (hot-vector activation), the activation potential of the second layer

units is computed as usual as the sum of the weighed inputs, and an action is chosen on the

basis of a soft-max function (Eq 6). When the action leads to a negative reward (−1, received in

case of goal missed), the connection weights of the component are updated using the same

reinforcement learning rule used for the goal layer (Eq 9). This tends to exclude actions that

are not useful for the current state-goal combination, thus fostering exploration. Note that an

additional slow-learning component similar to the exploration component might be used to

model the formation of habits in experiments involving long learning periods.

1.4 Search of the model parameters

The model functioning depends on seven important parameters, indicated in Table 1. We

searched the best values of those parameters by fitting the model behaviour to the
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corresponding data of the human participants. In particular, we randomly sampled and evalu-

ated 100,000 parameter combinations. For each combination, we recorded and averaged the

behaviour of 20 ‘simulated participants’, in particular their performance in the 20 trials for

each of the stimuli S1, S2, and S3, and the average over colour of the reaction times (this

because the original data on the reaction times of humans were not separated). Such three per-

formance datasets and one reaction-time dataset were compared with the corresponding aver-

age data from 14 human participants through a Pearson correlation coefficient Rd,m computed

as:

Rd;m ¼
Cd;m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vd � Vm
p ð13Þ

where Cd,m is the covariance between the data from humans, d, and data from the model,m,

and Vd and Vm are their respective variances. In particular, the coefficient was computed sepa-

rately for the different data sets (performances and reaction times) and then averaged.

The range of the parameters explored by the search, and the best parameter values that it

found, are shown in Table 1. The best parameter values, that had a correlation coefficient of

0.72, were used in all the simulations illustrated here.

2 Results

This section illustrates the behaviour and functioning of the model when tested with the visuo-

motor learning task proposed in [15] and described in Sec 1.1.

2.1 Behavioural analysis

Fig 4 shows that the model exhibits a performance similar to the human participants by com-

paring the probability of correct responses in repeated trial triplets for 14 human participants

(from [15]) and 20 simulated participants (obtained with different seeds of the random-num-

ber generator). The performance of the model is similar to the human one for stimuli S1 and

S2 whereas it is slightly lower for S3. Once the model finds the correct action for a stimulus,

when it encounters such stimulus again it reproduces the correct action with a high probability

similarly to the humans. The architecture takes more cycles to converge to such a high proba-

bility for S3 than for S1 and S2 because the planner has a larger number of wrong sequences to

explore and so has a higher probability of wrongly anticipating a correct feedback. This prob-

lem is less impairing for S1, and in part for S2, involving fewer wrong sequences during

planning.

Fig 5 compares the reaction times of the same human participants (from [15]) and the sim-

ulated participants considered in Fig 4. The reaction times of the model are produced by these

Table 1. Parameters identified with the grid search technique. In particular, parameter names, minimum and maxi-

mum range, and values found by the search.

Name Range min Range max Found value

STDP learning rate (z) 0.1 1.0 0.96

STDP threshold (c) 0.1 1.0 0.67

Planner learning rate (η) 0.001 1.0 0.008

Softmax temperature (τ) 0.01 0.1 0.02

Neural noise (�) 0.01 0.1 0.02

Entropy max threshold (�) 0.3 1.0 0.74

Entropy decrease (δ) 0.01 0.2 0.12

https://doi.org/10.1371/journal.pcbi.1007579.t001
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processes. The arbitration component decides to implement a different number of planning

cycles, each involving the generation of colour-action-feedback sequences, depending on the

knowledge stored in the world model. If a larger number of planning cycles is performed, this

results in longer reaction times. As shown in the graph, the reproduction of the human reac-

tion times is particularly interesting and challenging as it has an inverted ‘U’ shape. This shape

is reproduced and accounted for by the model on the basis of the following processes. In the

first trials, for each stimulus the entropy (uncertainty) of the world model is high as the asso-

ciative layer expresses a rather uniform probability distribution. Indeed, the component has

Fig 4. Comparison of the performance of the human and simulated participants. The performance (y-axis) is measured as the proportion of correct feedback over

the trial triplets (x-axis), plotted separately for the three different colour stimuli (S1, S2, S3). Curves indicate the values averaged over 14 human participants and 20

simulated participants; error bars indicate the standard error. The data of human participants are from [48].

https://doi.org/10.1371/journal.pcbi.1007579.g004

Fig 5. Comparison of the reaction times of the humans and simulated participants. (A) Reaction times of human participants averaged over S1, S2, and S3 (y-axis)

for the ‘representative steps’ ([48]; x-axis); the ‘representative steps’ allow the alignment of the reaction times of the three stimuli so as to separate the exploration phase

(first 5 steps) and the exploitation phase (6 steps onward); to this purpose, the reaction times for S1 obtained in succeeding trials from the first onward is assigned the

steps (used to compute the averages shown in the plot) ‘1, 2, 6, 7, . . .’, whereas S2 is assigned the steps ‘1, 2, 3, 4, 6, 7, . . .’, and S3 is assigned the steps ‘1, 2, 3, 4, 5, 6,

7, . . .’; data are taken from [48]; (B) Reaction times of the model, measured as number of planning cycles performed in each trial, plotted in the same way as done for

humans. Error bars indicate mean standard errors.

https://doi.org/10.1371/journal.pcbi.1007579.g005
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still to identify the hidden causes of stimuli and actions, so the neurons encoding them tend to

spike at a similar rate. As the entropy is high, the arbitration component tends to soon pass the

control to the exploration component and so the reaction times are low in the initial trials. In

the following trials the world model forms representations of the experienced colour-action-

feedback sequences and so it assigns to them a higher posterior probability with respect to

other patterns. The arbitration component thus tends to compute a lower entropy, the archi-

tecture plans for longer, and the reaction times get longer. During this planning process, the

associative component tends to sample the learnt sequences with a high probability condi-

tioned to the observed colour. If none of the sequences leads to predict an event that matches

the pursued goal through the output layer, the probability of such sequences is however

decreased under the conditioning of the goal; the control is thus passed to the exploration

component. When, during these trials, the action performed in the world manages to produce

the desired goal, the world model learns the corresponding sequence and assigns to it a high

posterior probability. When the colour of such sequence is observed again, the sequence is

sampled with a higher probability and results in a successful outcome-goal match. The arbitra-

tion component stops planning and the action is performed in the world. The reaction times

thus become short again. Overall these processes reproduce the inverted ‘U’ shape of the reac-

tion times similar to the one observed in humans.

2.2 Model internal dynamics

Fig 6 shows how the activation of the associative layer during planning triggered by the differ-

ent colours evolves across the succeeding trials of the test due to the increasing knowledge

acquired by the world model and by the goal bias. In the initial phases of learning (trials T1-T3

for S1, S2, and S3), the prior probability of activation of the neurons of the associative layer

tends to be quite uniform, thus resulting in a random spike sampling of the neurons still not

encoding in a sharp way the hidden causes of different colours, actions, and outcomes. This

means that the model has not yet identified specific hidden causes of the observations, the tem-

poral relations between them, and the correct colour-action-feedback sequences associated to

the three colours.

Based on the observations of the world, the STDP rule acting on the input-associative con-

nections leads the associative layer (world model) to form an internal representation of the

hidden causes of the observations, namely of the colours, actions, and feedback. At the same

time, the STDP plasticity internal to the associative layer leads it to form a HMM that repre-

sents in an increasingly accurate fashion the time-related probabilistic dependencies between

the discovered hidden causes. Finally, while possible sequences are encoded by the associative

layer, starting from the observed colour, the STDP acting on the goal-associative connections

progressively increases the probability of sampling sequences that lead to achieve the goal and

to decrease the probability of the sequences that fail to do so.

The effect of these plasticity processes can be seen in the figure graphs (Fig 6). With respect

to S1 (three graphs at the left), a population of neurons encoding the correct colour-action-

feedback emerges during the initial trials (T1-T3 graph) and later manifests with a sharp acti-

vation (T4-T15 graph). For colours S2 and S3 (respectively second and third column of

graphs) a successful population of neurons encoding the correct colour-action-feedback takes

longer to emerge: during trials T4-T15 (see related graphs) various neural populations fire

with a certain probability, and only in trials T16-T20 one stable population encoding the cor-

rect sequence linked to the colour emerges. Importantly, during these learning process the

world model, which tends to record any aspects of the world dynamics independently of the

fact that it is useful to pursue the current goal or not, also learns sequences leading to an
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incorrect feedback. The next section shows how this knowledge might become useful to

accomplish other goals.

Fig 7 shows, with analogous graphs, how the activation of the output layer during the plan-

ning trials evolves in time due to the increasing knowledge acquired by the world model. The

Fig 6. Evolution of the spiking activity of the associative layer units while planning, across the experiment trials. To best interpret the figure, recall that: 15

planning cycles formed one planning sequence (forward sampling), a variable number of planning sequences was generated in one trial for a given colour, 3 trials for

the different colours formed a triplet, 20 triplets formed the whole test. The figure shows data collected while the model planned during the trials of the experiment

related to each colour, from trial one (T1) to trial 20 (T20). Each column of graphs corresponds to a different colour stimulus, respectively S1, S2, and S3. For each of

the nine graphs, the x-axis indicates the indexes of the 400 neurons of the associative layer, and the y-axis indicates the 15 planning cycles of the planning sequences

produced in each trial (in each graph the planning cycles progress from bottom to top). Each graph in particular reports the spikes of each neuron for multiple trials

(T1-T3 for the bottom row of graphs, T4-T15 for the middle row, and T16-T20 for the third row) and for the multiple planning cycles of those trials: the colour of each

little line indicates the proportion of spikes of the corresponding neuron during those trials and cycles.

https://doi.org/10.1371/journal.pcbi.1007579.g006

Fig 7. Evolution during trials of the activation of the output layer units encoding the predicted observations and actions. The three columns of graphs refer to the

three colour stimuli; the three rows of graphs correspond to different succeeding sets of trials of the task (T1-T3, T4-T15, T16-T20). Each of the nine graphs shows the

activation of the 10 output units (x-axis: units 1-3 encode the three colours, units 4-8 encode the 5 actions, and units 9-10 encode the correct/incorrect feedback)

during the 15 steps of each trial (y-axis). The colour of the cells in each graph indicates the activation (normalised in [0, 1]) of the corresponding unit, averaged over

the graph trials (e.g., T1-T3) and the planning cycles performed within such trials.

https://doi.org/10.1371/journal.pcbi.1007579.g007
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firing of the output layer during planning expresses the predictions of the events (colours,

actions, and feedback) that might happen starting from the observed trial colour. Such predic-

tions are based on the simulation of the possible evolution of the world events based on the

HMM instantiated by the associative layer. Regarding S1 (left three graphs of the figure), dur-

ing the first trials (T1-T3) the world model has no or little knowledge on the dynamics of the

world, and so the activation of the units in the output layer reflect a uniform probability distri-

bution leading to random predictions of the trial events. With additional experiences of trials

involving S1 (T4-T15), the world model starts to learn to represent the trial events and, under

the conditioning of the current goal, to assign a high probability to the correct colour-action-

feedback sequence. As a consequence, the probability distribution of the output layer starts to

correctly predict such correct sequence.

During trials T4-T15 and T16-T20 the same process happens for the correct sequences of

the two colours S2 and S3. Also for these stimuli, towards the end of all trials (T16-T20) the

probability distribution expressed by the output layer, conditioned to the associative layer acti-

vation, has converged to a probability close to 1 for the correct sequences.

Fig 8, showing the neurons of the associative layer spiking in sequence during repeated

planning cycles, demonstrates how emergent generativity (Sec ‘Introduction’) allows the model

to imagine different possible future action-outcome trajectories in correspondence to the same

colour stimulus. The figure also highlights the trajectory that leads to match the ‘success’ goal.

To collect the shown data, we let the model learn until trial T7 for each colour to ensure that it

could learn several possible trajectories for it. After this training, we turned off the goal layer to

avoid any bias of the associative layer, and let the model perform 400 planning trials for each

colour. In this condition, the associative layer responds to the same colour by triggering the

spikes of different possible neuron sequences encoding different colour-action-feedback

sequences. Importantly, the figure shows how, when the simulation reaches a ‘branching

Fig 8. Possible neural trajectories simulated by the model during planning. The three graphs show different neural trajectories that the associative component can

generate for respectively the three colours S1, S2, and S3. For each graph, the x-axes indicates the associative neurons and the y-axis the planning time steps and a dot

indicates that the corresponding neuron was active. The bolder curve within each graph marks the correct trajectory for the pursued goal ‘correct feedback’.

https://doi.org/10.1371/journal.pcbi.1007579.g008
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point’ after the activation of the neurons encoding a certain colour, the stochasticity of neurons

at the low-level is amplified by the competition between rival neural populations at a higher-

level and this allows the model to imagine different possible actions to perform and feedback

to receive. This generativity process supports the ‘cognitive’ exploration of different possible

colour-action-feedback trajectories possibly resulting in a successful matching of the ‘correct

feedback’ goal.

2.3 Predictions of the model

An important advantage of planning is that the world model can store general knowledge on

the dynamics of the world and this can be used to accomplish different goals. This is a proto-

typical feature of goal-directed systems that allows them to rapidly switch behavior if the goal

changes (behavioral flexibility). It was thus interesting to check to which extent the current

architecture preserved this capacity since it incrementally acquires a partial world model while

solving the visuomotor task (‘partial’ as the solution of the visuomotor task requires the discov-

ery of only the correct colour-action-feedback sequence for each colour, not of all possible

sequences). To this purpose, after the architecture solved the task as reported in the previous

section, it was given 20 additional trial triplets to pursue the different goal of ‘obtaining an

incorrect feedback’ in correspondence to the three colours. Fig 9A shows the results of this

test. When the goal is switched, the architecture is able to rapidly change behaviour and choose

the sequences that lead to the desired new goal given the colour. What happens is indeed that,

under the conditioning of the observed colour, the world model already has the representa-

tions of (a) the hidden causes of the possible observations and (b) of the possible sequences

with which such observations might be experienced. In particular, since the previous goal unit

is now off, the probability of the different sequences tends to be similar, and so the system

tends to sample all of them equally during planning. However, this allows the architecture to

rapidly discover a sequence that leads to the desired new goal and thus to increase the proba-

bility of generating such sequence conditionally to the new goal.

Regarding the reaction times (Fig 9B), the model shows a transient increase of their size in

correspondence to the goal switch. This is due to the fact that with the new goal the architec-

ture needs to perform the sampling of some sequences before finding the successful ones. The

reaction time is higher for S1 than for S2 and S3 as for it the model has less sequences available

Fig 9. Behaviour of the system when the goal is switched to a new one, averaged over 20 simulated participants. (A) Performance, averaged over the simulated

participants, measured as probability of selection of the correct action (y-axis) along the trial triplets (x-axis); the pursued goal is switched from getting a ‘correct

feedback’ to getting an ‘incorrect feedback’ at triplet 20. (B) Average reaction times measured during the same experiment shown in ‘A’.

https://doi.org/10.1371/journal.pcbi.1007579.g009
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to reach the new ‘incorrect feedback’ (instead, the model has exactly one sequence to achieve

the ‘correct feedback’ goal for each colour).

These results represent a prediction of the model that might be tested in a future experi-

ment with human participants through a test analogous to the one presented in this section. In

particular, the test should measure the dynamics across trial triplets of the performance and

reaction times differentiated by the three colours (S1/S2/S3), as shown in Fig 9.

3 Discussion

This section discusses the main features of the model by first analysing the results presented in

the previous section and then by considering the model general features by also comparing it

with the current state-of-the-art probability-based or spiking neural-network models of goal-

directed behaviour and planning.

3.1 Discussion of the specific results

As shown in Sec 2.1 and in Fig 4, once the model finds the correct action for one colour the

probability of correct answers rises steeply, in agreement with what happens with the human

participants of the target experiment. Moreover, as in humans, the architecture takes more

cycles to converge to such a high probability for S3 because the planner has a larger number of

wrong trajectories to explore and so has a higher probability of wrongly anticipating a correct

feedback; this problem is less impairing for S1 and S2 involving fewer wrong trajectories that

the planning process has to consider. Note how this result, and the one on the reproduction of

the reaction times commented below, is not a mere fitting exercise as the architecture repro-

duces the target data while satisfying a number of biological and ecological constraints, in par-

ticular: (a) it solves the task only through goal-directed process, and not through habitual

mechanisms as done by previous models of the task [48]: this is requested by the short dura-

tion of the task that does not allow habit acquisition; (b) the world model, representing the

core of the architecture, relies on spiking-neural mechanisms and biologically plausible cir-

cuits; (c) planning takes place while the world model is being acquired, as imposed by the solu-

tion of tasks involving new portions of the environment; (d) the model uses an unsupervised

learning process.

Fig 5 shows how the model reproduces human reaction times quite accurately as the differ-

ences with the target human data are due to some simplifying assumptions of the model. The

differences are that the reaction times are above zero for the human participants and close to

zero for the model, and that in the first trial they are lower than those of the steady-state trials

for the human participants whereas they are similar for the model. The reasons of the first dif-

ference is that human participants are likely endowed with an additional habitual/goal-

directed arbitration mechanism making a decision before the second exploration/exploitation

arbitration mechanism considered here is activated, and this increases the reaction times of a

certain amount for all trials. The second difference could be explained by the fact that human

participants listen to an explanation of the task before solving it and so they likely start the test

having already decided that they should not plan in the first trial, which thus has a low reaction

time; instead, the model attempts to plan also in the first trial to check if it is able or not to

solve the task.

A second result is the model capacity to reproduce the inverted ‘U’ shape of the reaction

times exhibited by human participants and to explain it. In particular, the model suggests that:

(a) in the initial trials, the world model has learnt no state-action sequences, its entropy is

high, and so the arbitration component passes the control to the exploration component: the

reaction times are hence short; (b) when the world model has learnt some sequences, but these
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are wrong, planning implements several cycles to explore such sequences and to lower their

goal-conditioned probability, so the arbitration component takes time to pass the control to

the exploration component: the reaction times are hence long; (c) when the world model has

learnt the correct sequence, entropy is low and thus the planning process samples the correct

sequence with a high probability, obtains a successful matching of the goal, and triggers the

performance of the related action: the reaction times hence become short again. Another

model [48] used an entropy-based measure as a means to decide to give control to a goal-

directed component or to a habitual component, and reproduced the ‘U’ shape of the reaction

times observed in the target experiment considered here. This model was based on a goal-

directed component formed by a Bayesian Working Memory (a memory of the probabilities of

the time-dependent states, of the one-step environment transitions, and of the rewards) and

a habitual component (based on Q-learning). The model reproduced the ‘U’ shape of reaction

times as the sum of two values: (a) the logarithm of the number of items in working-memory,

related to the performed trials; (b) the entropy of the action probabilities. The inverted ‘U’

shape of reaction times was obtained by the fact that ‘a’ tends to increase with the accumula-

tion of items in memory while ‘b’ tends to decrease with the diminishing variance of the action

probability. In comparison, the model presented here produces the inverted ‘U’ shape as an

emergent effect of the change of knowledge of the world model. The empirical and computa-

tional implications of the two hypotheses presented here and in [48] deserve further

investigations.

Figs 6, 7 and 8 visualise the internal functioning of the model, in particular the activation of

neurons that dynamically encode multiple sequences of colour-action-feedback during plan-

ning. The figures highlight two relevant features of the model, in particular: (a) its capacity to

autonomously form neural internal representations (hidden causes) of the observations at dif-

ferent times and to activate them in sequence: this capacity relies on the used STDP unsuper-

vised learning rule and the features of the model architecture; (b) the sampling done by spikes

of the probability distributions expressed by the world model, and the emergent generativity

of the architecture (further discussed below): these processes rely on the stochastic nature of

the model, allowing it to ‘imagine’ different possible action-feedback sequences in correspon-

dence to a colour stimulus.

Fig 9 shows that once the world model has acquired goal-independent knowledge on the

environment dynamics, the architecture can use it to pursue different goals ‘on the fly’, i.e.

without the need to further train the world model. This feature is the hallmark of the flexibility

of goal-directed behaviour and is shared with the previously state-of-the-art planning-as-infer-

ence models relying on spiking neural-networks [39, 42]. However, these models were not

used to produce specific empirical predictions as here.

3.2 Discussion of the general features of the model

The results also highlight the novelties of the proposed architecture with respect to the current

models. A first novelty with respect to the previous models implementing planning as infer-

ence based on brain-like mechanisms [38–40] is that our architecture proposes an hypothesis

on how organisms might learn the world model while using it for planning. This is a key chal-

lenge for planning, as recently highlighted in [46]. The challenge is different from the explora-

tion/exploitation issue in model-free models [4], and requires arbitration mechanisms

different from the classic ones used to balance goal-directed and habitual processes [47, 48].

The work [46] highlights how the challenge is made hard by the ‘bad-bootstrapping’ problem,

mentioned in the Introduction, for which the world model tends to prematurely converge to

sub-optimal solutions due to the biased selection of actions directed to pursue goals. The work
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also presents a model offering a solution to the challenge based on a suitable balance of the

selection of goal-directed and exploration actions. The solution is based on the minimisation

of ‘free energy’, which is the pivotal quantity of the active inference framework [22], and in par-

ticular on probability functions related to the events of interest and a derivative-based optimi-

sation algorithm. On this respect, our model is the first to present a solution to the challenge

based on brain-like spiking neural network. In addition, the model presented in [46] gives a

principled solution with respect to previous probabilistic models [47, 48], but for now it is

applicable only to simple tasks that require the agent to learn the probability function parame-

ters while being given a-priori the set of possible hidden causes of observations. Instead, the

model presented here is able to autonomously learn the hidden causes of observations based

on spiking neural-network mechanisms.

A second novelty of our model with respect to previous models implementing planning as

inference based on brain-like mechanisms [38–40] is that it learns the world model on the

basis of a biologically plausible unsupervised learning mechanism rather than on the basis of a

supervised learning algorithm [38, 39] or by using a world model given a-priori [40]. This is an

advancement for the biological plausibility of planning as inference models. Indeed, from a

computational perspective finding the conditions for the successful functioning of such unsu-

pervised learning process, contextually to the solution of the previous problem related to the

acquisition of the world model during planning, represented the hardest challenge found in

developing the architecture. We now briefly discuss the three main innovations that support

the solution.

First, we grounded learning on the STDP unsupervised learning rule proposed in [49]. This

rule is ideal to allow the self-organisation of the architecture associative layer leading to form

both the neural representations of hidden causes of observations and the temporal dependen-

cies between them, as required by the autonomous learning of the world model through the

spiking recurrent network. Given a neuron that fires, the rule tends to increase the afferent

connection weights from neurons that have fired in the recent past, and to decrease connec-

tion weights from neurons that have not fired: in the presence of a strong lateral inhibition

installing a competition between neurons, as it happens in several parts of brain, this mecha-

nism leads to the emergence of cell groups that specialise to maximally respond to specific

(possibly delayed) input patterns. Notice how this mechanism has interesting analogies with

the learning processes used in rate-based Self-Organising Maps [63, 64].

A second novel feature that allowed the architecture to autonomously learn the world

model is the use of a HMM having a relevant difference with respect to those used in other

planning-as-inference spiking network models [38, 39]. These models use a world model

based on a classic HMM reproducing possible sequences of states but not actions. Instead, the

world model used here is based on a HMM that observes sequences of states and of actions,
respectively produced by the environment and by another component of the architecture (e.g.,

by the exploration component used here). This has various possible advantages. One advan-

tage, employed here, is that the world model can directly select actions to perform; instead,

previous models [38, 39] need an additional mechanism selecting actions on the basis of the

state sequence produced by the world model. A second advantage is that for each environment

state the world model can suggest the selection of actions that have a potential relevance in

that context, rather than any action (this captures the popular idea of affordance in cognitive

science [65, 66]). A last advantage could be the easier learning (and understanding) of state-

action sequences directed to a goal produced by other agents; indeed, the world model would

be neutral with respect to the fact that actions are performed by another part of the brain or by

another agent.
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A third and last novel feature that allowed the architecture to autonomously learn the world

model is the explicit representation of the goal used to condition the probability distribution

expressed by the world model. Previous state-of-the-art models [38, 39] conflated the goal, ini-

tial state, and environment conditions into a whole ‘context’ representation. Our representa-

tion of goals allows their manipulation independently of other conditions, as shown by the

model’s capacity to successfully plan how to reach new goals on the basis of the experience that

the world model acquired in other tasks. Moreover, it paves the way to the enhancement of the

architecture with mechanisms allowing the autonomous selection of goals.

We now consider what we think to be a very important mechanism used by the model:

emergent generativity. Although shared with other previous models, here we aim to explicitly

identify its general features and to stress its wide scope and importance. With emergent genera-
tivity we refer to the property of a spiking neural-network system for which the low-level sto-

chastic events represented by the spikes of neurons are possibly ‘amplified’ by the neural

circuitry of the system to actively generate multiple alternative high-level patterns –encoding

cognitive contents such as percepts, motivations, thoughts, actions, and plans– useful to sup-

port adaptive behaviour. The key ‘ingredients’ of emergent generativity are hence: noisy low-

level stochastic units, circuits supporting competitive activation mechanisms, STDP-like unsu-

pervised learning processes, and high-level cognitive processes and behaviours.

Emergent generativity is characterised by two relevant elements. The first element regards

‘generativity’ and involves the stochastic nature of spike sampling that allows the production

of alternative patterns in correspondence to the same input/context. This process is important

as the generation of alternative plausible patterns is at the core of search algorithms possibly

employed by brain (by ‘plausible patterns’ we mean patterns having a high chance to satisfy

some constraints, e.g. ‘images you might see in a certain environment’, or ‘actions you might

be able to perform with your body’). For example, generativity can support the search of differ-

ent courses of action that might lead to a desired goal state starting from a given initial condi-

tion. In neural networks, generativity is often based on stochastic elements supporting the

generation of novel plausible patterns. Notable examples of these systems are Generative

Adversarial Networks (GANs; [67]) and Variational Autoencoders (VAEs; [68]) able to gener-

ate new plausible input patterns by drawing sample patterns from prior probability distribu-

tions of ‘latent variables’ (hidden causes) and then by transforming them through

deterministic neural components trainable with supervised learning (some recent versions of

VAEs are also able to learn and generate sequences of hidden causes, analogously to HMMs

[69]). These neural systems offer a good intuition on the potential utility of generativity, but

within them what we can call the ‘stochastic generative engine’ (meaning the stochastic mecha-

nism at the core of the generation of alternative plausible patterns) is limited to a particular

portion of the system, for example the stochastic input sent to the ‘generator’ in GANs or the

stochastic ‘bottleneck’ in VAEs. Importantly, such stochastic mechanisms are in contrast with

the use of gradient descent algorithms needed to implement supervised learning as they intro-

duce discontinuities preventing differentiation (e.g., VAEs have to use a ‘reparameterization

trick’ to allow the gradient information to ‘pass through’ the bottleneck stochastic nodes).

Instead, in spiking neural networks each spiking neuron, if endowed with intrinsic stochasti-

city, represents a ‘micro stochastic generator’ and so the ‘stochastic generative engine’ of the

whole system is distributed in each part of the system rather than being confined in specific

locations of the architecture as in GANs and VAEs (as mentioned in the Sec ‘Introduction’,

this shares analogies with particle filters [36, 37]). Although this possibility was not exploited

here, it might be explored in future work, for example to support planning at multiple levels of

abstraction. The use of stochastic units in all parts of the system requires the use of learning

rules not requiring differentiation across neural layers, such as the STDP unsupervised
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learning rule used here. In this respect, Boltzmann Machines and Restricted Boltzmann
Machines are interesting neural network models that, although now less popular, might be rel-

evant to study systems exhibiting emergent generativity since they are based on an architecture

fully based on stochastic neurons and use local unsupervised learning rules [70–72]. The sec-

ond important element of emergent generativity regards ‘emergence’ and involves the process

for which in complex systems, such as the brain, the dynamical interaction of low-level ele-

ments can give rise to organised patterns at higher levels [73]. In particular, in the brain, events

involving spike neurons at a low (micro) level are amplified by neural mechanisms in order to

generate patterns that encode content, such as perceptions, thoughts and actions, at a higher

(macro) cognitive level. As shown here, the ‘amplification’ can for example rely on circuits

implementing winner-take-all competitions grounded on typical connectivity patterns of the

brain micro-circuits, and on unsupervised learning processes relying on the brain spike-timing

dependent plasticity (STDP) [49, 74–76]. Interestingly, as mentioned above, these mechanisms

are analogous to those used in self-organising neural networks [63, 64]. Importantly, the fact

that multiple levels of organisation indeed characterise models as the one presented here

becomes apparent if one considers that the support of the probability distributions in spiking

networks correspond to the identity of neurons, whereas the support of the probability distri-

butions of percepts, actions, and thoughts corresponds to the states of sensors, actuators, and

other neural components. This contrasts with the generativity of standard probability models,

as those commonly used in planning as inference, where the support of the used probability

distributions directly corresponds to the states of percept, actions, thoughts. In summary,

emergent generativity featured by the brain has these advantages: by default, the brain can

learn the probability distributions of the hidden causes of any relevant cognitive element, the

support (representation) of such distributions, and the probability dependencies between such

causes. We speculate that the importance of these advantages might have contributed to lead

evolution to endow the brain with spiking neurons rather than with firing-rate neurons (cf.

[21, 37, 77]).

4 Conclusions

Goal-directed and planning processes can support flexible behaviour based on the use of gen-

eral-purpose knowledge on the world. In recent years, it has been proposed that planning pro-

cesses in the brain are based on probabilistic representations of the world and inferences on

them. This proposal is very interesting but it encounters the great challenge of explaining how

such representations and inferences might be grounded on the actual neural computations of

the brain. Recently, some models have been proposed to ground some probability inference

mechanisms, such as Hidden Markov Models and Partially Observable Markov Decision Pro-

cesses, on the spiking stochastic events exhibited by the brain neurons and their connectivity

patterns and plasticity mechanisms.

Here we propose a spiking neural-network architecture facing two important problems not

solved by the state-of-the-art models bridging planning as inference and brain-like mecha-

nisms, namely the problem of learning the world model contextually to its use for planning,

and the problem of learning such world model in an autonomous fashion based on unsuper-

vised learning processes. The architecture has been validated with data from human partici-

pants engaged in solving a visuomotor behavioural test that requires the discovery of the

correct actions to associate to some stimuli [15]. The architecture has reproduced the target

behaviour, has furnished an explanation of the mechanisms possibly underlying it, and has

proposed predictions testable in future empirical experiments.
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To overcome the two mentioned problems, the architecture proposes two novel mecha-

nisms that the brain might use to solve them. First, it introduces a new arbitration mechanism

that leads the model to plan and act to pursue the goal, or to explore to train the world model,

on the basis of the knowledge of the world model itself: this knowledge is measured as the

entropy of the goal-conditioned probability distribution of future states and actions expressed

by the world model. Second, the model is able to autonomously learn the world model by inte-

grating an STDP unsupervised learning rule proposed in the literature [49], with a world

model based on a HMM whose observations involve not only world states but also actions,

and using a goal representation to condition the probability distribution expressed by the

world model.

We acknowledge that the model has various limitations that might be improved in future

work. A first one concerns the passage from neurons firing at discrete times to neurons firing

in continuous time. This might be done using the inhomogeneous Poisson process used in

[49]. Although this would not change the theoretical contribution of the model, it might sim-

plify a comparison of the model functioning with real data from the brain at a finer temporal

level with respect to what done here.

A further issue to face would be to use other tasks with respect to the one considered here

[15], for example to develop the model to consider tasks requiring longer sequences of states

and actions as was done in [38, 39]. The latter works also suggest the interesting possibility of

employing the model to control autonomous robots to test its robustness and capacity to scale-

up to more complex tasks.

A relevant issue to face in future work concerns the new arbitration mechanism proposed

with the model. The entropy measure at the core of such arbitration mechanism is grounded

on the probability distribution of neurons. However, the mechanism using such information

to arbitrate between planning and exploration is now hardwired. Future work should thus aim

to implement this process with neural mechanisms. For example, the entropy measure might

be ‘read out’ by an additional neural layer that could then selectively inhibit either the planning

or the exploration component.

Another improvement of the model might involve the full development of a habitual com-

ponent. Here we did not introduce such component as the target experiment covered a short

learning time not allowing the formation of habits, so we focused on considering the explora-

tion/exploitation processes involved in the early phases of learning of new tasks. Future work

might however also consider the formation of habits, for example by targeting additional

experiments involving long ‘over-training’ periods. This could be done with components anal-

ogous to the exploration component used here, but using slow reinforcement learning pro-

cesses to represent the slow formation of habits favouring generalisation. The addition of habit

learning processes would also require the introduction of a further arbitration mechanism as

those proposed in [47, 48] to harmonise goal-directed and habitual behaviour.

A further possible improvement of the model concerns the treatment of goals. These are

now selected externally and represented in a simple way. Goals could instead be represented in

more realistic ways, for example through mechanisms mimicking working memory [78], and

could be selected in autonomous ways, for example based on motivational mechanisms [72,

79].

A last possible improvement of the model concerns the possibility of testing and constrain-

ing the model not only at the behavioural level, as done here (and as also done by previous

probabilistic models investigating arbitration mechanisms in goal-directed behaviour, e.g. [47,

48]) but also at the neural level, for example based on data collected on similar experiments

[80, 81]. This might for example be done through techniques such as Representational
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Similarity Analysis [82] that uses brain-imaging data to map the components of neural models

to areas of the brain that possibly implement analogous functions.

Notwithstanding these limitations and possible improvements, we think the proposed

architecture represents a further step towards the realisation of models that implement proba-

bilistic versions of goal-directed processes on the basis of brain-like mechanisms, in particular

spiking neurons, competitive circuits, and STDP unsupervised learning rules. In particular,

the model contributes to formulate new hypotheses on how the brain might acquire the world

model needed for planning in a fully autonomous way while at the same time using it for

planning.
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