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calculated using height and weight data
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Abstract

Background: Driver license departments in many US states collect data on individuals’ height and weight. These
data can be useful to researchers in epidemiological and public health studies. As height and weight on driver
license are self-reported, they may be prone to reporting bias. We compare height and weight obtained from
driver license records and clinically measured height and weight, as well as body mass index (BMI) values calculated
using the two data sources for the same individual.

Methods: We linked individual height and weight records obtained from the Driver License Division (DLD) in the
Utah Department of Public Safety to clinical records from one of the largest healthcare providers in the state of
Utah. We then calculated average differences between height, weight and BMI values separately for women and
men in the sample, as well as discrepancies between the two sets of measures by age and BMI category. We
examined how well self-reported height and weight from the driver licenses classify individuals into specific BMI
categories based on clinical measures. Finally, we used two sets of BMI values to estimate individuals’ relative risk
of type II diabetes.

Results: Individuals, on average, tend to overestimate their height and underestimate their weight. Consequently,
the value of BMI calculated using driver license records is lower than BMI calculated using clinical measurements.
The discrepancy varies by age and by BMI category. Despite the discrepancy, BMI based on self-reported height
and weight allows for accurate categorization of individuals at the higher end of the BMI scale, such as the obese.
When used as predictors of relative risk of type II diabetes, both sets of BMI values yield similar risk estimates.

Conclusions: Data on height and weight from driver license data can be a useful asset for monitoring population
health in states where such information is collected, despite the degree of misreporting associated with self-report.
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Background
Body mass index (BMI) is an important biometric measure
commonly used across numerous disciplines to assess risk
of many health conditions. Increased BMI is associated with
excess health risks, including insulin resistance and hyperin-
sulinemia, Type II diabetes mellitus, hypertension, dyslipid-
emia, coronary heart disease, asthma, arthritis, gallbladder
disease, several cancers, depression, as well as with in-
creased all-cause mortality [1–8]. Individuals classified as

underweight based on their BMI also experience heightened
health and mortality risks and are likely to have poor psy-
chological health [4, 5, 9]. While commonly used in clinical
practice and public health research, BMI is not necessarily a
perfect predictor of individual health. Multiple studies high-
light limitations of BMI in certain subpopulations including
children, teenagers, elderly and ethnic minority patients,
and suggest the use of alternative anthropometric indica-
tors. These include waist circumference, waist-to height ra-
tio, waist-to-hip ratio, percent body fat, and fasting leptin
levels, which may be more useful for predicting adiposity
and associated health risks than BMI [7, 10–17]. Alternative
anthropometric measures have been used to supplement
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BMI to refine health risk estimates within BMI categories
[18].
One of the primary advantages of using BMI in popu-

lation health research is not only its centrality to key
biological pathways leading to crucial health outcomes,
but also that it is relatively straightforward to measure.
Many studies rely on self-reported height and weight to
calculate BMI, and while these measures are prone to
reporting biases, they are the best available option in
larger-scale studies where direct measurement of height,
weight or other anthropometric characteristics is diffi-
cult or prohibitively expensive.
Several studies document the existing discrepancies

between self-reported height and weight and their clinic-
ally measured counterparts, as well as their derived BMI
values [19–34]. Research demonstrates that individuals
in general tend to overestimate their height and under-
estimate their weight, although the degree of discrepancy
varies across different demographic categories. For ex-
ample, increasing age is associated with more disagree-
ment between self-reported and measured height and
weight, likely due to changes in stature and body com-
position and illnesses common among older individuals
[19, 20]. Misreporting of weight also varies by ethnicity
and is more prevalent for individuals at the lower and
higher ends of the BMI spectrum [7, 20, 22, 23, 35–37].
In addition, certain behaviors and medical conditions
can play a role, as individuals with a history of dieting
may be more likely to underestimate their weight, while
people with history of eating disorders are more accurate
in their reporting compared to the general population
[20, 38]. Despite the discrepancies, several studies gener-
ally show high correlation and agreement when compar-
ing self-reported and clinically measured values [19, 21,
24, 32, 33, 39, 40]. Given the bias towards lower BMI
values, the association between BMI and certain health
and mortality risks is likely to be biased, perhaps under-
estimated, when BMI measure is derived from
self-reported height and weight [39, 41]. Some authors
suggest correcting for the measurement error when
using BMI based on self-reported height and weight
when estimating health and mortality risks, noting that
although corrected BMI performs better than uncor-
rected BMI, these corrections do not eliminate the bias
completely [42]. BMI derived from self-reported height
and weight should be therefore treated with caution, yet
it nonetheless remains an essential measure in epidemio-
logical studies.
In the US, height and weight information is collected in

many states by their respective driver license or motor ve-
hicle departments. In some instances, these data offer re-
searchers an opportunity to use height and weight data
from the driving public for medical and public health inves-
tigations. Although access to driver license data in some

states may be heavily restricted, it can be possible for public
health researchers to obtain millions of individual records
from appropriate governmental agencies responsible for
maintaining the driver license records in different states
[43, 44]. Since height and weight information contained in
the driver license records is self-reported, it is likely prone
to errors relative to clinical measures similar to those found
in surveys that too rely on self-reported anthropometric in-
formation. Ossiander, Emanuel, O’Brien and Malone [45]
linked 480 records from women enrolled in a
population-based cancer etiology study in Washington state
to their driver license records. They reported high positive
correlations for both height and weight reported on the
driver license and when measured during the study, despite
the average discrepancies of 0.28 cm for height and 5.8 kg
for weight, generally with height being overestimated and
weight being underestimated on the driver license. An earl-
ier study of a sample of 140 Asian women in Hawaii found
that individuals underestimated their weight by 4.74 kg and
overestimated their height by 2.06 cm [46]. Morris et al.
[47] used driver license data for the state of Oregon to esti-
mate BMI at the Census block group level and compared
the estimates to those obtained from the Oregon Behavioral
Risk Factor Surveillance System (BRFSS) – a CDC state-
wide random-digit-dial telephone survey. Although BRFSS
also relies on self-reported height and weight data, block
group level obesity prevalence calculated based on the
driver license data was 18% lower than BRFFS for men and
31% lower for women. At the same time, average Census
block group BMI estimates showed a more modest discrep-
ancy of 2% for men and 5% for women, with values derived
from the driver license data being lower than those ob-
tained from BRFFS. The results of these studies suggest that
although information about height and weight obtained
from driver licenses introduce reporting errors, it is biased
in a predictable manner, i.e. height is likely overestimated,
weight is likely underestimated, and, consequently, BMI
calculated using these height and weight values is
underestimated.
In this study, we examined the disagreement between

BMI calculated using height and weight measured clinically
and captured in electronic medical records and BMI calcu-
lated using height and weight obtained from driver licenses
in a large sample of Utah drivers. We then evaluated the
utility of the driver license and clinically measured height
and weight by estimating the relative risks of having Type
II diabetes using the two alternative versions of BMI as pre-
dictors to assess the usefulness of driver license data on
height and weight in public health studies.

Methods
Data
The height and weight data were obtained from two
sources. First, we used height and weight data provided
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to the Utah Population Database (UPDB) by agreement
from the Driver License Division (DLD) in the Utah De-
partment of Public Safety. Annual updates of driver li-
cense information from the DLD are linked to the
UPDB. Second, height and weight data were also avail-
able from the University of Utah Health Science Center
(UUHSC) – one of the two largest healthcare providers
in the state of Utah – which maintains all clinical
records for patients seen at the UUHSC, including
anthropometric measures. These UUHSC records are
linked to the UPDB at the individual level and are up-
dated every six months.
From the Utah Population Database (UPDB), we

selected 33,354 individuals with height and weight data
from Driver License Division and University of Utah
Health Science Center. We then restricted the sample to
individuals who had complete height and weight values
from both DLD and UUHSC, BMI values calculated from
both sources between 12 and 60 kg/m2, and differences in
height and weight values between two sources not exceed-
ing 10 cm and 40 kg respectively. We selected the cut-off
for the difference between self-reported and clinically
measured height based on the literature [32]. We were not
able to establish a weight difference cut-off the same way,
and opted for a data-driven approach, eliminating cases
where difference between self-reported and clinically mea-
sured weight values were four or more standard deviations
away from the mean. Using these cut-off points, we were
able to allow for variation in values, while omitting the
more extreme differences.
We also required that the dates on which clinical

height and weight were measured were within 365 days
of the dates on which height and weight were reported
on the driver license, excluding individuals with larger
gaps between the dates the measurements were re-
ported. Finally, we excluded individuals whose last avail-
able follow up dates in UPDB were less than one year
from when the height and weight were measured by
UUHSC. While some individuals in this category have
been lost to follow up, others died within 365 days after
their UUHSC visit, which means they may have been se-
verely ill at the time of the visit, and the illness, in turn,
may have affected their weight. The final study sample
comprised 16,576 subjects.

Analysis
We generated sex-specific descriptive statistics for the
sample to illustrate the height and weight characteristics
in the DLD (heightD and weightD) and clinical records
(heightC and weightC), as well as BMI values calculated
using the height and weight from the two different
sources (BMID and BMIC). BMI categories are defined
as follows: underweight (BMI < 18.5 kg/m2), normal
weight (BMI between 18.5 and 24.9 kg/m2) overweight

(BMI between 25.0 and 29.9 kg/m2), Class I (BMI be-
tween 30.0 and 34.9 kg/m2) and Class II - Class III obes-
ity combined (BMI ≥ 35 kg/m2). Formal Class III obesity
individuals were too few in number to be treated as a
separate category.
We then calculated differences between the mean DLD

and clinical height (heightD – heightC), DLD and clinical
weight (weightD – weightC), and the BMI values calculated
using DLD and clinical sources (BMID – BMIC) overall
and by Differences were calculated separately for individ-
uals of different ages (based on age provided in DLD re-
cords) and different BMI categories (based on BMIc).
Negative difference values indicate underestimation in the
DLD values compared to the clinical values obtained from
the UUHSC, and positive difference values reflect over-
estimation in the DLD values. Paired Wilcoxon signed
rank tests were used to evaluate the differences between
mean height, weight and BMI. This allowed us to under-
stand the extent of variation in misreporting of height and
weight by age and BMI. In this case, the paired Wilcoxon
signed rank tests were selected because, while the two sets
of measures being compared were obtained from the same
sample of individuals, the distribution of differences
between the two sets of measures were not normally dis-
tributed, hence warranting a non-parametric test. We also
established that the variances in the two sets of measures
were unequal, with few exceptions.
Cross-classifications of BMID and BMIC were per-

formed to determine to what extent self-reported height
and weight from the driver licenses allows to classify in-
dividuals into specific BMI categories. Finally, we used
logistic regression models to estimate individuals’ likeli-
hood of having type II diabetes using BMIC and BMID as
key predictors and controlling for birth year, sex, level of
education, race and ethnicity. Four models were esti-
mated using continuous and categorical BMIC and BMID
as predictors. Information on individuals’ diabetes diag-
nosis were obtained from statewide inpatient discharge
and ambulatory surgery records for individuals seen at
UUHSC, all of which are linked to UPDB. All analyses
were performed using R statistical software version 3.4
(https://www.r-project.org/).

Results
Descriptive characteristics of the sample are presented
in Table 1. Among both men and women, average values
of height as reported in the DLD records exceed those
found in clinical records, and values of weightD are
smaller than values of weightC. Average height for
women in our sample is 163.8 cm based on the clinical
data, and 164.1 cm based on the DLD data. Average
weight for women, as reported in the UUHSC data, is
equal to 79.1 kg, and their average weight based on the
DLD records is 73.4 kg. For men, average values of
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heightC and heightD are 178.4 cm and 178.9 cm accord-
ingly, while average weightC for men is 94.4 kg, compared
to the average value of 91.6 kg for weightD. Consequently,
average BMID calculated using the DLD records is lower
than BMIC calculated using clinical records from the
UUHSC for individuals in our sample. Among women the
BMI discrepancy is equal to − 2.19 kg/m2, while among
men the difference between BMID and BMIC is − 1.06 kg/
m2. Sex-specific height, weight and BMI differences are
statistically significant at p ≤ 0.001.
Height, weight and BMI differences vary among individ-

uals based on age and clinical BMI value (Fig. 1). For
women in our sample, the difference between heightD and
heightC appears to increase with age, with older women
having, on average the largest difference between the
values. Women between the ages of 25 and 34 overesti-
mate their heightD, on average, by 0.13 cm, while women
65 years old and older report heightD that exceeds their
clinically measured heightC by 0.52 cm. Average differ-
ences for other age group fall between these values, with
the exception of women between the ages of 16 and 24,
who underestimate their height by an average of − 0.6 cm.

Women between the ages of 16 and 24 are also the only
category, for whom the difference between average clinical
and self-reported height values is not statistically signifi-
cant. Conversely, younger women, on average, underesti-
mate their weight on the driver license to a greater extent
than older women, with those between the ages of 25 and
34 reporting weightD values that are, on average, 6.98 kg
lower than their clinically recorded weightC values. The
difference diminishes with age. A similar pattern is ob-
served with regard to BMID and BMIC, with BMID −
BMIC = − 2.61 kg/m2 for women between the ages of 25
and 34, and BMID − BMIC = − 1.32 kg/m2 for women 65
years old and older, with average differences for the
remaining age groups falling between the two extremes.
Among men, the largest differences between average

heightD and heightC are observed in ages 16 to 24
(heightD − heightC = 0.63 cm) and after age 65 (heightD −
heightC = 0.68 cm). At the same time, men in these age
groups have the lowest differences between average
weightD and weightC (− 1.45 kg for men between the
ages of 16 and 24 and − 1.86 kg for men 65 and older).
Those between the ages of 35 and 44 have the largest

Table 1 Descriptive characteristics of the sample

Female
(N = 8905)

Male
(N = 7671)

DLD Clinical DLD Clinical

Height (cm) 164.1 ± 7.0 163.8 ± 7.0 178.9 ± 7.7 178.4 ± 7.7

Weight (kg) 73.4 ± 18.5 79.1 ± 21.0 91.6 ± 20.2 94.4 ± 21.8

BMI (kg/m2) 27.3 ± 6.7 29.5 ± 7.6 28.6 ± 5.7 29.6 ± 6.2

BMI categories (%)

Underweight 231 (2.6) 191 (2.1) 51 (0.7) 48 (0.6)

Normal weight 3741 (42.0) 2742 (30.8) 2035 (26.5) 1738 (22.7)

Overweight 2387 (26.8) 2306 (25.9) 3032 (39.5) 2762 (36.0)

Type I obesity 1428 (16.0) 1718 (19.3) 1628 (21.2) 1814 (23.6)

Type II/III obesity 1118 (12.6) 1948 (21.9) 925 (12.1) 1309 (17.1)

Age (years) 49.0 ± 17.4 49.3 ± 17.4 51.9 ± 17.4 52.2 ± 17.4

Race (%)

White 7764 (87.2) 6613 (86.2)

Other 497 (5.6) 415 (5.4)

Ethnicity (%)

Hispanic 1300 (14.6) 902 (11.8)

Non-Hispanic 5848 (65.7) 5186 (67.6)

Education (%)

Less than high school 590 (6.6) 407 (5.3)

High school 1798 (20.2) 1301 (17.0)

Some college 1954 (21.9) 1455 (19.0)

College graduate 961 (10.8) 883 (11.5)

Graduate/professional degree 714 (8.0) 1120 (14.6)

Note. Mean values and standard deviations are reported for continuous variables: height, weight, BMI and age. For categorical variables – categorical BMI, race
and education – number of individuals in each category is reported and corresponding percentage is presented in parentheses
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Fig. 1 Distribution of discrepancies between height, weight and BMI values obtained from the driver license records and clinically measured
values by age and BMIC
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difference between average weightD and weightC, under-
estimating their weight by 3.91 kg. Although the degree
of misreporting varies, men tend to overestimate their
height and underestimate their weight on driver license
regardless of age group, which results in consistently
lower values of BMID compared to BMIC. The largest
difference is observed among men between the ages of
35 and 44 (BMID − BMIC = − 1.38 kg/m2) and the smal-
lest differences are found among those between the ages
of 16 and 24 (BMID − BMIC = − 0.62 kg/m2) and over the
age of 65 (BMID − BMIC = − 0.81 kg/m2). The magnitude
of difference between self-reported and clinically mea-
sured height, weight and BMI values is smaller for men
than for women.
Women at the lower end of the BMI range, as indi-

cated by clinically measured height and weight values,
have the smallest average difference between heightD
and heightC (heightD − heightC = 0.08 cm for women
classified as underweight), and those at the higher end
of the BMI range have the highest difference (heightD −
heightC = 0.42 cm for women classified as class II/III
obese). When it comes to weight, the smallest average
difference is observed among women in the normal
weight range (weightD −weightC = − 1.57 kg), and the
difference increases with increasing BMI. Consequently,
the discrepancy between BMID and BMIC is also lowest
for women whose BMI falls within the normal weight
category (BMID – BMIC = − 0.60 kg/m2) and highest
among those at the higher end of the BMI range (BMID
– BMIC = − 2.95 kg/m2 for women classified as type II/
III obese). Women at the lower end of the BMI range –
those classified as underweight – are an exception, as
they tend to overestimate their weight and their BMID
value is, on average, higher than their BMIC value. The
distribution of difference between self-reported and clin-
ical values is similar for men in that the lowest differ-
ences are found among those who fall within the normal
weight range (heightD – heightC = 0.42 cm, weightD –
weightC = 0.87 kg, BMID – BMIC = 0.16 kg/m2) and the
differences increase with increasing BMI. Again, simi-
larly to women, men at the lower end of the BMI range
overreport their weight, which results in inflated value of
BMID. The magnitude of difference between
self-reported and clinical values for these men is com-
parable to the difference observed for those classified as
class I obese based on their BMIC.
Cross-classification of categorical BMID and BMIC,

along with corresponding sensitivity and specificity sta-
tistics for each BMID category, and positive and negative
predictive values are presented in Table 2. Among
women, 94.4% of those categorized as class II/III obese
based on their BMID also fall within this category based
on their BMIC (sensitivity = 0.542, specificity = 0.991).
This indicates that there is a 94.4% probability that a

woman classified as class II/III obese based on her BMID
is also considered class II/III obese based on her BMIC.
Based on the negative predictive value calculated for this
group, 88.5% of women not assigned to the class II/III obes-
ity category based on their BMID also do not fall within this
category based on their BMIC. While we can assign a BMI
category most accurately to class II/III women, the classifi-
cation is least accurate for women classified as underweight
based on their BMID. Only 45.9% of women with BMID in
the underweight range also have BMIC in the underweight
range (sensitivity = 0.555, specificity = 0.986). At the same
time, negative predictive value is the highest for this cat-
egory: 99.0% of women not considered underweight based
on their BMID are also not underweight according to their
BMIC. For the women classified as normal weight, over-
weight and class I obese based on their BMID, we can cor-
rectly classify 66.6% (sensitivity = 0.909, specificity = 0.797),
51.9% (sensitivity = 0.537, specificity = 0.826) and 48.5%
(sensitivity = 0.403, specificity = 0.898), respectively.
Similarly, among men, the best agreement is observed

in the class II/III obesity category: 91.0% of men whose
BMID falls within the class II/III obesity range also have
BMIC values within the same range (sensitivity = 0.643,
specificity = 0.987). There is also a relatively high negative
predictive value for this category (0.931). The classification
is least accurate for men whose BMID places them in the
underweight category: 49.0% of these men are also classi-
fied as underweight based on their BMIC (sensitivity =
0.490, specificity = 0.997). This category also has the high-
est negative predictive value: 99.7% of men with BMID not
falling within the underweight range are also not consid-
ered underweight based on their BMIC. For men in the
normal weight, overweight and class I obesity categories,
percentages of individuals classified correctly are 73.0%
(sensitivity = 0.855, specificity = 0.908), 70.3% (sensitivity
= 0.771, specificity = 0.816) and 65.4% (sensitivity = 0.587,
specificity = 0.904), respectively.
Despite the discrepancies between height and weight

values obtained from the DLD and clinically measured
height and weight values, as well as BMI calculated
using different data sources, BMIC and BMID yield simi-
lar results when used as relative risk predictors in logis-
tic regression models (Table 3). In Models 1 and 2 we
used continuous variables for BMIC and BMID respect-
ively to estimate relative risk of type II diabetes. Type II
diabetes diagnosis is present in in 2603 or 29% of
women and 2818 or about 37% of men in our sample.
The coefficients of interest in the models are very simi-
lar, with both BMIC and BMID associated with a
two-fold increase in relative risk of type II diabetes for a
unit increase in BMI (Model 1 RR = 2.04, 95% CI 1.96–
2.12; Model 2 RR = 2.09, 95% CI 2.01–2.18). When BMI
is measured using four categories (underweight, normal
weight, overweight, type I obesity and type II/III obesity)
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in Models 3 and 4, relative risk of type II diabetes is
associated with progressively higher BMI categories. In
Model 3 that uses BMIC, the relative risks for over-
weight, type I obesity and type II/III obesity are 1.82
(95% CI: 1.62–2.03), 3.47 (95% CI 3.09–3.90) and 6.78
(95% CI 6.02–7.63), respectively, compared to the refer-
ence category – individuals whose BMI falls within a
normal weight range. Model 4, which analyzes BMID
shows similar results, with relative risks of 2.15 (95% CI
1.94–2.37), 4.18 (95% CI 3.74–4.67) and 8.07 (95% CI
7.13–9.14) for individuals in overweight, type I obesity
and type II/III obesity categories, respectively. In both
Model 3 and Model 4, underweight individuals have
lower relative risks of type II diabetes compared to the
reference category. Relative risks of type II diabetes
estimated using BMIC and BMID for underweight indi-
viduals are 0.54 (95% CI 0.33–0.89) and 0.58 (95% CI
0.36–0.92) respectively.

Discussion
In our sample, self-reported height and weight differ
from clinically measured values in a predictable manner:

individuals, on average, overestimate their height and
underestimate their weight, resulting in significant differ-
ences between BMID using height and weight values
from the driver license and BMIC using clinically mea-
sured height and weight. For women, the difference be-
tween BMID and BMIC is equal to − 2.19 kg/m2, and for
men, the difference is equal to − 1.06 kg/m2. These re-
sults are consistent with previous findings indicating
consistent underestimation of BMI based on
self-reported height and weight values [21, 22, 24, 25,
30, 31, 35].
The discrepancy between BMID and BMIC is signifi-

cant across age and BMIC categories, although there is
variation between groups. Among women, the difference
between BMID and BMIC values is greatest between the
ages of 25 and 34, and among men it is greatest between
the ages of 35 and 44. For women, the average difference
between BMID and BMIC decreases with age, while the
relationship between age and BMI discrepancy for men
is U-shaped. The smallest average BMI discrepancies are
found for women aged 65 and older and, among men,
for those aged 16 to 24 and aged 65 and older. Previous

Table 2 Cross-classification of BMID and BMIC for standard BMI categories

BMIC (%)

Underweight Normal weight Overweight Class I obesity Class II/III obesity

Female

BMID category

Underweight 106 (45.9) 117 (50.6) 7 (3.0) 1 (0.4) 0 (0.0)

Normal weight 76 (2.0) 2491 (66.6) 959 (25.6) 185 (4.9) 30 (0.8)

Overweight 7 (0.3) 127 (5.3) 1239 (51.9) 785 (32.9) 229 (9.6)

Class I obesity 2 (0.1) 6 (0.4) 94 (6.6) 692 (48.5) 634 (44.4)

Class II/III obesity 0 (0.0) 1 (0.1) 7 (0.6) 55 (4.9) 1055 (94.4)

Sensitivity 0.555 0.909 0.537 0.403 0.542

Specificity 0.986 0.797 0.826 0.898 0.991

Pos. predictive value 0.459 0.666 0.519 0.485 0.944

Neg. predictive value 0.990 0.951 0.836 0.863 0.885

Male

BMID category

Underweight 25 (49.0) 22 (43.1) 4 (7.8) 0 (0.0) 0 (0.0)

Normal weight 22 (1.1) 1486 (73.0) 484 (23.8) 41 (0.2) 2 (0.1)

Overweight 1 (0.0) 219 (7.2) 2130 (70.3) 637 (21.0) 45 (1.5)

Class I obesity 0 (0.0) 11 (0.7) 133 (8.2) 1064 (65.4) 420 (25.8)

Class II/III obesity 0 (0.0) 0 (0.0) 11 (1.2) 72 (7.8) 842 (91.0)

Sensitivity 0.521 0.855 0.771 0.587 0.643

Specificity 0.997 0.908 0.816 0.904 0.987

Pos. predictive value 0.490 0.730 0.703 0.654 0.910

Neg. predictive value 0.997 0.955 0.864 0.876 0.931

Note. Subscript C is used to denote BMI calculated using the clinical height and weight values. Subscript D is used to denote BMI calculated using the height and weight
values obtained from the DLD
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studies suggest that the discrepancy between
self-reported and clinically measured BMI value in-
creases with age [19, 20], which differs from our results.
When it comes to distribution of discrepancy across
BMIC values, the largest differences between BMID and
BMIC are found at the extreme end of the BMIC scale:
BMID − BMIC is equal to − 4.48 kg/m2 for class II/III
obese women and − 1.32 kg/m2 for class II/III obese
men. This finding is consistent with previous studies
showing the greatest weight and BMI underestimation at
higher values of BMI [7, 20, 22, 23, 35–37].
BMID obtained from driver license records allows for

fairly accurate classification into BMIC category for class
II/III obese individuals. Although classification is less
successful in the remaining BMI categories, the pattern
of misclassification exhibits regularity: for each category,
those that are misclassified tend to fall in the next high-
est category. For example, 66.6% of women who are con-
sidered normal weight based on their BMID are also
assigned into the normal weight category based on their
BMIC. Of those that remain, the majority are assigned
into the overweight category – one category above nor-
mal weight. Similarly, we can correctly classify 51.9% of
women whose BMID falls within the overweight range,
and the majority of those not classified correctly are in
the class I obesity category based on their BMIC. Be-
cause of this misclassification pattern, we can accurately
classify individuals not only to the class II/III obesity cat-
egory, but also to a combined obesity category, which in-
cludes class I and class II/III obese individuals (BMI ≥
30.0 kg/m2). When treating class I and class II/III obesity
as separate categories, we are able to correctly classify
48.5% of women and 65.4% of men whose BMID falls
within the class I obesity range. However, for both men
and women, the majority of those misclassified are in
the class II/III obesity category. Consequently, when
combining the two categories we can achieve positive
predictive values of 0.957 for women and 0.939 for men.
We conclude that although BMID does not allow for
very accurate classification of individuals in the under-
weight, normal weight and overweight categories, it can
be particularly useful for BMI categorization at the high
end of the BMI scale.
To assess predictive utility of BMID and BMIC, we es-

timated relative risks of type II diabetes using continu-
ous and categorical versions of BMID and BMIC. In
models with continuous predictors, relative risk esti-
mates associated with BMID and BMIC are remarkably
similar: an equal increase in BMID and BMIC is associ-
ated with a two-fold increase in relative risk of type II
diabetes. When treated as categorical predictors, BMID
and BMIC also behave similarly: those in the under-
weight category experience reduction of relative risks of
having a condition relative to those classified as normal

weight, and risks are progressively greater in the over-
weight, class I obese and class II/III obese individuals.
For these three categories, relative risks estimated using
BMID are somewhat higher compared to those estimated
using BMIC, but 95% confidence intervals overlap. Lar-
ger relative risk estimates for the model with a categor-
ical BMID predictor can be partially explained by the
pattern of BMI misclassification observed in the data.
Our models indicate that BMID obtained from driver li-
cense records is comparable to clinically measured BMIC
when used as a predictor of type II diabetes. Further-
more, relative risks estimates calculated using BMIC are
more conservative compared to those calculated using
BMID. Comparable analyses of other health outcomes
that are associated with BMI and with data from differ-
ent populations can help further validate the value of
using driver license data for assessing health risks.
It is important to acknowledge that although we as-

sume that clinically recorded height and weight values
more accurately reflect individuals’ true height and
weight, clinical records are susceptible to measurement
error as well. It is not possible to determine whether the
patients were asked to remove shoes and clothing when
their height and weight were recorded. In addition, one
must be cautious when generalizing results of the
present study to other populations, in particular, popula-
tions with greater degree of racial and ethnic diversity.
Individuals in our sample are predominantly white, and
height and weight misreporting vary by ethnicity [7, 20,
23, 36, 37]. Finally, by relying on a major medical pro-
vider as a source of clinical height and weight measure-
ments, we are likely systematically omitting a portion of
the population with limited access to health services, i.e.
un- and under-insured and lower income individuals.
Socioeconomic status may influence one’s perception of
own body, which, in turn, can affect the degree of weight
misreporting [37].

Conclusions
We demonstrate that self-reported height and weight data
obtained from the driver license records differ systematic-
ally from clinically measured height and weight. The dif-
ferences result in BMI calculated using the driver license
data being lower than clinically measured BMI. BMI based
on driver license records allows for accurate classification
of individuals for those categorized as obese, and performs
similarly to clinically measured BMI as a predictor of rela-
tive risk of type II diabetes mellitus. We conclude that
driver license height and weight data can be a useful asset
for monitoring population health. States that do not cur-
rently collect height and weight information during the
driver license application process may consider establish-
ing a procedure for doing so, as it would allow for more
efficient monitoring of population health.
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