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Walking or running in real-world environments requires dynamic multisensory processing
within the brain. Studying supraspinal neural pathways during human locomotion
provides opportunities to better understand complex neural circuity that may become
compromised due to aging, neurological disorder, or disease. Knowledge gained from
studies examining human electrical brain dynamics during gait can also lay foundations
for developing locomotor neurotechnologies for rehabilitation or human performance.
Technical barriers have largely prohibited neuroimaging during gait, but the portability
and precise temporal resolution of non-invasive electroencephalography (EEG) have
expanded human neuromotor research into increasingly dynamic tasks. In this narrative
mini-review, we provide a (1) brief introduction and overview of modern neuroimaging
technologies and then identify considerations for (2) mobile EEG hardware, (3) and
data processing, (4) including technical challenges and possible solutions. Finally, we
summarize (5) knowledge gained from human locomotor control studies that have used
mobile EEG, and (6) discuss future directions for real-world neuroimaging research.

Keywords: EEG signal processing, motor neuroscience, neuroimaging, locomotion, mobile EEG,
electroencephalography (EEG), EEG hardware

INTRODUCTION

Understanding human brain processes during real-world behaviors is a major neuroscience
challenge. Moving cognitive andmotor neuroscience studies beyond stationary, seated experiments
and into complex, realistic environments is a necessary step forward to decipher real-world human
brain dynamics. Because walking is a fundamental motor task that can have profound effects on
quality of life and requires complex interactions throughout the nervous system, there is a need
to better understand healthy human neuromotor control and to identify pathways affected by
a loss of neurological function due to disease, disorder, injury, or aging (Snijders et al., 2007).
Although basic locomotor control can be primarily attributed to subcortical structures and spinal
central pattern generators, a growing body of evidence has shown that cortical structures directly
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modulate locomotion, including motor planning, execution, and
error correction. Understanding cortical involvement during
locomotion is, therefore, necessary to improve clinical detection
and rehabilitation results.

Contemporary brain imaging technologies can measure
neural dynamics by capturing a number of contrasting
physiological signals. Neural electromagnetic signals can
be measured using electroencephalography (EEG) and
magnetoencephalography (MEG), changes in blood oxygenation
can be measured using hemodynamic measurement methods
such as magnetic resonance imaging (MRI) and functional
near-infrared spectroscopy (fNIRS), and molecular imaging
methods such as positron emission tomography (PET) and
single-photon emission computed tomography (SPECT)
enable scientists and clinicians to non-invasively study human
brain functions. Technological limitations, however, have
largely limited neuroimaging studies to motionless conditions
from participants who are seated or lying supine due to
the physical size of the recording equipment or because of
noise introduced by participant or equipment motions that
compromise signal recording quality. In recent years, a growing
need for continuous brain monitoring during movement has
promoted the development of mobile brain/body imaging
(MOBI) approaches. The advantages and limitations of each
technology must be considered in the context of the temporal
and spatial resolution of each system and the associated cost
and portability. Although fNIRS can portably measure human
brain hemodynamics, and advancements in MEG technologies
that rely on novel optically pumped magnetometers (OPM)
(Boto et al., 2018; Hill et al., 2020; Tierney et al., 2020)
provide promising paths forward for studying real-world
human brain dynamics, the low-cost portability and precise
temporal resolution of EEG has enabled the expansion of human
neuromotor research into more complex and dynamic tasks
(Allali et al., 2018).

A primary limitation of mobile EEG for studying real-world
human brain dynamics has been the need to eliminate
noise contamination from scalp EEG recordings. During
unconstrainedmovements such as walking, electrodemotions on
the scalp and cable sway increase along with electrophysiological
signals from the heart, eye movements, and facial and neck
muscle activities. Low signal-to-noise ratio and comparatively
poor spatial resolution in relation to fMRI and molecular
imaging methods have been progressively addressed through
advanced signal processing to isolate and localize electrocortical
source activity using independent component analysis and
forward head modeling techniques (Delorme and Makeig, 2004;
Acar and Makeig, 2010; Vorwerk et al., 2018). Leveraging
these advancements, recent locomotion studies have extended
our understanding of human brain activity during treadmill
(Castermans et al., 2014; Nathan and Contreras-Vidal, 2016;
Bradford et al., 2016; Nordin et al., 2019a) and overground
locomotion (Luu et al., 2017a) in complex virtual (Luu
et al., 2016, 2017b) and real-world environments (Bruijn
et al., 2015; An et al., 2019; Peterson and Ferris, 2019),
and during robotically assisted gait (Wagner et al., 2012;
Li et al., 2018).

Improved capabilities for measuring real-world human brain
dynamics using state-of-the-art mobile EEG technologies will
continue to advance the field of human cognitive and motor
neuroscience. Here, we identify current mobile EEG technologies
and analysis methods that have enabled groundbreaking
discoveries into human neuromotor control during locomotion,
and we briefly summarize some of the remaining challenges and
paths forward for humanmobile brain and body imaging studies.

MOBILE EEG HARDWARE

Table 1 provides a summary of representative commercially
available mobile high-density EEG system specifications. The
range of electrode array density (number of channels), recording
electrode type, system size, portability, and mass provide
advantages and disadvantages for studying neural control
of human locomotion. Here, we discuss considerations for
measuring human electrical brain dynamics using contrasting
mobile EEG system configurations.

EEG Recording Electrodes
Non-invasive EEG signal acquisition occurs using electrodes
placed on the scalp. The recorded signal represents the
summation of post-synaptic electrical potentials from the
underlying and surrounding brain structures (Teplan, 2002;
Sanei and Chambers, 2013), together with electrical noise
from the surrounding environment, recording equipment, and
ongoing electrophysiological activity from the eyes (Dement
and Kleitman, 1957; Overton and Shagass, 1969; Schlögl et al.,
2007), heart (Stephenson and Gibbs, 1951; Park et al., 2002),
muscles (Goncharova et al., 2003; Whitham et al., 2007;
Muthukumaraswamy, 2013). Electroencephalographic signals
measured from the scalp show microvolt-scale fluctuations
(peak-peak range: 0.5 µV–100 µV; Teplan, 2002), while noise
contamination can occur at the millivolt scale (1,000× greater
amplitude). The electrode characteristics and scalp-electrode
interface can have large implications on EEG signal quality.
Typical EEG electrodes commonly use silver/silver chloride
(Ag/AgCl) that interfaces indirectly with the scalp through
a conductive gel in a so-called wet electrode configuration.
The Ag/AgCl wet electrodes have favorable reliability and
signal integrity, with a low electrical impedance that diminishes
low-frequency noise compared to high impedance electrodes
recording in a warm, humid environment (Kappenman and
Luck, 2010; Laszlo et al., 2014; Mathewson et al., 2017; Hinrichs
et al., 2020). Any EEG setup can cause discomfort for the
participant during prolonged use, but the main drawback of wet
EEG electrodes is that the conductive gel dries over time, which
reduces signal recording quality.

Dry contact electrodes were proposed to resolve some of the
disadvantages of wet electrodes (Taheri et al., 1994; Gargiulo
et al., 2008; Lopez-Gordo et al., 2014) by enabling electrical brain
recordings over longer durations without a need for conductive
gel (Xu et al., 2017). Additional advantages of dry contact
electrodes include reduced setup time and limited inconvenience
to the participant. However, dry contact electrodes show a higher
impedance range and are more vulnerable to motion artifacts
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TABLE 1 | Mobile high-density EEG systems for studying neural control of human locomotion.

System Channel density Electrode type Portability Mass

Active Passive Size (mm)

Wet Dry Wet Dry

BIOSEMI:ActiveTwo Up to 271-channels
(256 scalp+ 8ECG or EMG
+ 7 external channels)

√
120× 150× 190 Body worn

recording
hardware

1.1 kg

Cognionics:CGX
MOBILE-128

Up to 128-channels (EEG)
√

90× 60× 20 Body worn
recording
hardware

1 kg
(98 g:Recording
system only)

ANT Neuro:eego
sports

Up to 128-channels (EEG
or EMG)

√ √
160× 205× 22 Body worn

recording
hardware

<500 g
(Recording
system only)

G.Tec:g.
NAUTILUS
RESEARCH
HEADSET

Up to 64-channels (EEG)
√ √

78× 60× 26 Head worn
entire
system

<140 g
(Recording
system only)

Brain
Products:LiveAmp
64

Up to 64-channels (EEG,
EMG, ECG, EOG)

√ √ √
140× 83× 18 Body worn

recording
hardware

<130 g
(Recording
system only)

EMOTIV:EPOC flex Up to 32-channels (EEG)
√

220× 155× 50 Head worn
entire
system

1 kg

than wet electrodes due to the sensitive direct skin-electrode
interface that is critical to mobile EEG signal recording quality
(Xu et al., 2017). To overcome this, pressure is often applied to
the electrodes and scalp through mechanical tension in the setup,
which can lead to discomfort.

Quasi-dry electrodes, which combine advantages from both
wet and dry contact electrodes, have been introduced as an
intermediate solution for robust EEG signal recording (Mota
et al., 2013). The quasi-dry electrode has a hydrated local skin
interface with a moisturizing solution drawn from a reservoir
inside the electrode. The significant advantages of quasi-dry
electrodes include maintenance of lower electrode impedance
similar to wet electrodes, with reduced discomfort compared to
dry electrodes (Xu and Zhong, 2018). Quasi-dry electrodes also
allow long-term EEG measurements due to the small amount
of moisturizing solution that spreads and dries on the scalp
less than typical wet electrode conductive gel (Mota et al.,
2013). Quasi-dry electrodes do, however, often require additional
pressure placed on the electrode to dispense the gel, which can
result in non-uniform scalp pressure and discomfort.

Novel electrode configurations have also been introduced,
including concentric ring electrode designs (He et al., 2001;
Besio et al., 2006, 2014). By simultaneously recording from
multiple closely-spaced recording sites on each electrode, signal-
to-noise ratio and EEG spatial resolution can improve compared
to conventional recording electrodes. Tripolar concentric ring
electrodes have even outperformed bipolar and quasi-bipolar
electrode designs by calculating the surface Laplacian or
spatial second derivative using a multi-point differential among
concentric rings on each electrode (He et al., 2001; Besio
et al., 2006, 2014). Flexible electrodes provide another promising
opportunity for configuring mobile EEG systems by relying on
compliant, lightweight materials that can improve user comfort

and enable longer duration recordings (Wang et al., 2012;
Debener et al., 2015; Someya and Amagai, 2019; Acar et al.,
2019; Shustak et al., 2019). Non-invasive flexible EEG electrodes,
such as tattoos (Kim et al., 2011; Shustak et al., 2019; Ferrari
et al., 2020) and conductive textiles (Löfhede et al., 2010, 2012),
are capable of measuring electrocortical signals from the scalp,
but are compromised by hair underlying the recording surface
(Löfhede et al., 2012; Casson, 2019) and have therefore typically
been placed on the forehead or around the ears (Kim et al.,
2011; Debener et al., 2015; Acar et al., 2019; Shustak et al., 2019).
These approaches have remained limited in locomotion studies
or restricted to motor-related brain regions (Bunge, 2004), but
fully portable and wireless EEG recording hardware with soft
scalp electrodes that minimally penetrate the epidermis can
provide a viable alternative (Mahmood et al., 2021). Widespread
adoption of these innovative technologies remains dependent
on signal recording quality, the ability to record electrical brain
activity across the entire scalp surface, and user comfort. Mobile
EEG recording innovations will continue to emerge and improve
our abilities for measuring robust electrocortical activity during
human locomotion.

EEG Signal Amplification
In addition to the skin-electrode interface, electrode
configurations and system designs have been proposed to
enhance EEG signal recording quality. One representative
idea is to integrate miniature amplifiers on each electrode,
in a so-called active electrode configuration. Because active
electrodes amplify the EEG signal at the recording site, EEG
signal quality can improve by minimizing noise induced by
cable sway (Mathewson et al., 2017). The influence of signal
pre-amplification on EEG data quality using active electrodes,
however, likely depends on the overall system configuration and
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relative placement of the system components (Scanlon et al.,
2020). Active electrode designs can also enable skin-electrode
impedance monitoring periodically throughout a data recording
session to ensure low scalp-electrode impedance and high signal
quality are preserved over time (Patki et al., 2012). Compared
to standard passive EEG electrode configurations, each active
electrode amplifier is electrically powered, often requiring
additional wiring (Xu and Zhong, 2018).

MOBILE EEG DATA PROCESSING

Source Separation Methods for Artifact
Removal
Measured at the scalp, EEG electrodes record electrical potentials
from the brain that are a mixture of multiple source components
(Hyvärinen and Oja, 2000). Blind source separation methods,
specifically independent component analysis (ICA; Bell and
Sejnowski, 1995; Makeig et al., 1997), can effectively decompose
the channel-based electrode recordings into independent
source components. Widely available through MATLAB-based
open-source scripts in EEGLab (Delorme and Makeig, 2004),
ICA is central to many mobile EEG studies for isolating
electrocortical signals from the complex mixture of signal and
noise measured from EEG channel recordings. Independent
components that are isolated from the electrode channel
recordings can then be categorized into brain components and
other components such as noise or other physiological signals.
Although numerous ICA-based algorithms exist for deriving
source components from high-density EEG channel data, an
adaptive mixture independent component analysis algorithm
(AMICA; Palmer et al., 2012) that relies on an unsupervised
learning approach has been reported to be most effective
at reducing mutual information among ICA-derived source
components (Delorme et al., 2012). This approach is also able
to detect time-varying brain states through multiple modeling
(Hsu et al., 2018), though sufficient data are needed from
long-duration EEG recordings to effectively separate source
signal components, which comes at a higher computational cost.

Distinguishing independent components that originate
from the brain and non-brain sources is a critical step when
studying human electrical brain dynamics during locomotion.
In practice, identification criteria have included, but are
not limited to, scalp topography, source dipole location,
time series, and power spectrum. Subjective methods based
on visual inspection and objective statistical criteria have
each been used for selecting electrocortical source activity
derived from ICA, but the effectiveness of these approaches
is dependent on ICA decomposition quality and between-
subject variability (Ullsperger and Debener, 2010). To
increase consistency and efficiency for classifying brain and
non-brain independent components, automatic classification
data processing toolboxes available in EEGLab have been
made available. Some of these toolboxes include ICLabel
(Pion-Tonachini et al., 2019), MARA (Multiple Artifact
Rejection Algorithm; Haresign et al., 2021), FASTER (Fully
Automated Statistical Thresholding for EEG Artifact Rejection;

Nolan et al., 2010), SASICA (Semi-Automated Selection
of Independent Components of the electroencephalogram
for Artifact correction; Chaumon et al., 2015), ADJUST
(Automatic EEG artifact Detection based on the Joint Use
of Spatial and Temporal features; Mognon et al., 2011), and
IC_MARC (Frølich et al., 2015). Although these approaches
can help to distinguish the brain and non-brain source
components from ICA decomposition, visual inspection is
still typically advisable.

Multivariate source separation techniques used in Brain-
Computer Interface (BCI) applications, may also provide
viable alternatives to ICA signal decomposition. Because BCI
studies have fewer trials for real-time control, preprocessing
is essential (Wolpaw and McFarland, 2004; Kübler et al.,
2005; Blankertz et al., 2007), with data-driven supervised
decomposition algorithms typically used as a spatial filter
(Blankertz et al., 2007; Nikulin et al., 2011; Dähne et al., 2014;
Haufe et al., 2014). Common Spatial Patterns (CSP; Müller-
Gerking et al., 1999; Ramoser et al., 2000; Blankertz et al.,
2007) generate spatial filters to improve BCI classification
and can improve EEG signal quality by optimizing spatial
filters based on predominant event-related desynchronization
or synchronization (ERD: spectral power decrease and ERS:
spectral power increase, respectively) within a certain frequency
band compared between conditions (Blankertz et al., 2007).
Source Power Comodulation (SPoC; Dähne et al., 2014) is
designed to find spatial filters for extracting oscillatory signals
from continuous variables, and when applied to scalp patterns
from simulation data, improved ground truth source power
estimation compared to ICA (Dähne et al., 2014). Spatio-spectral
decomposition (SSD; Nikulin et al., 2011) has also been used
to improve signal quality within specific frequency bands by
estimating noise around the frequency range of interest. Because
SSD assumes that noise spans a broad frequency range from a
few Hz to tens of Hz, rather than white or 1/f noise (Nikulin
et al., 2011), researchers should also consider noise traits specific
to each dataset.

Electrocortical Source Localization
Estimating the source locations of electrical brain activity using
independent components derived from scalp EEG recordings
requires the solution of a so-called inverse problem. That is,
determine the source signal locations required to produce the
mixture of signals recorded at the scalp electrodes. It is essential
for clinical and functional brain research applications to identify
the brain structures involved in a task or behavior (Cuffin,
1998; Keil et al., 2014), but finding accurate spatial source
locations is difficult due to the effects of volume conduction
(Jung et al., 2001) as the electrical source activity propagates
through cortical tissues, cerebrospinal fluid, resistive scalp
layers, and the skull (Burle et al., 2015). To solve the EEG
inverse problem, various techniques, such as non-parametric
and parametric methods, were proposed (Grech et al., 2008).
Modeled as an electrical dipole, non-parametric approaches
assume that source components distributed in the whole brain
maintain fixed orientations. Such methods include LORETA
(Low resolution electrical tomography; Baillet, 1998), VARETA
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(Variable resolution electromagnetic tomography; Valdes-Sosa
et al., 2000; Bosch-Bayard et al., 2001), S-MAP (Spatial
regularization; Baillet, 1998; Grech et al., 2008), ST-MAP
(Spatio-temporal regularization; Baillet and Garnero, 1997;
Grech et al., 2008), LAURA (Local autoregressive average;
de Peralta Menendez et al., 2004), SSLOFO (Standardized
shrinking LORETA-FOCUSS; Liu et al., 2005), and ALF
(Adaptive standardized LORETA/FOCUSS; Schimpf et al., 2005).
In contrast, parametric approaches consider dipole changes
in time and try to search for the best dipole positions and
orientations. These methods include FINES (First Principle
Vectors; Xu et al., 2004), simulated annealing (Miga et al.,
2002), and computational intelligence algorithms [e.g., Neural
network (Robert et al., 2002) and Artificial neural network (Van
Hoey et al., 2000)]. Source localization technologies exist to
improve source location estimation by co-registering the precise
location of EEG electrodes on the scalp with the subject-specific
head anatomy. Imaging technologies, such as 3D scanning,
ultrasound, optoelectronic, or camera-based computer vision
methods, therefore, provide opportunities to improve electrical
source localization accuracy (Koessler et al., 2010; Baysal and
Sengül, 2010; Shirazi and Huang, 2019) when combined with
forward head models that incorporate subject-specific MRI scans
and conductivity estimates for anatomical head structures.

Temporal and Spectral Dynamics
The millisecond temporal resolution of EEG enables the study
of precise electrocortical dynamics during rapid movements or
in reactive real-world scenarios. Many EEG analysis methods
have been used to record electrocortical responses elicited by
external stimuli. By studying changes in electrical potentials
from the brain that are tied to an event of interest, such
as auditory, visual, somatosensory, or vestibular cues, event-
related potential (ERP) studies have uncovered changes in
electrical brain activity during cognitive and motor behaviors
(Kappenman and Luck, 2010). Event-related potentials represent
phase-locked neural responses that can be measured during
experimental manipulations (Gutberlet et al., 2009; Nidal and
Malik, 2014) by repeating an event of interest (Galambos,
1992) to study the latency, morphology, and scalp topography
of positive and negative voltage peaks and deflections. These
analyses can be extended to study electrocortical changes in
both time and frequency. During EEG analyses, the spectral
power is used to study the distribution of signal power among
frequencies (Sanei and Chambers, 2013) that are grouped into
frequency bands based on functional roles and characteristics
in the brain, including delta (1–3 Hz), theta (4–7 Hz), alpha
(8–12 Hz), beta (15–30 Hz), and gamma bands (>30 Hz). Lower
frequency bands indicate a subconscious state, while higher
frequency reflects a more active and aroused state (Jensen et al.,
2016). In order to track the temporal changes of the frequency
spectrum, time-frequency EEG analyses were proposed. Event-
related spectral perturbation (ERSP) analyses can show stimulus-
induced, non-phase-locked brain activity over time (Tallon-
Baudry et al., 1996; Rossi et al., 2014) and can provide insight into
specific frequency bands that relate to functional brain processes
(Rossi et al., 2014).

Functional Connectivity Metrics
Beyond quantifying spatial, temporal, and spectral dynamics
of electrical brain activity, the use of mobile EEG for studying
the neural control of human locomotion can improve our
understanding of functional interactions between brain
structures and between brain and muscle during locomotor
control. When significant temporal or spatial correlations
are observed between neurophysiological processes, this
phenomenon is often referred to as functional connectivity
(Fingelkurts et al., 2005; Sakkalis, 2011). Coherence or
correlation strength is considered directly proportional to the
degree of functional connectivity between neuroanatomical
structures when comparing electrophysiological signals
(Thatcher et al., 1986; Im, 2018). To quantify signal
interdependence without consideration for directional
causation (Bullock et al., 1995; Kaplan et al., 1997), non-directed
functional connectivity metrics such as correlation, coherence,
mutual information, phase locking value, and pairwise phase
consistency have been used (Bastos and Schoffelen, 2016). To
quantify directed functional connectivity with consideration
for causation, metrics such as cross-correlation, phase slope
index, Granger causality, and transfer entropy, have been
applied (Granger, 1969; Bastos and Schoffelen, 2016). These
metrics can also be categorized based on considerations for
signal amplitude or phase. Signal amplitude comparisons
are conducted using correlation, mutual information, cross-
correlation, Granger’s causality, partial directed coherence,
transfer entropy, and dynamic causal modeling metrics (Im,
2018). Phase domain analyses include coherence, phase
locking, pairwise phase consistency, and phase slope index
(Im, 2018). Phase comparisons can also be assessed using
Granger causality methods that include both parametric and
non-parametric approaches (Geweke, 1982). Non-parametric
Granger causality is calculated using autoregression and
does not require model order to be determined (Bastos and
Schoffelen, 2016). Parametric Granger causality is based on
Fourier or wavelet-based methods, which require less data than
non-parametric equivalents (Bastos and Schoffelen, 2016). For
single-trial data and when model order is known, parametric
Granger causality methods have shown greater sensitivity
for quantifying neural functional connectivity compared to
non-parametric Granger causality methods (Richter et al., 2015;
Bastos and Schoffelen, 2016).

MOBILE EEG DATA PROCESSING
CHALLENGES AND SOLUTIONS

Physiological Artifacts and Solutions
Electrophysiological signals not limited to electrical brain
activity are detectable from scalp EEG measurements. The
heart rhythm, eye movements, and electrical muscle activity
can influence each obscure electrocortical source activity
and may also present contrasting signal characteristics that
require specific noise removal strategies beyond independent
component analysis. Cardiac activity is detectable from
EEG measurements when the electrode is placed on or
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near a blood vessel (Goncharova et al., 2003). The repetitive
low-frequency (∼1.2 Hz) signal characteristics of the heart
rhythm are distinguishable from cerebral activity, and removal
can be assisted by relying on a reference waveform or an
electrocardiogram (ECG; Jiang et al., 2019).

Ocular artifacts caused by eye blinks and saccades present
large amplitude and low-frequency voltage fluctuations
compared to EEG signals. Because of the different signal
characteristics between brain activity and eye movements,
electrooculographic (EOG) recordings from electrodes placed
on the skin around the eye can help to parse EOG from
EEG signals using ICA or regression methods (Jung et al.,
1998; Li et al., 2006; Schlögl et al., 2007; Winkler et al., 2015).
Alternative statistical decomposition methods that can be
implemented in a sliding window to remove transient large
amplitude artifacts have proven to be particularly effective.
Artifact subspace reconstruction (ASR; Kothe and Jung, 2016)
is a component-based artifact removal method that can be used
to clean large-variance signal components based on thresholds
compared to clean baseline data and subsequent reconstruction
of EEG channel data. By pre-conditioning EEG channel data and
removing eye movement and muscle artifacts ahead of ICA, it
is possible to improve ICA decomposition quality (Chang et al.,
2019).

Myoelectric artifacts can appear in EEG signals due
to muscular contractions from the scalp, face, and neck.
Electromyographic (EMG) recordings can present broad spectral
distributions, including low and high frequencies (>200 Hz;
Shackman et al., 2009; Urigüen and Garcia-Zapirain, 2015) but
are usually more localized in higher frequency bands above
14 Hz (Narasimhan and Dutt, 1996). Conventional low pass
filtering approaches can remove high-frequency signal content
but may also eliminate electrocortical signals in beta (13–30 Hz)
or gamma bands (>30 Hz) depending on the selected filter
cutoff. To minimize the risk of undesirable signal loss, canonical
correlation analysis (CCA) has been used to remove muscle
artifacts from EEG data (De Clercq et al., 2006; Raghavendra
and Dutt, 2011; Jiang et al., 2019). CCA measures the linear
relationship between two datasets to derive signal components
based on correlation or autocorrelation when derived from
a single dataset, such as EEG channel recordings. Due to
the high-frequency spectral characteristics of electrical muscle
activity, canonical components with low autocorrelation tend
to show high-frequency spectral content indicative of electrical
muscle activity. Component removal or filtering can therefore
help to eliminate myoelectric EEG signal contamination.

Electromechanical Artifacts and Solutions
In addition to the mixture of electrophysiological signals
captured by EEG recording electrodes, external noise sources
can contaminate mobile EEG data. External artifacts can
include alternating current power line noise, electromagnetic
interference from electronic devices in the surrounding
environment, and movement-related artifacts introduced by
the movement of mobile EEG system components, such as
cables and electrodes. Alternating current power line noise
predominantly occurs at either 50 Hz or 60 Hz, depending

on the country, and can largely be eliminated using a notch
filter at the respective frequency band (Leske and Dalal, 2019).
However, notch filtering can eliminate electrocortical target
signals in gamma band (>30 Hz) depending on notch filter
width. Alternative methods for power line noise removal have
been implemented, such as Discrete Fourier Transform (DFT)
filter (Oostenveld et al., 2011), frequency-domain regression
(Bigdely-Shamlo et al., 2015), and spectrum interpolation (Leske
and Dalal, 2019).

Inherent to the study of neural control of locomotion
using mobile EEG, gait-related movement artifacts have posed
non-trivial challenges to researchers. Small electrode motions
on the scalp, cable sway (Symeonidou et al., 2018), and system
component vibrations introduce signal contamination during
each step of the gait cycle, causing voltage fluctuations in
the EEG signal that exceed electrical brain activity. Signal
fluctuations occur at the step frequency but can also extend into
higher frequency bands at harmonics of the step cycle, with
a non-uniform influence of noise among recording electrodes
across the scalp (Kline et al., 2015; Snyder et al., 2015).
Cable bundling and more effectively securing electrodes and
system components to the participant can minimize motion
artifact causes (Nathan and Contreras-Vidal, 2016), but it
remains difficult to completely eliminate motion-induced noise
through ICA decomposition methods alone. High pass filtering
mobile EEG data provides a partial solution (Winkler et al.,
2015), with a 1–2 Hz high pass filter improving subsequent
ICA decomposition results, but a number of alternative
signal processing solutions have been implemented in mobile
EEG studies. Adaptive filtering (Kilicarslan et al., 2016),
template regression (Gwin et al., 2010), and component-based
statistical decomposition methods, including artifact subspace
reconstruction (Chang et al., 2018, 2019), have been used to
eliminate motion artifacts from mobile EEG data at relatively
slow gait speeds (<1.0 m/s; Gwin et al., 2010; Wagner et al., 2012,
2016; Bradford et al., 2016, 2019; Oliveira et al., 2017a,b; Bradford
et al., 2019), but gait speeds closer to, and in excess of, preferred
human walking speed (1.4 m/s; Bohannon, 1997) have remained
challenging and have required novel solutions.

Automatic Preprocessing Toolboxes
Many EEG preprocessing procedures have been developed and
incorporated into EEGLab toolboxes to provide standardized
data analysis pipelines for improving rigor and reproducibility
amongmobile EEG studies (Bigdely-Shamlo et al., 2015; Gabard-
Durnam et al., 2018; Pedroni et al., 2019). The PREP pipeline
(Bigdely-Shamlo et al., 2015), AUTOMAGIC (Pedroni et al.,
2019), and HAPPE (Harvard Automated Processing Pipeline
for EEG) have each introduced functions for analyzing EEG
data. These toolboxes include methods for identifying and
removing unusually noisy channel data (findNoisyChannels;
Bigdely-Shamlo et al., 2015; Pedroni et al., 2019), a multi-stage
robust referencing scheme that eliminates noise from recorded
EEG signals prior to computing a common average reference
(Bigdely-Shamlo et al., 2015), alternating current powerline noise
removal (cleanLineNoise and ZapLine; de Cheveigné, 2020),
and artifact corrections for eye movements (Pedroni et al.,
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2019). Automatic open-source data processing toolboxes can
improve consistency among mobile EEG analyses, but it remains
important to ensure that mobile EEG hardware is configured to
eliminate as many possible signal contaminating noise sources
ahead of EEG data recording.

Hardware-Assisted Solutions for Mobile
EEG Motion Artifact Reduction
A common approach for mobile EEG artifact removal is to
rely on simultaneously recorded reference signals from sources
known to exist in the complexmixture of signals captured in EEG
recordings (e.g., EOG, EMG, or ECG). Similar approaches using
isolated motion and/or electrical noise recordings have been
developed and applied. Using information about the participant’s
head motions during gait is one possible solution for quantifying
the causes of motion artifacts in mobile EEG. Optoelectronic
motion capture, accelerometry, or inertial measurement units
can be used for this purpose (Casson, 2019). Adopted
from solutions to overcome significant signal contamination
introduced by gradient artifacts during simultaneous MRI and
EEG (Chowdhury et al., 2014), isolated noise recordings have
recently been used to eliminate motion artifacts from mobile
EEG during human locomotion using dual-layer EEG (Nordin
et al., 2018). In this configuration, one layer of EEG electrodes
measured a mixture of physiological signals and motion artifacts
from the scalp, but the second layer of electrodes measured
only electrical noise and motion artifacts from mechanically
coupled but electrically isolated secondary electrodes. Noise-only
electrodes were referenced to an overlaid conductive fabric cap
that served as an artificial skin circuit but also more effectively
secured the recording electrodes to the participant’s head.
By conducting benchmark tests using a robotically controlled
motion platform that reproduced human head motions during
walking and an electronic head phantom device that generated
ground truth artificial brain signals (Nordin et al., 2018; Richer
et al., 2020), the ability of dual-layer mobile EEG for motion
artifact removal was validated. These methods were subsequently
applied during human treadmill locomotion at a range of gait
speeds (Nordin et al., 2019a,b), including while navigating
over unexpected obstacles on a treadmill belt (Nordin et al.,
2019c).

MOBILE EEG FOR STUDYING THE
NEURAL CONTROL OF LOCOMOTION

Recent mobile EEG studies have expanded our understanding of
human supraspinal locomotor control, revealing electrocortical
spectral power fluctuations tied to each step in the gait cycle
(Wagner et al., 2012, 2016; Bradford et al., 2016, 2019; Luu et al.,
2017a; Nordin et al., 2019a,c). Broadly distributed electrocortical
network dynamics further show activations from the frontal
cortex (Sipp et al., 2013; Bulea et al., 2015; Wagner et al., 2016),
anterior cingulate cortex (Bulea et al., 2015; Bradford et al.,
2016; Wagner et al., 2016; Luu et al., 2017a; Yokoyama et al.,
2020), sensorimotor cortex (Wagner et al., 2012; Sipp et al., 2013;
Bradford et al., 2016; Luu et al., 2017a; Nordin et al., 2019a;
Yokoyama et al., 2020), auditory cortex (Wagner et al., 2016;

Nordin et al., 2019a,b), supplementary motor area (Nordin et al.,
2019c), premotor cortex (Nordin et al., 2019c), motor cortex
(Wagner et al., 2012; Bulea et al., 2015), somatosensory cortex
(Yokoyama et al., 2020), and the parietal cortex (Bulea et al.,
2015; Bradford et al., 2016; Wagner et al., 2016; Luu et al.,
2017a) during locomotor tasks ranging from steady treadmill
gait to navigating over complex terrain or walking with robotic
assistance. Knowledge gained from these studies provides the
basis for understanding human electrocortical dynamics during
balance and gait control that can be used for the development
of assistive devices and neuroprostheses for rehabilitation, and
to restore locomotor function for individuals with neurological
disorders and disease.

Locomotor Control
A growing body of evidence shows dynamic cortical activations
during the initiation, maintenance, and modification of human
gait (Choi and Bastian, 2007; Grillner et al., 2008; Wagner
et al., 2012; Castermans et al., 2014; Bradford et al., 2016;
Nordin et al., 2019c). During each step of the gait cycle,
sensorimotor electrocortical spectral power modulations occur
in alpha (8–12 Hz) and beta bands (13–30 Hz). Multiple studies
have shown alpha and beta band spectral power increases
during double support and decreases during limb swing of
continuous gait (Gwin et al., 2010; Wagner et al., 2012;
Bulea et al., 2015; Bradford et al., 2016, 2019; Oliveira et al.,
2017b; Nordin et al., 2018, 2019a,b). Detectable changes in
electrocortical spectral power have also been identified between
uphill, downhill, and level treadmill gait (Bradford et al., 2016),
walking with eyes closed compared to eyes open (Oliveira
et al., 2017b), during transitions in gait speed (Wagner et al.,
2016), and when navigating over complex terrain (Luu et al.,
2017a). Compared to level and downhill walking (Bradford
et al., 2016), during incline walking spectral power from the
anterior cingulate cortex, sensorimotor cortex, and the posterior
parietal cortex increased in theta band (4–7 Hz) and decreased
in gamma band (>30 Hz). Walking with restricted vision
induced desynchronization from theta to beta bands during
the transition to single support for the somatosensory cortex
(Oliveira et al., 2017b), suggesting that restricted vision increases
sensory processing and integration compared to visually guided
walking. Although changes in gait speed can be largely controlled
subcortically, alpha and beta band sensorimotor electrocortical
spectral power were shown to decrease at faster gait speeds
(2.0 m/s) compared to slower walking (0.5 m/s; Luu et al.,
2017a). While navigating complex overground terrain that
included level ground, ramps, and stairs, participants showed
reduced alpha and beta band spectral power from sensorimotor
cortex during ramp and stair ascent compared to level-ground
walking (Luu et al., 2017a). Beta and gamma-band spectral
power also increased from the sensorimotor cortex during initial
limb swing while ascending stairs. Collectively, these findings
uncover a distributed network of cortical activity involved in
movement control and sensory processing during gait, leaving
considerable work to uncover dynamic interactions among brain
structures and how these locomotor network dynamics differ
among populations.

Frontiers in Human Neuroscience | www.frontiersin.org 7 November 2021 | Volume 15 | Article 749017

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Song and Nordin Mobile EEG Review

Balance Control and Perturbation
Responses
During bipedal gait, dynamic balance maintains upright posture
by supporting body weight. The ability to maintain and recover
from the loss of balance is critical to healthy gait function. The
unexpected loss of balance due to external perturbations has
been associated with electrocortical activations from primary
sensory andmotor cortices, supplementarymotor area, premotor
cortex, anterior cingulate cortex, prefrontal cortex, temporal
cortex, parietal cortex, and visual cortex (Massion et al., 1999;
Slobounov et al., 2009; Sipp et al., 2013; Marlin et al., 2014;
Varghese et al., 2019). Loss of balance while walking on a
balance beam has also shown greater theta band power and
reduced beta power from the sensorimotor cortex compared
to steady treadmill walking (Sipp et al., 2013). Divergent
electrical brain dynamics also emerge during a loss of balance
due to physical or visual perturbations (Peterson and Ferris,
2018). While walking on a balance beam, participants who
experienced a physical pull at the waist, compared to a visual
rotation of the environment using a virtual reality headset,
showed increased spectral power from the sensorimotor cortex
in the theta band and decreased beta power after perturbation
onset (Peterson and Ferris, 2018). Compared to the loss of
balance due to a physical pull at the waist, however, visual
perturbations elicited more prominent responses from the
parieto-occipital areas. During recovery from loss of balance
during unexpected slips, compared to steady walking, spectral
power from sensorimotor cortex similarly increased in the theta
band and decreased in the alpha band, while alpha and beta
band spectral power decreased from the parietal cortex (An
et al., 2019). In response to unexpected obstacles that appeared
on a treadmill belt during walking and running, event-related
spectral power fluctuations from time-frequency analysis further
identified spectral power increases from the premotor cortex,
supplementary motor area, and the parietal cortex in the delta,
theta, and alpha bands. The timing of electrocortical activation
onset varied with locomotion speed, initiating two steps before
stepping over the obstacle to enable foot placement planning
around the obstacle (Nordin et al., 2019c). The ability to detect
perturbation onset in advance of motor responses could provide
bio signals for developing brain-machine interface technologies
to properly assist in counteracting the loss of balance due to
perturbations or changes in the environment during standing
balance and gait.

Mobile EEG for the Development of
Neurotechnologies
Robotic-assistive devices are widely used for rehabilitation
purposes to provide bodyweight support or to guide locomotor
limb movements. To better understand the influence of robotic
assistance on human locomotor control, researchers have studied
changes in electrocortical spectral dynamics using mobile EEG.
By comparing electrical brain activity during active treadmill gait
to walking with assistive forces applied to the limbs or passive
limb motions with bodyweight support, changes in sensorimotor
processing have been uncovered. During robotically-assisted

gait that provides bodyweight support and limb guidance,
spectral power from premotor cortex and sensorimotor areas
increased in alpha, beta, and gamma bands, compared to active
treadmill walking (Wagner et al., 2012; Knaepen et al., 2014;
Seeber et al., 2014). Recent mobile EEG studies that used
a unilateral lower-limb exoskeleton to generate assistive joint
torque outside the laboratory also showed hemispherical effects
on parietooccipital regions in beta band compared to walking
without robotic assistance (Li et al., 2018). As assistive robotic
technologies for rehabilitation continue to develop, it becomes
more important to better understand healthy human brain
dynamics during locomotion. This knowledge not only informs
how changes in electrocortical activity influence movement
control, but also provides possible biomarkers for measuring
adaptation to assistive devices or tracking rehabilitative progress
and provides the mechanism for identifying electrocortical
control signals that can be used for brain-machine interface
technologies.

Brain-machine interfaces have shown increasingly promising
applications for controlling output devices using direct
communication with the human brain (Millán et al., 2004;
Lebedev and Nicolelis, 2017; Tariq et al., 2018). Non-invasive
EEG-based brain-machine interface systems can provide
effective closed-loop strategies for deciphering user intentions
while controlling physical or virtual machines, including multi-
directional brain-actuated wheelchairs (Vanacker et al., 2007;
Galán et al., 2008) or lower-limb exoskeletons (Noda et al.,
2012; Contreras-Vidal and Grossman, 2013; Sczesny-Kaiser
et al., 2015). Recent brain-computer interface demonstrations
have allowed users to control a walking avatar in virtual reality
using scalp EEG signals. In this application, alpha band spectral
power from the posterior parietal cortex and inferior parietal
lobe decreased along with increased gamma band spectral power
from the anterior cingulate cortex, which has been attributed
to error monitoring during walking (Luu et al., 2016, 2017b).
Continued innovations using non-invasive EEG-based brain-
machine interfaces can therefore advance current capabilities
and lead to more intuitive assistive devices for rehabilitation,
injury prevention, or human performance enhancement using
the user’s own neurophysiological control signals.

DISCUSSION

In this review, we discussed mobile EEG technologies,
including advancements in hardware and signal processing
technologies for mobile applications. We identified different
hardware strategies for improving signal recording quality
and contemporary analytical methods for effectively extracting
electrocortical source signals that can be localized to specific
cortical structures with progressively better spatial resolution.
We also identified the benefits of these fast timescale recordings
for studying changes in voltages and spectral power that can be
used to better understand how electrical brain activity changes
during dynamic behaviors. Current state-of-the-art mobile EEG
methods have led to considerable discoveries in the neural
control of human locomotion, and through continued mobile
hardware and signal processing innovations, new discoveries will
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continue to emerge that will enable studies in more realistic tasks
and environments. Recent locomotion studies have revealed
complex electrocortical dynamics that can be measured in time,
space, and frequency. Effectively extracting and decoding these
electrical brain signals will enable the development of robust,
non-invasive brain-computer interface technologies for use in
restoring, maintaining, and improving human gait.

Future improvements in mobile EEG technologies that
enhance system usability will lead to more widespread adoption
of these methods, including the use of compact, lightweight,
and wireless system designs that can be entirely worn on
the head and require reduced preparation time, but are also
comfortable for the user to wear and remove to enable robust
long-term recordings (Hairston et al., 2014; Izdebski et al., 2016;
Oliveira et al., 2016; Bateson et al., 2017; Athavale and Krishnan,

2017). Analytical methods that cssan be realistically implemented
in real-time for closed-loop applications will also enable the
development of next-generation neurotechnologies. In addition
to advancements in mobile EEG recording and analysis methods,
unified approaches for simultaneously recording biosignals, such
as eye gaze, electromyography, and biomechanical measures
for quantifying whole-body human movement outside of
conventional laboratory environments, will continue to expand
the study of neural control of human locomotion into real-world
scenarios.
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