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Abstract Traditional accumulation-to-bound decision-making models assume that all choice

options are processed with equal attention. In real life decisions, however, humans alternate their

visual fixation between individual items to efficiently gather relevant information (Yang et al., 2016).

These fixations also causally affect one’s choices, biasing them toward the longer-fixated item

(Krajbich et al., 2010). We derive a normative decision-making model in which attention enhances

the reliability of information, consistent with neurophysiological findings (Cohen and Maunsell,

2009). Furthermore, our model actively controls fixation changes to optimize information gathering.

We show that the optimal model reproduces fixation-related choice biases seen in humans and

provides a Bayesian computational rationale for this phenomenon. This insight led to additional

predictions that we could confirm in human data. Finally, by varying the relative cognitive

advantage conferred by attention, we show that decision performance is benefited by a balanced

spread of resources between the attended and unattended items.

Introduction
Would you rather have a donut or an apple as a mid-afternoon snack? If we instantaneously knew

their associated rewards, we could immediately choose the higher-rewarding option. However, such

decisions usually take time and are variable, suggesting that they arise from a neural computation

that extends over time (Rangel and Hare, 2010; Shadlen and Shohamy, 2016). In the past, such

behavior has been modeled descriptively with accumulation-to-bound models that continuously

accumulate noisy evidence from each choice option, until a decision boundary is reached in favor of

a single option over its alternatives. Such models have been successful at describing accuracy and

response time data from human decision makers performing in both perceptual and value-based

decision tasks (Ratcliff and McKoon, 2008; Milosavljevic et al., 2010). Recently, we and others

showed that, if we assume these computations to involve a stream of noisy samples of each item’s

perceptual feature (for perceptual decisions) or underlying value (for value-based decisions), then

the normative strategy could be implemented as an accumulation-to-bound model (Bogacz et al.,

2006; Drugowitsch et al., 2012; Tajima et al., 2016). Specifically, the normative strategy could be

described with the diffusion decision model (Ratcliff and McKoon, 2008) with time-varying decision

boundaries that approach each other over time.

Standard accumulation-to-bound models assume that all choice options receive equal attention

during decision-making. However, the ability to drive one’s attention amidst multiple, simultaneous

trains of internal and external stimuli is an integral aspect of everyday life. Indeed, humans tend to

alternate between fixating on different items when making decisions, suggesting that control of

overt visual attention is intrinsic to the decision-making process (Kustov and Robinson, 1996;

Mohler and Wurtz, 1976). Furthermore, their final choices are biased toward the item that they
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looked at longer, a phenomenon referred to as a choice bias (Shimojo et al., 2003; Krajbich et al.,

2010; Krajbich and Rangel, 2011; Cavanagh et al., 2014). While several prior studies have devel-

oped decision-making models that incorporate attention (Yu et al., 2009; Krajbich et al., 2010;

Towal et al., 2013; Cassey et al., 2013; Gluth et al., 2020), our goal was to develop a normative

framework that incorporates control of attention as an integral aspect of the decision-making pro-

cess, such that the agent must efficiently gather information from all items while minimizing the

deliberation time, akin to real life decisions. In doing so, we hoped to provide a computational ratio-

nale for why fixation-driven choice biases seen in human behavior may arise from an optimal decision

strategy. For example, the choice bias has been previously replicated with a modified accumulation-

to-bound model, but the model assumed that fixations are driven by brain processes that are exoge-

nous to the computations involved in decision-making (Krajbich et al., 2010). This stands in contrast

to studies of visual attention where fixations appear to be controlled to extract choice-relevant infor-

mation in a statistically efficient manner, suggesting that fixations are driven by processes endoge-

nous to the decision (Yang et al., 2016; Hoppe and Rothkopf, 2016; Hayhoe and Ballard, 2005;

Chukoskie et al., 2013; Corbetta and Shulman, 2002).

We asked if the choice bias associated with fixations can be explained with a unified framework in

which fixation changes and decision-making are part of the same process. To do so, we endowed

normative decision-making models (Tajima et al., 2016) with attention that boost the amount of

information one collects about each choice option, in line with neurophysiological findings

(Averbeck et al., 2006; Cohen and Maunsell, 2009; Mitchell et al., 2009; Wittig et al., 2018). We

furthermore assumed that this attention was overt (Posner, 1980; Geisler and Cormack, 2012), and

thus reflected in the decision maker’s gaze which was controlled by the decision-making process.

We first derive the complex normative decision-making strategy arising from these assumptions

and characterize its properties. We then show that this strategy featured the same choice bias as

observed in human decision makers: it switched attention more frequently when deciding between

items with similar values, and was biased toward choosing items that were attended last, and

attended longer. It furthermore led to new predictions that we could confirm in human behavior:

choice biases varied based on the amount of time spent on the decision and the average desirability

across both choice items. Lastly, it revealed why the observed choice biases might, in fact, be ratio-

nal. Overall, our work provides a unified framework in which the optimal, attention-modulated infor-

mation-seeking strategy naturally leads to biases in choice that are driven by visual fixations, as

observed in human decisions.

Results

An attention-modulated decision-making model
Before describing our attention-modulated decision-making model, we will first briefly recap the

attention-free value-based decision-making model (Tajima et al., 2016) that ours builds upon. This

model assumes that for each decision trial, a true value associated with each item (z1,z2) is drawn

from a normal prior distribution with mean �z and variance s2

z . Therefore, zj ~N �z;s2

z

� �

for both

j 2 f1; 2g. The smaller the s2

z , the more information this prior provides about the true values. We

assume the decision maker knows the shape of the prior, but can’t directly observe the drawn true

values. In other words, the decision maker a priori knows the range of values associated with the

items they need to compare, but does not know what exact items to expect nor what their associ-

ated rewards will be. For example, one such draw might result in a donut and an apple, each of

which has an associated value to the decision maker (i.e. satisfaction upon eating it). In each nth

time step of length dt, they observe noisy samples centered around the true values, called momen-

tary evidence, dxj;njzj ~N zjdt; 2s
2

xdt
� �

. In Tajima et al., 2016 , the variance of the momentary evi-

dence was s2

xdt rather than 2s2

xdt. We here added the factor 2 without loss of generality to relate it

more closely to the attention-modulated version we introduce further below. The variance 2s2

x here

controls how informative the momentary evidence is about the associated true value. A large s2

x

implies larger noise, and therefore less information provided by each of the momentary evidence

samples. While the model is agnostic to the origin of these samples, they might arise from computa-

tions to infer the items’ values (e.g. how much do I currently value the apple?), memory recall (e.g.
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how much did I previously value the apple?), or a combination thereof (Shadlen and Shohamy,

2016). As the decision maker’s aim is to choose the higher valued item, they ought to accumulate

evidence for some time to refine their belief in the items’ values. Once they have accumulated evi-

dence for t ¼ Ndt seconds, their posterior belief for the value associated with either item is

zjjdxj;1:N ~N
s2

xs
�2

z �zþ 1

2
xjðtÞ

s2
xs

�2
z þ 1

2
t

;
s2

x

s2
xs

�2
z þ 1

2
t

 !

; (1)

where xjðtÞ ¼
PN

n¼1
dxj;n is the accumulated evidence for item j (Tajima et al., 2016). The mean of this

posterior (i.e. the first fraction in brackets) is a weighted sum of the prior mean, �z, and the accumu-

lated evidence, xjðtÞ. The weights are determined by the accumulation time (t), and the variances of

the prior (s2

z ) and the momentary evidence (s2

x ), which control their respective informativeness. Ini-

tially, t¼ 0 and xjðtÞ ¼ 0, such that the posterior mean equals that of the prior, �z. Over time, with

increasing t, the influence of xjðtÞ becomes dominant, and the mean approaches xjðtÞ=t (i.e. the aver-

age momentary evidence) for a large t, at which point the influence of the prior becomes negligible.

The posterior’s variance (i.e. the second fraction in brackets) reflects the uncertainty in the decision

maker’s value inference. It initially equals the prior variance, s2

z , and drops toward zero once t

becomes large. In this attention-free model, uncertainty monotonically decreases identically over

time for both items, reflecting the standard assumption of accumulation-to-bound models that, in

each small time period, the same amount of evidence is gathered for either choice item.

To introduce attention-modulation, we assume that attention limits information about the unat-

tended item (Figure 1). This is consistent with behavioral and neurophysiological findings showing

that attention boosts behavioral performance (Cohen and Maunsell, 2009; Cohen and Maunsell,

2010; Wang and Krauzlis, 2018) and the information encoded in neural populations (Ni et al.,
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Figure 1. Attention-modulated evidence accumulation. (A) Schematic depicting the value-based decision-making model. When choosing between two

snack items (e.g. apple versus donut), people tend to evaluate each item in turn, rather than think about all items simultaneously. While evaluating one

item, they will pay less attention to the unattended item (blurred item). (B) Schematic of the value-based decision process for a single decision trial. At

trial onset, the model randomly attends to one item (green box). At every time step, it accumulates momentary evidence (orange box) that provides

information about the true value of each item, which is combined with the prior belief of each item’s value to generate a posterior belief. Note that the

momentary evidence of the attended item comes from a tighter distribution. Afterwards, the model assesses whether to accumulate more evidence

(orange), make a choice (black), or switch attention to the other item (green). (C) Evolution of the evidence accumulation process. The top panel shows

momentary evidence at every time point for the two items. Note that evidence for the unattended item has a wider variance. The middle panel shows

how the posterior estimate of each item may evolve over time (mean ± 1SD). The horizontal dotted lines indicate the unobserved, true values of the two

items. The bottom panel shows how uncertainty decreases regarding the true value of each item. As expected, uncertainty decreases faster for the

currently attended item compared to the unattended one. For this descriptive figure, we used the following parameters: z ¼ ½13; 10�, s2

x ¼ 5, s2

z ¼ 10,

g ¼ 0:1, dt ¼ 0:01.
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2018; Ruff et al., 2018; Wittig et al., 2018). To achieve this, we first assume that the total rate of

evidence across both items, as controlled by s2

x , is fixed, and that attention modulates the relative

amount of information gained about the attended versus unattended item. This ’attention bottle-

neck’ is controlled by k (0 � k � 1), such that k represents the proportion of total information

received for the unattended item, versus 1� k for the attended item. The decision maker can control

which item to attend to, but has no control over the value of k, which we assume is fixed and known.

To limit information, we change the momentary evidence for the attended item j to

dxj;n ~N zjdt;
1

1�k
s2

xdt
� �

, and for the unattended item k ¼ 3� j to dxk;n ~N zkdt;
1

k
s2

xdt
� �

. Therefore, if

k � 1

2
, the variance of the unattended item increases (i.e. noisier evidence) relative to the attended

item. This makes the momentary evidence less informative about zk, and more informative about zj,

while leaving the overall amount of information unchanged (see Materials and methods). Setting

k ¼ 1

2
indicates equally informative momentary evidence for both items, and recovers the attention-

free scenario (Tajima et al., 2016).

Lowering information for the unattended item impacts the value posteriors as follows. If the deci-

sion maker again accumulates evidence for some time t ¼ Ndt, their belief about item j ¼ 1’s value

changes from Equation (1) to

z1jdx1;1:N ~N
s2

xs
�2

z �zþð1�kÞX1ðtÞ
s2
xs

�2
z þð1�kÞt1 þkt2

;
s2

x

s2
xs

�2
z þð1�kÞt1 þkt2

� �

; (2)

where t1 and t2, which sum up to the total accumulation time (t¼ t1þ t2), are the durations that items

1 and 2 have been attended, respectively. The accumulated evidence X1ðtÞ now isn’t simply the sum

of all momentary pieces of evidence, but instead down-weights them by 1�k
k

if the associated item is

unattended (see Materials and methods). This prevents the large inattention noise from swamping

the overall estimate (Drugowitsch et al., 2014). An analogous expression provides the posterior

z2jdx2;1:N for item 2 (see Appendix 1).

The attention modulation of information is clearly observable in the variance of the value’s poste-

rior for item 1 (Equation 2). For k< 1

2
, this variance, which is proportional to the decision maker’s

uncertainty about the option’s value, drops more quickly over time if item 1 rather than item 2 is

attended (i.e. if t1 rather than t2 increases). Therefore, it depends on how long each of the two items

have been attended to, and might differ between the two items across time (Figure 1C). As a result,

decision performance depends on how much time is allocated to attending to each item.

The decision maker’s best choice at any point in time is to choose the item with the larger

expected value, as determined by the value posterior. However, the posterior by itself does not

determine when it is best to stop accumulating evidence. In our previous attention-free model, we

addressed the optimal stopping time by assuming that accumulating evidence comes at cost c per

second, and found the optimal decision policy under this assumption (Tajima et al., 2016). Specifi-

cally, at each time step of the decision-making process, the decision maker could choose between

three possible actions. The first two actions involve immediately choosing one of the two items,

which promises the associated expected rewards. The third action is to accumulate more evidence

that promises more evidence, better choices, and higher expected reward, but comes at a higher

cost for accumulating evidence. We found the optimal policy using dynamic programming that sol-

ves this arbitration by constructing a value function that, for each stage of the decision process,

returns all expected rewards and costs from that stage onward (Bellman, 1952; Bertsekas, 1995).

The associated policy could then be mechanistically implemented by an accumulation-to-bound

model that accumulates the difference in expected rewards, D ¼ z2jdx2;1:N

 �

� z1jdx1;1:N

 �

, and trig-

gers a choice once one of two decision boundaries, which collapse over time, is reached

(Tajima et al., 2016).

Once we introduce attention, a fourth action becomes available: the decision maker can choose

to switch attention to the currently unattended item (Figure 1B). If such a switch comes at no cost,

then the optimal strategy would be to continuously switch attention between both items to sample

them evenly across time. We avoid this physically unrealistic scenario by introducing a cost cs for

switching attention. This cost may represent the physical effort of switching attention, the temporal

cost of switching (Wurtz, 2008; Cassey et al., 2013), or a combination of both. Overall, this leads

to a value function defined over a four-dimensional space: the expected reward difference D, the
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evidence accumulation times t1 and t2, and the currently attended item y 2 f1; 2g (see Appendix 1).

As the last dimension can only take one of two values, we can equally use two three-dimensional

value functions. This results in two associated policies that span the three-dimensional state space

ðD; t1; t2Þ (Figure 2).

Features of the optimal policy
At any point within a decision, the model’s current state is represented by a location in this 3D policy

space, such that different regions in this space designate the optimal action to perform (i.e. choose,

accumulate, switch). The boundaries between these regions can be visualized as contours in this 3D

state space (Figure 2A). As previously discussed, there are two distinct policy spaces for when the

decision maker is attending to item 1 versus item 2 that are symmetric to each other (Figure 2B).

Within a given decision, the deliberation process can be thought of as a particle that drifts and

diffuses in this state space. The model starts out attending to an item at random (y 2 1; 2), which

determines the initial policy space (Figure 2B). Assume an example trial where the model attends to

item 1 initially (y ¼ 1). At trial onset, the decision maker holds the prior belief, such that the particle

starts on the origin (D ¼ 0, t1 ¼ t2 ¼ 0) which is within the ‘accumulate’ region. As the model accumu-

lates evidence, the particle will move on a plane perpendicular to t2 ¼ 0, since t2 remains constant

while attending to item 1 (Figure 2C, first column). During this time, evidence about the true values

of both items will be accumulated, but information regarding item 2 will be significantly noisier (as

controlled by k). Depending on the evidence accumulated regarding both items, the particle may hit

the boundary for ‘choose 1’, ‘choose 2’, or ’switch (attention)’. Assume the particle hits the ‘switch’

boundary, indicating that the model is not confident enough to make a decision after the initial fixa-

tion to item 1. In other words, the difference in expected rewards between the two items is too small

to make an immediate decision, and it is deemed advantageous to collect more information about

the currently unattended item. Now, the model is attending to item 2, and the policy space switches

accordingly (y ¼ 2). The particle, starting from where it left off, will now move on a plane perpendicu-

lar to the t1 axis (Figure 2C, second column). This process is repeated until the particle hits a deci-

sion boundary (Figure 2C, third column). Importantly, these shifts in attention are endogenously

generated by the model as a part of the optimal decision strategy — it exploits its ability to control

how much information it receives about either item’s value.

The optimal policy space shows some notable properties. As expected, the ‘switch’ region in a

given policy space is always encompassed in the ‘accumulate’ region of the other policy space, indi-

cating that the model never switches attention or makes a decision immediately after an attention

switch. Furthermore, the decision boundaries in 3D space approach each other over time, consistent

with previous work that showed a collapsing 2D boundary for optimal value-based decisions without

attention (Tajima et al., 2016). The collapsing bound reflects the model’s uncertainty regarding the

difficulty of the decision task (Drugowitsch et al., 2012). In our case, this difficulty depends on how

different the true item values are, as items of very different values are easier to distinguish than

those of similar value. If the difficulty is known within and across choices, the boundaries will not col-

lapse over time, and their (fixed) distance will reflect the difficulty of the choice. However, since the

difficulty of individual choices varies and is a priori unknown to the decision maker in our task, the

decision boundary collapses so that the model minimizes wasting time on a choice that is potentially

too difficult.

The optimal model had five free parameters that affect its behavior: (1) variance of evidence accu-

mulation (s2

x ), (2) variance of the prior distribution (s2

z ), (3) cost of evidence accumulation (c½s�1�), (4)
cost of switching attention (cs), and (5) relative information gain from the attended vs. unattended

items (k). The contour of the optimal policy boundaries changes in intuitive ways as these parameters

are adjusted (Figure 2—figure supplement 1). Increasing the noisiness of evidence accumulation

(s2

x ) causes an overall shrinkage of the evidence accumulation space. This allows the model to reach

a decision boundary more quickly under a relatively higher degree of uncertainty, given that evi-

dence accumulation is less reliable but equally costly. Similarly, increasing the cost of accumulating

evidence (c) leads to a smaller accumulation space so that the model minimizes paying a high cost

for evidence accumulation. Increasing the switch cost cs leads to a smaller policy space for the

‘switch’ behavior, since there is an increased cost for switching attention. Similarly, decreasing the

inattention noise by setting k closer to 1

2
leads to a smaller ‘switch’ space because the model can
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Figure 2. Navigating the optimal policy space. (A) The optimal policy space. The policy space can be divided into

regions associated with different optimal actions (choose item 1 or 2, accumulate more evidence, switch attention).

The boundaries between these regions can be visualized as contours in this space. The three panels on the right

show cross-sections after slicing the space at different D values, indicated by the gray slices in the left panel. Note

that when D ¼ 0 (middle panel), the two items have equal value and therefore there is no preference for one item

over the other. (B) Optimal policy spaces for different values of y (currently attended item). The two policy spaces

are mirror-images of each other. (C) Example deliberation process of a single trial demonstrated by a particle that

diffuses across the optimal policy space. In this example, the model starts by attending to item 1, then makes two

switches in attention before eventually choosing item 1. The bottom row shows the plane in which the particle

diffuses. Note that the particle diffuses on the (gray, shaded) plane perpendicular to the time axis of the

unattended item, such that it only increases in tj when attending to item j. Also note that the policy space changes

according to the item being attended to, as seen in (B). See results text for more detailed description. See

Figure 2—figure supplement 1 to view changes in the optimal policy space depending on changes to model

parameters.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Changes in the optimal policy space and model behavior with adjustments in free model
parameters.
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obtain more reliable information from the unattended item, reducing the necessity to switch atten-

tion. To find a set of parameters that best mimic human behavior, we performed a random search

over a large parameter space and selected the parameter set that best demonstrated the qualitative

aspects of the behavioral data (see Appendix 1).

The optimal policy replicates human behavior
To assess if the optimal policy features the same decision-making characteristics as human decision

makers, we used it to simulate behavior in a task analogous to the value-based decision task per-

formed by humans in Krajbich et al., 2010. Briefly, in this task, participants first rated their prefer-

ence of different snack items on a scale of �10 to 10. Then, they were presented with pairs of

different snacks after excluding the negatively rated items and instructed to choose the preferred

item. While they deliberate on their choice, the participants’ eye movements were tracked and the

fixation duration to each item was used as a proxy for visual attention.

We simulated decision-making behavior using value distributions similar to those used in the

human experiment (see Materials and methods), and found that the model behavior qualitatively

reproduces essential features of human choice behavior (Figure 3, Figure 3—figure supplement 1).

As expected in value-based decisions, a larger value difference among the compared items made it

more likely for the model to choose the higher-valued item (Figure 3A; tð38Þ ¼ 105:7; p<0:001). Fur-

thermore, the model’s mean response time (RT) decreased with increasing value difference, indicat-

ing that less time was spent on trials that were easier (Figure 3B; tð38Þ ¼ �11:1; p<0:001). Of note,

while human RTs appeared to drop linearly with increasing value difference, our model’s drop was

concave across a wide range of model parameters (Figure 3—figure supplement 1C). The model

also switched attention less for easier trials, indicating that difficult trials required more evidence
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Figure 3. Replication of human behavior by simulated optimal model behavior (Krajbich et al., 2010). (A) Monotonic increase in probability of

choosing item 1 as a function of the difference in value between item 1 and 2 (tð38Þ ¼ 105:7; p<0:001). (B) Monotonic decrease in response time (RT) as a

function of trial difficulty (tð38Þ ¼ �11:1; p<0:001). RT increases with increasing difficulty. (C) Decrease in the number of attention switches as a function

of trial difficulty. More switches are made for harder trials (tð38Þ ¼ �8:10; p<0:001). (D) Effect of last fixation location on item preference. The item that

was fixated on immediately prior to the decision was more likely to be chosen. (E) Attention’s biasing effect on item preference. The item was more

likely to be chosen if it was attended for a longer period of time (tð38Þ ¼ 5:32; p<0:001). Since the probability of choosing item 1 depends on the degree

of value difference between the two items, we normalized the p(choose item 1) by subtracting the average probability of choosing item 1 for each

difference in item value. (F) Replication of fixation pattern during decision making. Both model and human data showed a fixation pattern where a short

initial fixation was followed by a longer, then medium-length fixation. Error bars indicate standard error of the mean (SEM) across both human and

simulated participants (N ¼ 39 for both). See Figure 3—figure supplement 2 for an analogous figure for the perceptual decision task.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Parameter-dependence of psychometric/chronometric curves, and exploration of switch rate rather than switch number for the
optimal model.

Figure supplement 2. Replicating human perceptual decision-making behavior with the optimal model.
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accumulation from both items, necessitating multiple switches in attention (Figure 3C;

tð38Þ ¼ �8:10; p<0:001). Since the number of switches is likely correlated with response time, we also

looked at switch rate (number of switches divided by response time). Here, although human data

showed no relationship between switch rate and trial difficulty, model behavior showed a positive

relationship, suggesting an increased rate of switching for easier trials. However, this effect was

absent when using the same number of trials as humans, and did not generalize across all model

parameter values (Figure 3—figure supplement 1D–G).

The model also reproduced the biasing effects of fixation on preference seen in humans

(Krajbich et al., 2010). An item was more likely to be chosen if it was the last one to be fixated on

(Figure 3D), and if it was viewed for a longer time period (Figure 3E; tð38Þ ¼ 5:32; p<0:001). Interest-

ingly, the model also replicated a particular fixation pattern seen in humans, where a short first fixa-

tion is followed by a significantly longer second fixation, which is followed by a medium-length third

fixation (Figure 3F). We suspect this pattern arises due to the shape of the optimal decision bound-

aries, where the particle is more likely to hit the ‘switch’ boundary in a shorter time for the first fixa-

tion, likely reflecting the fact that the model prefers to sample from both items at least once.

Consistent with this, Figure 3C shows that the ‘accumulate’ space is larger for the second fixation

compared to the first fixation. Of note, the attentional drift diffusion model (aDDM) that was initially

proposed to explain the observed human data did not generate its own fixations, but rather used

fixations sampled from the empirical distribution of human subjects. Furthermore, they were only

able to achieve this fixation pattern by sampling the first fixation, which was generally shorter than

the rest, separately from the remaining fixation durations (Krajbich et al., 2010; Figure 4—figure

supplement 3E).

One feature that distinguishes our model from previous attention-based decision models is that

attention only modulates the variance of momentary evidence without explicitly down-weighting the

value of the unattended item (Krajbich et al., 2010; Song et al., 2019). Therefore, at first glance,

preference for the more-attended item is not an obvious feature since our model does not appear

to boost its estimated value. However, under the assumption that decision makers start out with a

zero-mean prior, Bayesian belief updating with attention modulation turns out to effectively account

for a biasing effect of fixation on the subjective value of items (Li and Ma, 2019). For instance, con-

sider choosing between two items with equal underlying value. Without an attention-modulated pro-

cess, the model will accumulate evidence from both items simultaneously, and thus have no

preference for one item over the other. However, once attention is introduced and the model

attends to item 1 longer than item 2, it will have acquired more evidence about item 1’s value. This

will cause item 1 to have a sharper, more certain likelihood function compared to item 2

(Figure 4A). As posterior value estimates are formed by combining priors and likelihoods in propor-

tion to their associated certainties, the posterior of item 1 will be less biased towards the prior than

that of item 2. This leads to a higher subjective value of item 1 compared to that of item 2 even

though their true underlying values are equal.

This insight leads to additional predictions for how attention-modulated choice bias should vary

with certain trial parameters. For instance, the Bayesian account predicts that trials with longer

response times should have a weaker choice bias than trials with shorter response times. This is

because the difference in fixation times between the two items will decrease over time as the model

has more opportunities to switch attention. Both the human and model behavior robustly showed

this pattern (Figure 4B; human, tð38Þ ¼ �3:25; p ¼ 0:0024; model, tð38Þ ¼ �32:0; p<0:001). Similarly,

choice bias should increase for trials with higher valued items. In this case, since the evidence distri-

bution is relatively far away from the prior distribution, the posterior distribution is ‘pulled away’

from the prior distribution to a greater degree for the attended versus unattended item, leading to

greater choice bias. Both human and model data confirmed this behavioral pattern (Figure 4C;

human, tð38Þ ¼ 2:95; p ¼ 0:0054; model, tð38Þ ¼ 11:4; p<0:001). Since response time may be influenced

by the sum of the two item values and vice versa, we repeated the above analyses using a regression

model that includes both value sum and response time as independent variables (see

Materials and methods). The results were largely consistent for both model (effect of RT on choice

bias: tð38Þ ¼ �5:73; p<0:001, effect of value sum: tð38Þ ¼ 7:88; p<0:001) and human (effect of RT:

tð38Þ ¼ �1:32; p ¼ 0:20, effect of value sum: tð38Þ ¼ 2:91; p ¼ 0:006) behavior.

Next, we assessed how the behavioral predictions arising from the optimal model differed from

those of the original attentional drift diffusion model (aDDM) proposed by Krajbich et al., 2010.
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Figure 4. Behavioral predictions from Bayesian value estimation, and further properties of the optimal policy. (A)

Bayesian explanation of attention-driven value preference. Attending to one of two equally-valued items for a

longer time (red vs. blue) leads to a more certain (i.e. narrower) likelihood and weaker bias of its posterior towards

the prior. This leads to a subjectively higher value for the longer attended item. (B) Effect of response time (RT; left

panel; tð38Þ ¼ �3:25; p ¼ 0:0024) and sum of the two item values (value sum; right panel; tð38Þ ¼ 2:95; p ¼ 0:0054)

on attention-driven choice bias in humans. This choice bias quantifies the extent to which fixations affect choices

for the chosen subset of trials (see Materials and methods). (C) Effect of response time (left panel;

tð38Þ ¼ �32:0; p<0:001) and sum of the two item values (right panel; tð38Þ ¼ 11:4; p<0:001) on attention-driven

choice bias in the optimal model. See Materials and methods for details on how the choice bias coefficients were

computed. For (B) and (C), for the left panels, the horizontal axis is binned according to the number of total

fixations in a given trial. For the right panels, the horizontal axis is binned to contain the same number of trials per

bin. Horizontal error bars indicate SEM across participants of the mean x-values within each bin. Vertical error bars

indicate SEM across participants. (D) Comparing decision performance between the optimal policy and the

original aDDM model. Performance of the aDDM was evaluated for different boundary heights (error bars = SEM

across simulated participants). Even for the reward-maximizing aDDM boundary height, the optimal model

significantly outperformed the aDDM (tð38Þ ¼ 3:01; p ¼ 0:0027). (E) Decision performance for different degrees of

the attention bottleneck (k) while leaving the overall input information unchanged (error bars = SEM across

simulated participants). The performance peak at k ¼ 0:5 indicates that allocating similar amounts of attentional

resource to both items is beneficial (tð38Þ ¼ �8:51; p<0:001).

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Effect of item values on attention switch rate and fixation duration across trials for the
human data, optimal model, and aDDM.

Figure supplement 2. Effect of passed time on switch probability and fixation duration within trials.

Figure supplement 3. Additional analyses of fixation behavior and performance between human data, optimal
model, and aDDM.
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Unlike our model, the aDDM follows from traditional diffusion models rather than Bayesian models.

It assumes that inattention to an item diminishes its value magnitude rather than increasing the noisi-

ness of evidence accumulation. Despite this difference, the aDDM produced qualitatively similar

behavioral predictions as the optimal model (see Figure 4—figure supplement 1, Figure 4—figure

supplement 2, and Figure 4—figure supplement 3 for additional behavioral comparisons between

human data, the optimal model, and aDDM). We also tested to which degree the optimal model

yielded a higher mean reward than the aDDM, which, despite its simpler structure, could nonethe-

less collect competitive amounts of reward. Given that our model provides the optimal solution to

the decision problem under the current assumptions, it is expected to outperform, or at least match,

the performance of alternative models. To ensure a fair comparison, we adjusted the aDDM model

parameters (i.e. attentional value discounting and the noise variance) so that the momentary evi-

dence provided to the two models has equivalent signal-to-noise ratios (see Appendix 1). Using the

same parameters fit to human behavior without this adjustment in signal-to-noise ratio yielded a

higher mean reward for the aDDM model (tð76Þ ¼ �14:8; p<0:001), since the aDDM receives more

value information at each time point than the optimal model. The original aDDM model fixed the

decision boundaries at ±1 and subsequently fit model parameters to match behavioral data. Since

we were interested in comparing mean reward, we simulated model behavior using incrementally

increasing decision barrier heights, looking for the height that yields the maximum mean reward

(Figure 4D). We found that even for the best-performing decision barrier height, the signal-to-noise

ratio-matched aDDM model yielded a significantly lower mean reward compared to that of the opti-

mal model (tð76Þ ¼ 3:01; p ¼ 0:0027).

Recent advances in artificial intelligence used attentional bottlenecks to regulate information flow

with significant associated performance gains (Bahdanau et al., 2015; Gehring et al., 2017;

Mnih et al., 2014; Ba et al., 2015; Sorokin et al., 2015). Analogously, attentional bottlenecks might

also be beneficial for value-based decision-making. To test this, we asked if paying relatively full

attention on a single item at a time confers any advantages over the ability to pay relatively less reli-

able, but equal attention to multiple options in parallel. To do so, we varied the amount of momen-

tary evidence provided about both the attended and unattended items while keeping the overall

amount of evidence, as controlled by s2

x , fixed. This was accomplished by varying the k term. The

effect of k on the optimal policy was symmetric around k ¼ 0:5, such that information gained from

attended item at k ¼ 0:2 is equal to that of the unattended item at k ¼ 0:8. Setting k ¼ 0:5 resulted

in equal momentary evidence about both items, such that switching attention had no effect on the

evidence collected about either item. When tuning model parameters to best match human behav-

ior, we found a low k » 0:004, suggesting that humans tend to allocate the majority of their presum-

ably fixed cognitive resources to the attended item. This allows for reliable evidence accumulation

for the attended item, but is more likely to necessitate frequent switching of attention.

To investigate whether widening this attention bottleneck leads to changes in decision perfor-

mance, we simulated model behavior for different values of k (0.1 to 0.9, in 0.1 increments). Interest-

ingly, we found that mean reward from the simulated trials is greatest at k ¼ 0:5 and decreases for

more extreme values of k, suggesting that a more even distribution of attentional resources between

the two items is beneficial for maximizing reward (tð38Þ ¼ �8:51; p<0:001).

Optimal attention-modulated policy for perceptual decisions
The impact of attention is not unique to value-based decisions. In fact, recent work showed that fixa-

tion can bias choices in a perceptual decision-making paradigm (Tavares et al., 2017). In their task,

participants were first shown a target line with a certain orientation, then shown two lines with

slightly different orientations. The goal was to choose the line with the closest orientation to the pre-

viously shown target. Consistent with results in the value-based decision task, the authors demon-

strated that the longer fixated option was more likely to be chosen.

We modified our attention-based optimal policy to perform in such perceptual decisions, in which

the goal was to choose the option that is the closest in some quantity to the target, rather than

choosing the higher valued option. Therefore, our model can be generalized to any task that

requires a binary decision based on some perceptual quality, whether that involves finding the

brighter dot between two dots on a screen, or identifying which of the two lines on the screen is lon-

ger. Similar to our value-based case, the optimal policy for perceptual decisions was successful at
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reproducing the attention-driven biases seen in humans in Tavares et al., 2017, (Figure 3—figure

supplement 2).

Discussion
In this work, we derive a novel normative decision-making model with an attentional bottleneck, and

show that it is able to reproduce the choice and fixation patterns of human decision makers. Our

model significantly extends prior attempts to incorporate attention into perceptual and value-based

decision-making in several ways. First, we provide a unified framework in which fixations are endoge-

nously generated as a core component of the normative decision-making strategy. This is consistent

with previous work that showed that fixation patterns were influenced by variables relevant for the

decision, such as trial difficulty or the value of each choice item (Krajbich et al., 2010; Krajbich and

Rangel, 2011). However, prior models of such decisions assumed an exogenous source of fixations

(Krajbich et al., 2010; Krajbich and Rangel, 2011) or generated fixations using heuristics that relied

on features such as the salience or value estimates of the choice options (Towal et al., 2013;

Gluth et al., 2020). Other models generated fixations under the assumption that fixation duration

should depend on the expected utility or informativeness of the choice items (Cassey et al., 2013;

Ke et al., 2016; Song et al., 2019). For example, (Cassey et al., 2013) assumed that the informa-

tiveness of each item differed, which means the model should attend to the less informative item

longer in general. Furthermore, since their decision task involved a fixed-duration, attention switches

also occurred at fixed times rather than being dynamically adjusted across time, as in our case with a

free-response paradigm. A recent normative model supported a continuous change of attention

across choice items, and so could not relate attention to the observed discrete fixation changes

(Hébert and Woodford, 2019). Our work significantly builds on these prior models by identifying

the exact optimal policy using dynamic programming, demonstrating that fixation patterns could

reflect active information gathering through controlling an attentional bottleneck. This interpretation

extends previous work on visual attention to the realm of value-based and perceptual decision-mak-

ing (Yang et al., 2016; Hoppe and Rothkopf, 2016; Hayhoe and Ballard, 2005; Chukoskie et al.,

2013; Corbetta and Shulman, 2002).

Second, our model posits that attention lowers the variance of the momentary evidence associ-

ated with the attended item, which enhances the reliability of its information (Drugowitsch et al.,

2014). In contrast, previous models accounted for attention by down-weighting the value of the

unattended item (Krajbich et al., 2010; Krajbich and Rangel, 2011; Song et al., 2019), where one

would a priori assume fixations to bias choices. Our approach was inspired by neurophysiological

findings demonstrating that visual attention selectively increases the firing rate of neurons tuned to

task-relevant stimuli (Reynolds and Chelazzi, 2004), decreases the mean-normalized variance of

individual neurons (Mitchell et al., 2007; Wittig et al., 2018), and reduces the correlated variability

of neurons at the population level (Cohen and Maunsell, 2009; Mitchell et al., 2009;

Averbeck et al., 2006). In essence, selective attention appears to boost the signal-to-noise ratio, or

the reliability of information encoded by neuronal signals rather than alter the magnitude of the

value encoded by these signals. One may argue that we could have equally chosen to boost the evi-

dence’s mean while keeping its variance constant to achieve a similar boost in signal-to-noise ratio

of the attended item. However, doing so would still distinguish our model from previous accumula-

tion-to-bound models, as Bayes-optimal evidence accumulation in this model variant nonetheless

demands the use of at least three dimensions (see Figure 2), and could not be achieved in the two

dimensions used by previous models. Furthermore, this change would have resulted in less intuitive

equations for the value posterior (Equation 2).

Under this framework, we show that the optimal policy can be implemented as a four-dimensional

accumulation-to-bound model where the particle drifts and diffuses according to the fixation dura-

tion to either item, the currently attended item, and the difference the in items’ value estimates. This

policy space is significantly more complex compared to previous attention-free normative models,

which can be implemented in a two-dimensional space. Nevertheless, the attention-modulated opti-

mal policy still featured a collapsing boundary in time consistent with the attention-free case

(Drugowitsch et al., 2012; Tajima et al., 2016).

When designing our model, we took the simplest possible approach to introduce an attentional

bottleneck into normative models of decision-making. Our aim was to provide a precise (i.e. without
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approximations), normative explanation for how fixation changes qualitatively interact with human

decisions rather than quantitatively capture all details of human behavior, which is likely driven by

additional heuristics and features beyond the scope of our model (Acerbi et al., 2014;

Drugowitsch et al., 2016). For instance, it has been suggested that normative allocation of atten-

tion should also depend on the item values to eliminate non-contenders, which we did not incorpo-

rate as a part of our model (Towal et al., 2013; Gluth et al., 2020). Perhaps as a result of this

approach, our model did not provide the best quantitative fit and was unable to capture all of the

nuances of the psychometric curves from human behavior, including a seemingly linear relationship

between RT and trial difficulty (Figure 3). As such, we expect other models using approximations to

have a better quantitative fit to human data (Krajbich et al., 2010; Callaway et al., 2020). Instead,

a normative understanding can provide a basis for understanding limitations and biases that emerge

in human behavior. Consistent with this goal, we were able to qualitatively capture a wide range of

previously observed features of human decisions (Figure 3), suggest a computational rationale for

fixation-based choice biases (Figure 4A), and confirm new predictions arising from our theory

(Figure 4B–C). In addition, our framework is compatible with recent work by Sepulveda et al., 2020

that demonstrated that attention can bias choices toward the lower-valued option if participants are

instructed to choose the less desirable item (see Appendix 1).

Due to the optimal policy’s complexity (Figure 2), we expect the nervous system to implement it

only approximately (e.g. similar to Tajima et al., 2019 for multi-alternative decisions). Such an

approximation has been recently suggested by Callaway et al., 2020, where they proposed a model

of N-alternative choice using approaches from rational inattention to approximate optimal decision-

making in the presence of an attentional bottleneck. Unlike our work, they assumed that the unat-

tended item is completely ignored, and therefore could not investigate the effect of graded shifts of

attentional resources between items (Figure 4E). In addition, their model did not predict a choice

bias in binary choices due to a different assumption about the Bayesian prior.

In our model, we assumed the decision maker’s prior belief about the item values is centered at

zero. In contrast, Callaway et al., 2020 chose a prior distribution based on the choice set, centered

on the average value of only the tested items. While this is also a reasonable assumption

(Shenhav et al., 2018), it likely contributed to their inability to demonstrate the choice bias for

binary decisions. Under the assumption of our zero-mean prior, formulating the choice process

through Bayesian inference revealed a simple and intuitive explanation for choice biases (Figure 4A)

(see also Li and Ma, 2020). This explanation required the decision maker to a-priori believe the

items’ values to be lower than they actually are when choosing between appetitive options, consis-

tent with evidence that item valuations vary inversely with the average value of recently observed

items (Khaw et al., 2017). The zero-mean prior also predicts an opposite effect of the choice bias

when deciding between aversive items, such that less-fixated items should become the preferred

choice. This is exactly what has been observed in human decision makers (Armel et al., 2008). We

justified using a zero-mean bias by pointing out that participants in the decision task were allowed

to rate items as having both positive or negative valence (negative-valence items were excluded

from the binary decision task). However, there is some evidence that humans also exhibit choice

biases when only choosing between appetitive items (Cavanagh et al., 2014; Smith and Krajbich,

2018; Smith and Krajbich, 2019). Although our setup suggests a zero-mean prior is required to

reproduce the choice bias, the exact features and role of the Bayesian prior in human decisions still

remains an open question for future work.

We show that narrowing the attentional bottleneck by setting k to values closer to 0 or 1 does

not boost performance of our decision-making model (Figure 4E). Instead, spreading a fixed cogni-

tive reserve evenly between the attended and unattended items maximized performance. This is

consistent with prior work that showed that a modified drift diffusion model with a continuously vary-

ing attention would perform optimally when attention is always equally divided (Fudenberg et al.,

2018). However, this does not necessarily imply that equally divided attention always constitutes the

normative behavior. If the decision maker has already paid more attention to one item over the

other within a decision, it may be optimal to switch attention and gain more information about the

unattended item rather than to proceed with equally divided attention.

Parameters fit to human behavior reveal that humans tend to allocate a large proportion of their

cognitive resource toward the attended item, suggesting that the benefits of an attentional bottle-

neck might lie in other cognitive processes. Indeed, machine learning applied to text translation
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(Bahdanau et al., 2015; Gehring et al., 2017), object recognition (Mnih et al., 2014; Ba et al.,

2015), and video-game playing (Sorokin et al., 2015) benefits from attentional bottlenecks that

allow the algorithm to focus resources on specific task subcomponents. For instance, image classifi-

cation algorithms that extract only the relevant features of an image for high-resolution processing

demonstrated improved performance and reduced computational cost compared to those without

such attentional features (Mnih et al., 2014). Similarly, attentional bottlenecks that appear to limit

human decision-making performance might have beneficial effects on cognitive domains outside the

scope of binary value-based decisions. This is consistent with the idea that the evolutionary advan-

tage of selective attention involves the ability to rapidly fixate on salient features in a cluttered envi-

ronment, thereby limiting the amount of information that reaches upstream processing and reducing

the overall computational burden (Itti and Koch, 2001).

An open question is whether our findings can be generalized to multi-alternative choice para-

digms (Towal et al., 2013; Ke et al., 2016; Gluth et al., 2020; Tajima et al., 2019). While imple-

menting the optimal policy for such choices may be analytically intractable, we can reasonably infer

that a choice bias driven by a zero-mean prior would generalize to decisions involving more than

two options. However, in a multi-alternative choice paradigm where heuristics involving value and

salience of items may influence attention allocation, it is less clear whether an equally divided atten-

tion among all options would still maximize reward. We hope this will motivate future studies that

investigate the role of attention in more realistic decision scenarios.

Materials and methods
Here, we provide an outline of the framework and its results. Detailed derivations are provided in

Appendix 1.

Attention-modulated decision-making model
Before each trial, z1 and z2 are drawn from zj ~N �z;s2

z

� �

. z1 and z2 correspond to the value of each

item. In each time-step n>0 of duration dt, the decision maker observes noisy samples of each zj.

This momentary evidence is drawn from dxj;njzj ~N zjdt;
1

1�k
s2

xdt
� �

for the attended item j ¼ yn, and

dxk;njzk ~N zkdt;
1

k
s2

xdt
� �

for the unattended item k 6¼ yn. We measure how informative a single

momentary evidence sample is about the associated true value by computing the Fisher information

it provides about this value. This Fisher information sums across independent pieces of information.

This makes it an adequate measure for assessing the informativeness of momentary evidence, which

we assume to be independent across time and items. Computing the Fisher information results in

ð1� kÞs�2

x dt in dxj;n about zj for the attended item, and in ks�2

x dt in dxk;n about zk for the unattended

item. Therefore, setting k � 1

2
boosts the information of the attended, and reduces the information

of the unattended item, while keeping the total information about both items at a constant

ð1� kÞs�2

x dt þ ks�2

x dt ¼ s�2

x dt. The posterior zj for j 2 f1; 2g after t ¼ Ndt seconds is found by Bayes’

rule, p zjjdxj;1:N ; y1:N
� �

/ pðzjÞ
QN

n¼1
p dxj;njzj; yn
� �

, which results in Equation (2). If yn 2 f1; 2g identifies

the attended item in each time-step, the attention times in this posterior are given by

t1 ¼ dt
PN

n¼1
ð2� ynÞ and t2 ¼ dt

PN
n¼1

ðyn � 1Þ. The attention-weighted accumulated evidence is

X1ðtÞ ¼
PN

n¼1

1�k
k

� �yn�1
dx1;n and X2ðtÞ ¼

PN
n¼1

1�k
k

� �2�yn
dx2;n, down-weighting the momentary evidence

for periods when the item is unattended. Fixing k ¼ 1=2 recovers the attention-free case of

Tajima et al., 2016, and the associated posterior, Equation (1).

We found the optimal policy by dynamic programming (Bellman, 1952; Drugowitsch et al.,

2012), which, at each point in time, chooses the action that promises the largest expected return,

including all rewards and costs from that point into the future. Its central component is the value

function that specifies this expected return for each value of the sufficient statistics of the task. In

our task, the sufficient statistics are the two posterior means, zjjXjðtÞ; t1; t2

 �

for j 2 f1; 2g, the two

accumulation times, t1 and t2, and the currently attended item yn. The decision maker can choose

between four actions at any point in time. The first two are to choose one of the two items, which is

expected to yield the corresponding reward, after which the trial ends. The third action is to accu-

mulate evidence for some more time dt, which comes at cost cdt, and results in more momentary evi-

dence and a corresponding updated posterior. The fourth is to switch attention to the other item
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3� yn, which comes at cost cs>0. As the optimal action is the one that maximizes the expected

return, the value for each sufficient statistic is the maximum over the expected returns associated

with each action. This leads to the recursive Bellman’s equation that relates values with different suf-

ficient statistics (see Appendix 1 for details) and reveals the optimal action for each of these suffi-

cient statistics. Due to symmetries in our task, it turns out these optimal actions only depend on the

difference in posterior means D, rather than each of the individual means (see Appendix 1). This

allowed us to compute the value function and associated optimal policy in the lower-dimensional

D; t1; t2; yð Þ-space, an example of which is shown in (Figure 2).

The optimal policy was found numerically by backwards induction (Tajima et al., 2016;

Brockwell and Kadane, 2003), which assumes that at a large enough t ¼ t1 þ t2, a decision is

guaranteed and the expected return equals D. We set this time point as t ¼ 6s based on empirical

observations. From this point, we move backwards in small time steps of 0.05 s and traverse differ-

ent values of D which was also discretized into steps of 0.05. Upon completing this exercise, we are

left with a three-dimensional grid with the axes corresponding to t1, t2 and D, where the value

assigned to each point in space indicates the optimal decision to take for the given set of sufficient

statistics. The boundaries between different optimal actions can be visualized as three-dimensional

manifolds (Figure 2).

Model simulations
Using the optimal policy, we simulated decisions in a task analogous to the one humans performed

in Krajbich et al., 2010. On each simulated trial, two items with values z1 and z2 are presented. The

model attends to one item randomly (y 2 ½1; 2�), then starts accumulating noisy evidence and adjusts

its behavior across time according to the optimal policy. Since the human data had a total of 39 par-

ticipants, we simulated the same number of participants (N ¼ 39) for the model, but with a larger

number of trials. For each simulated participant, trials consisted of all pairwise combinations of val-

ues between 0 and 7, iterated 20 times. This yielded a total of 1280 trials per simulated participant.

When computing the optimal policy, there were several free parameters that determined the

shape of the decision boundaries. Those parameters included the evidence noise term (s2

x ), spread

of the prior distribution (s2

z ), cost of accumulating evidence (c½s�1�), cost of switching attention (cs),

and the relative information gain for the attended vs. unattended items (k). In order to find a set of

parameters that best mimics human behavior, we performed a random search over a large parame-

ter space and simulated behavior using the randomly selected set of parameters (Bergstra and Ben-

gio, 2012). We iterated this process for 2,000,000 sets of parameters and compared the generated

behavior to that of humans (see Appendix 1). After this search process, the parameter set that best

replicated human behavior consisted of cs ¼ 0:0065, c ¼ 0:23, s2

x ¼ 27, s2

z ¼ 18, k ¼ 0:004.

Statistical analysis
The relationship between task variables (e.g. difference in item value) and behavioral measurements

(e.g. response time) were assessed by estimating the slope of the relationship for each participant.

For instance, to investigate the association between response times and absolute value difference

(Figure 3B), we fit a linear regression within each participant using the absolute value difference and

response time for every trial. Statistical testing was performed using one-sample t-tests on the

regression coefficients across participants. This procedure was used for statistical testing involving

Figure 3B,C,E, and Figure 4B,C. To test for the effect of RT and value sum on choice bias after

accounting for the other variable, we used a similar approach and used both RT and value sum as

independent variables in the regression model and the choice bias coefficient as the dependent vari-

able. To test for a significant peak effect for Figure 4E, we used the same procedure after subtract-

ing 0.5 from the original k values and taking their absolute value. To compare performance between

the optimal model and the aDDM (Figure 4D), we first selected the best-performing aDDM model,

then performed an independent-samples t-test between the mean rewards from simulated partici-

pants from both models.

To quantify the degree of choice bias (Figure 4B,C), we computed a choice bias coefficient. For a

given group of trials, we performed a logistic regression with fixation time difference (t1 � t2) as the

independent variable and a binary-dependent variable indicating whether item 1 was chosen on

each trial. After performing this regression within each participant’s data, we performed a t-test of

Jang et al. eLife 2021;10:e63436. DOI: https://doi.org/10.7554/eLife.63436 14 of 31

Research article Neuroscience

https://doi.org/10.7554/eLife.63436


the regression coefficients against zero. The the resulting t-statistic was used as the choice bias coef-

ficient, as it quantified the extent to which fixations affected choice in the given subset of trials.

Data and code availability
The human behavioral data and code are available through an open source license at https://github.

com/DrugowitschLab/Optimal-policy-attention-modulated-decisions (Jang, 2021; copy archived at

https://archive.softwareheritage.org/swh:1:rev:db4a4481aa6522d990018a34c31683698da039cb/).
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Appendix 1
Here, we describe in more detail the derivations of our results, and specifics of the simulations pre-

sented in the main text. Of note, we sometimes use xjy~ pðyÞ to specify the conditional density

pðxjyÞ. Furthermore, N �;s2ð Þ denotes a Gaussian with mean m and variance s2.

1 Task setup
1.1 Latent state prior

We assume two latent states zj, j 2 f1; 2g, (here, the true item values) that are before each choice

trial drawn from their Gaussian prior, zj ~Nð�zjs2

z Þ, with mean �zj and variance s2

z . Throughout the text,

we will assume �z1 ¼ �z2, to indicate that there is no a-priori preference of one item over the other.

1.2 Likelihood function of momentary evidence

The decision maker doesn’t observe the latent states, but instead, in each time step of size dt,

observes noisy evidence about both zj’s. Let us assume that, in the n th such time step, the decision

maker attends to item yn 2 f1; 2g. Then, they simultaneously observe dx1 and dx2, distributed as

dxj;njyn; zj ~N zjdt;
1�k

k

� �jj�ynj s2

x

1�k
dt

 !

; (1)

where we have defined the attention modulation parameter k, bounded by 0� k� 1 (we will usually

assume k� 1

2
), and the overall likelihood variance s2

x . For the attended item j¼ yn, we have

jj� ynj ¼ 0, such that the the variance of the momentary evidence for this item is s2

xdt=ð1�kÞ. For the
unattended item, for which jj� ynj ¼ 1, this variance is instead s2

xdt=k. As long as k< 1

2
this leads to a

larger variance for the unattended item than the attended item, making the momentary evidence

more informative for the attended item. In particular if we quantify this information by the Fisher

information in the momentary evidence dxj;n about zj, then we find this information to be ð1�kÞs�2

x dt

for the attended, and ks�2

x dt for the unattended item. The total Fisher information across both items

is thus s�2

x dt, independent of k. This shows that s2

x controls the total information that the momentary

evidence provides about the latent states, whereas k controls how much of this information is pro-

vided for the attended vs. the unattended item.

1.3 An alternative form for the likelihood

While the above form of the likelihood has a nice, intuitive parametrization, it is notationally cumber-

some. Therefore, we will here introduce an alternative variance parametrization of this likelihood

that simplifies the notation in the derivations that follow. We will use this parametrization for the rest

of this Appendix.

This alternative parametrization assumes the variance of the momentary evidence of the attended

item to be given by s2dt ¼ s2

x=ð1� kÞ, while that of the unattended item is given by

g�1s2dt ¼ s2

xdt=k, where the new attention modulation parameter g is assumed bounded by

0 � g � 1. Thus, the previous parameter pair fs2

x ; kg is replaced by the new pair fs2; gg. A g<1

results in an increased variance for the unattended item, resulting in less information about the value

of the unattended item. Overall, the momentary evidence likelihood is given with the alternative

parametrization by

dxj;njyn; zj ~N zjdt;
1

gjj�ynjs
2dt

� �

; (2)

This is the likelihood function that we will use for the rest of this Appendix. Any of the results can

easily be mapped back to the original parametrization (as used in the main text) by

s2 ¼ s2

x

1�k
; s2

x ¼ ð1�kÞs2; (3)
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g¼ k

1�k
; k¼ g

gþ 1
: (4)

Note that the alternative parametrization does not preserve the separation between total infor-

mation and balancing the information between the attended and unattended item. In particular, the

total Fisher information is now given by ðgþ 1Þs�2dt, which depends on both g and s2.

Below we will derive the posterior zj’s, given the stream of momentary evidences

½dx1;1; dx2;1�; ½dx1;2; dx2;2�; . . ., and the attention sequence y1; y2; . . .. The mean and variance of the pos-

terior distributions represent the decision maker’s belief of the items’ true values given all available

evidence.

1.4 Costs, rewards, and the decision maker’s overall aim

While the posterior estimates provide information about value, it does not tell the decision maker

when to stop accumulating information, or when to switch their attention. To address these ques-

tions, we need to specify the costs and rewards associated with these behaviors. For value-based

decisions, we assume that the reward for choosing item j is the latent state zj (i.e. the true value)

associated with the item. Furthermore, we assume that accumulating evidence comes at cost c per

second, or cost cdt per time step. The decision maker can only ever attend to one item, and switch-

ing attention to the other item comes at cost cs which may be composed of a pure attention switch

cost, as well as a loss of time that might introduce an additional cost. As each attention switch intro-

duces both costs, we only consider them in combination without loss of generality.

The overall aim of the decision maker is to maximize the total expected return, which consists of

the expected value of the chosen item minus the total cost of accumulating evidence and attention

switches. We address this maximization problem by finding the optimal policy that, based on the

observed evidence, determines when to switch attention, when to accumulate more evidence, and

when to commit to a choice. We initially focus on maximizing the expected return in a single, iso-

lated choice, and will later show that this yields qualitatively similar policies as when embedding this

choice into a longer sequence of comparable choices.

2 Bayes-optimal evidence accumulation
2.1 Deriving the posterior z1 and z2
To find the posterior over z1 after having accumulated evidence x1;1:N � x1;1; . . . ; x1;N for some fixed

amount of time t ¼ Ndt while paying attention to items y1:N � y1; . . . yN , we employ Bayes’ rule,

p z1jdx1;1:N ;y1:N
� �

/z1 pðz1Þ
Y

N

n¼1

p dx1;njz1;yn
� �

¼N �z1;s
2

z

� �

Y

N

n¼1

N zdt;
s2

gj1�ynj dt

� �

/z1 N
�z1s

2s�2

z þX1ðtÞ
s2s�2

z þ t1 þgt2
;

s2

s2s�2
z þ t1 þgt2

� �

;

(5)

where we have defined X1ðtÞ ¼
PN

n¼1
gj1�ynjdx1;n as the sum of all attention-weighted momentary evi-

dence up to time t, and tj ¼ t� dt
PN

n¼1
jj� ynj as the total time that item j has been attended. Note

that, for time periods in which item 2 is attended to, (i.e., when yn ¼ 2), the momentary evidence is

down-weighted by g. With dt! 0, the process becomes continuous in time, such that X1ðtÞ becomes

the integrated momentary evidence, but the above posterior still holds.

Following a similar derivation, the posterior belief about z2 results in

p z2jdx2;1:N ;y1:N
� �

¼N �z2s
2s�2

z þX2ðtÞ
s2s�2

z þgt1 þ t2
;

s2

s2s�2
z þgt1þ t2

� �

(6)

where X2ðtÞ ¼
PN

n¼1
gj2�yn jdx2;n. As the decision maker acquires momentary evidence independently

for both items, the two posteriors are independent of each other, that is

p z1; z2jdx1;1:N ;dx2;1:N ;y1:N
� �

¼ p z1jdx1;1:N ;y1:N
� �

p z2jdx2;1:N ;y1:N
� �

.
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2.2 The expected reward process

At each point in time, the decision maker must decide whether it’s worth accumulating more evi-

dence versus choosing an item. To do so, they need to predict how the mean estimated reward for

each option might evolve if they accumulated more evidence. In this section, we derive the stochas-

tic process that describes this evolution for item 1. The same principles will apply for item 2.

Assume that having accumulated evidence until time t ¼ Ndt, the current expected reward for

item 1 is given by r̂1ðtÞ, where r̂1ðtÞ ¼ hz1jdx1;1:N ; y1:Ni is the mean of the above posterior, Equation (5).

The decision maker’s prediction of how the expected reward might evolve after accumulating addi-

tional evidence for dt is found by the marginalization,

p r̂1ðtþ dtÞjr̂1ðtÞ; t1; t2;yNþ1ð Þ

¼
Z Z

p r̂1ðtþ dtÞĵr1ðtÞ;dx1;Nþ1; t1; t2;yNþ1

� �

p dx1;Nþ1jz1;yNþ1

� �

p z1 ĵr1ðtÞ; t1; t2ð Þddx1;Nþ1dz1:
(7)

As the last term in the above integral shows, r̂ðtÞ, t1 and t2 fully determine the posterior z1 at time

t. We can use this posterior to predict the value of the next momentary evidence dx1;Nþ1jz1. This, in
turn, allows us to predict r̂1ðtþ dtÞ. As all involved densities are either deterministic or Gaussian, the

resulting posterior will be Gaussian as well. Thus, rather than performing the integrals explicitly, we

will find the final posterior by tracking the involved means and variances, which in turn completely

determine the posterior parameters.

We first marginalize over dx1;Nþ1, by expressing r̂1ðt þ dtÞ in terms of r̂ðtÞ and dx1;Nþ1. To do so, we

use Equation (5) to express r̂1ðt þ dtÞ by

r̂1ðtþ dtÞ ¼�z1s
2s�2

z þX1ðtÞþgjyNþ1�1jdx1;Nþ1

s2s�2
z þ t1 þgt2þgj1�yNþ1jdt

; (8)

where we have used X1ðtþ dtÞ ¼ X1ðtÞþgjyNþ1�1jdx1;Nþ1.

Note that, for a given dx1;Nþ1, r̂ðt þ dtÞ is uniquely determined by r̂ðtÞ. r̂ðt þ dtÞ becomes a random

variable once we acknowledge that, for any z1, dx1;Nþ1 is given by Equation (2), which we can write

as dx1;Nþ1 ¼ z1dt þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2g�j1�yNþ1jdt
p

hx, where hx ~N 0; 1ð Þ. Substituting this expression into r̂1ðt þ dtÞ,
and using Equation (5) to re-express X1ðtÞ as X1ðtÞ ¼ r̂1ðtÞ s2s�2

z þ t1 þ gt2
� �

� �z1s
2s�2

z , results in

r̂1ðtþ dtÞ ¼ r̂1ðtÞ s2s�2

z þ t1 þgt2
� �

þgj1�yNþ1 jz1dtþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2gj1�yNþ1jdt
p

hx

s2s�2
z þ t1 þgt2þgj1�yNþ1jdt

: (9)

The second marginalization over z1 is found by noting the distribution of z1 is given by Equa-

tion (5), which can be written as

z1 ¼ r̂1ðtÞþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2

s2s�2
z þ t1 þgt2

s

hz; (10)

with hz ~Nð0;1Þ. Substituting this z1 into the above expression for r̂ðtþ dtÞ results in

r̂1ðtþ dtÞ ¼ r̂1ðtÞþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2gj1�yNþ1jdt
p

s2s�2
z þ t1 þgt2 þgj1�ynþ1 jdt

hx; (11)

where we have dropped the hz-dependent term which had a dt pre-factor, and thus vanishes with

dt! 0. Therefore, r̂1ðtÞ evolves as a martingale,

r̂1ðtþ dtÞĵr1ðtÞ; t1; t2;yNþ1 ~N r̂1ðtÞ;
s2gj1�ynþ1j

ðs2s�2
z þ t1 þgt2 þgj1�yNþ1jdtÞ2

dt

 !

: (12)

Using the same approach, the expected future reward for item 2 is given by
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r̂2ðtþ dtÞĵr2ðtÞ; t1; t2;yNþ1 ~N r̂2ðtÞ;
s2gj2�yNþ1j

ðs2s�2
z þgt1 þ t2 þgj2�ynþ1jdtÞ2

dt

 !

: (13)

2.3 The expected reward difference process

In a later section, we will reduce the dimensionality of the optimal policy space by using the

expected reward difference rather than each of the of the expected rewards separately. To do so,

we define this difference by

DðtÞ ¼ r̂1ðtÞ� r̂2ðtÞ
2

: (14)

As for r̂1ðtÞ and r̂2ðtÞ, we are interested in how DðtÞ evolves over time.

To find Dðt þ dtÞjDðtÞ; t1; t2; yNþ1 we can use

p Dðtþ dtÞjDðtÞ; t1; t2;yNþ1ð Þ ¼ p Dðtþ dtÞ ¼ r̂1ðtþ dtÞ� r̂2ðtþ dtÞ
2

jDðtÞ ¼ r̂1ðtÞ� r̂2ðtÞ
2

; t1; t2;yNþ1

� �

: (15)

As the decision maker receives independent momentary evidence for each item, r̂1ðtÞ and r̂2ðtÞ
are independent when conditioned on t1, t2 and y1:N . Thus, so are their time-evolutions, r̂1ðtþ
dtÞĵr1ðtÞ; . . . and r̂2ðtþ dtÞĵr2ðtÞ; . . .. With this, we can show that

Dðtþ dtÞjDðtÞ; t1; t2;yNþ1 ~

N DðtÞ;s
2dt

4

gj1�yNþ1j

s2s�2
z þ t1 þgt2 þgj1�yNþ1jdt

� �2
þ gj2�yNþ1j

s2s�2
z þgt1 þ t2 þgj2�yNþ1jdt

� �2

 ! !

:
(16)

Unsurprisingly, DðtÞ is again a martingale.

3 Optimal decision policy
We find the optimal decision policy by dynamic programming (Bellman, 1952; Bertsekas, 1995). A

central concept in dynamic programming is the value function Vð�Þ, which, at any point in time during

a decision, returns the expected return, which encompasses all expected rewards and costs from

that point onwards into the future when following the optimal decision policy. Bellman’s equation

links value functions across consecutive times, and allows finding this optimal decision policy recur-

sively. In what follows, we first focus on Bellman’s equation for single, isolated choices. After that,

we show how to extend the same approach to find the optimal policy for long sequences of conse-

cutive choices.

3.1 Single, isolated choice

For a single, isolated choice, accumulating evidence comes at cost c per second. Switching attention

comes at cost cs. The expected reward for choosing item j is r̂jðtÞ, and is given by the mean of Equa-

tions (5) and (6) for j ¼ 1 and j ¼ 2, respectively.

To find the value function, let us assume that we have accumulated evidence for some time

t ¼ t1 þ t2, expect rewards r̂1ðtÞ and r̂2ðtÞ, and are paying attention to item y 2 f1; 2g. These statistics

fully describe the evidence accumulation state, and thus fully parameterize the value function

Vy r̂1; r̂2; t1; t2ð Þ. Here, we use y as a subscript rather than an argument to Vð�Þ to indicate that y can

only take one of two values, y 2 f1; 2g. At this point, we can choose among four actions. We can

either immediately choose item 1, immediately choose item 2, accumulate more evidence without

switching attention, or switch attention to the other item, 3� y. The expected return for choosing

immediately is either r̂1ðtÞ or r̂2ðtÞ, depending on the choice. Accumulating more evidence for some

time dt results in cost cdt, and changes in the expected rewards according to r̂jðt þ dtÞĵrjðtÞ; t1; t2; y, as
given by Equations (12) and (13). Therefore, the expected return for accumulating more evidence is

given by

�cdtþ Vy r̂1ðtþ dtÞ; r̂2ðtþ dtÞ; t1þ j2� yjdt; t2þ j1� yjdtð Þĵr1; r̂2; t1; t2;y

 �

; (17)
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where the expectation is over the time-evolution of r̂1 and r̂2, and t1 þj2� yjdt and t2 þj1� yjdt
ensures that only the ty associated with the currently attended item is increased by dt. Lastly, switch-

ing attention comes at cost cs, but does not otherwise impact reward expectations, such that the

expected return associated with this action is

�csþV3�y r̂1; r̂2; t1; t2ð Þ; (18)

where the use of V3�yð�Þ implements that, after an attention switch, item 3� y will be the attended

item.

By the Bellman, 1952 optimality principle, the best action at any point in time is the one that

maximizes the expected return. Combining the expected returns associated with each possible

action results in Bellman’s equation

Vy r̂1; r̂2; t1; t2ð Þ ¼max

r̂1; r̂2;

Vy r̂1ðtþ dtÞ; r̂2ðtþ dtÞ; t1 þj2� yjdt; t2 þj1� yjdtð Þĵr1; r̂2; t1; t2;y

 �

� cdt;

V3�y r̂1; r̂2; t1; t2ð Þ� cs

8

>

<

>

:

9

>

=

>

;

: (19)

Solving this equation yields the optimal policy for any combination of r̂1, r̂2, t1, t2 and y by picking

the action that maximizes the associated expected return, that is, the term that maximizes the left-

hand side of the above equation. The optimal decision boundaries that separate the ðr̂1; r̂2; t1; t2;yÞ-
space into regions where different actions are optimal lie at manifolds in which two actions yield the

same expected return. For example, the decision boundary at which it becomes best to choose item

1 after having accumulated more evidence is the manifold at which

Vy r̂1; r̂2; t1; t2ð Þ ¼
r̂1 ¼ Vy r̂1ðtþ dtÞ; r̂2ðtþ dtÞ; t1 þj2� yjdt; t2 þj1� yjdtð Þĵr1; r̂2; t1; t2;y


 �

� cdt:
(20)

In Section 6, we describe how we found these boundaries numerically.

Formulated so far, the value function is five-dimensional, with four continuous (r̂1, r̂2, t1, and t2)

and one discrete (y) dimension. It turns out that it is possible to remove one of the dimensions with-

out changing the associated policy by focusing on the expected reward difference DðtÞ, Equa-

tion (14), rather than the individual expected rewards. To show this, we jump ahead and use the

value function property Vy r̂1; r̂2; t1; t2ð Þ þ C ¼ Vy r̂1 þ C; r̂2 þ C; t1; t2ð Þ for any scalar C, that we will con-

firm in Section 5. Next, we define the value function on expected reward differences by

�VyðD; t1; t2Þ ¼ Vyðr̂1; r̂2; t1; t2Þ�
r̂1 þ r̂2

2
¼ VyðD;�D; t1; t2Þ: (21)

Applying this mapping to Equation (19) leads to Bellman’s equation

�Vy D; t1; t2ð Þ ¼max

D;�D;

�Vy Dðtþ dtÞ; t1 þj2� yjdt; t2 þj1� yjdtð ÞjD; t1; t2;y

 �

� cdt;

�V3�y D; t1; t2ð Þ� cs

8

>

<

>

:

9

>

=

>

;

; (22)

which is now defined over a four-dimensional rather than a five-dimensional space while yielding the

same optimal policy. This also confirms that optimal decision-making doesn’t require tracking indi-

vidual expected rewards, but only their difference.

3.2 Sequence of consecutive choices

So far, we have focused on the optimal policy for a single isolated choice. Let us now demonstrate

that this policy does not qualitatively change if we move to a long sequence of consecutive choices.

To do so, we assume that each choice is followed by an inter-trial interval ti after which the latent z1
and z2 are re-drawn from the prior, and evidence accumulation starts anew. As the expected return

considers all expected future rewards, it would grow without bounds for a possibly infinite sequence

of choices. Thus, rather than using the value function, we move to using the average-adjusted value

function, ~V , which, for each passed time dt, subtracts �dt, where � is the average reward rate
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(Tajima et al., 2016). This way, the value tells us if we are performing better or worse than on aver-

age, and is thus bounded.

Introducing the reward rate as an additional time cost requires the following changes. First, the

average-adjusted expected return for immediate choices becomes r̂jðtÞ � ti�þ ~Vy �z1;�z2; 0; 0ð Þ, where
�ti� accounts for the inter-trial interval, and ~Vy �z1;�z2; 0; 0ð Þ is the average-adjusted value at the begin-

ning of the next choice, where r̂j ¼ �zj, and t1 ¼ t2 ¼ 0. Due to the symmetry, ~Vy �z1;�z2; 0; 0ð Þ will be the

same for both y ¼ 1 and y ¼ 2, such that we do not need to specify y. Second, accumulating evi-

dence for some duration dt now comes at cost ðcþ �Þdt. The expected return for switching attention

remains unchanged, as we assume attention switches to be instantaneous. If attention switches take

time, we would need to additionally penalize this time by �.

With these changes, Bellman’s equation becomes

~Vy r̂1; r̂2; t1; t2ð Þ ¼max

r̂1 � �tiþ ~Vy �z1;�z2;0;0ð Þ; r̂2 � �tiþ ~Vy �z1;�z2;0;0ð Þ;
~Vy r̂1ðtþ dtÞ; r̂2ðtþ dtÞ; t1 þj2� yjdt; t2 þj1� yjdtð Þĵr1; r̂2; t1; t2;y

 �

�ðcþ �Þdt;
~V3�y r̂1; r̂2; t1; t2ð Þ� cs

8

>

<

>

:

9

>

=

>

;

: (23)

The resulting average-adjusted value function is shift-invariant, that is, adding a scalar to this

value function for all states does not change the underlying policy (Tajima et al., 2016). This prop-

erty allows us to fix the average-adjusted value for one particular state, such that all other average-

adjusted values are relative to this state. For mathematical convenience, we choose
~Vy �z1;�z2;0;0ð Þ ¼ �ti, resulting in the new Bellman’s equation

~Vy r̂1; r̂2; t1; t2ð Þ ¼max

r̂1; r̂2;

~Vy r̂1ðtþ dtÞ; r̂2ðtþ dtÞ; t1 þj2� yjdt; t2 þj1� yjdtð Þĵr1; r̂2; t1; t2;y

 �

�ðcþ �Þdt;
~V3�y r̂1; r̂2; t1; t2ð Þ� cs

8

>

<

>

:

9

>

=

>

;

: (24)

Comparing this to Bellman’s equation for single, isolated choices, Equation (19), reveals an

increase in the accumulation cost from c to cþ �. Therefore, we can find a set of task parameters for

which the optimal policy for single, isolated choices will mimic that for a sequence of consecutive

choices. For this reason, we will focus on single, isolate choices, as they will also capture all policy

properties that we expect to see for sequences of consecutive choices.

3.3 Choosing the less desirable option

Recent work by Sepulveda et al., 2020 showed that when decision makers are instructed to choose

the less desirable item in a similar value-based binary decision task, fixations bias choices for the

lower-valued item. Here, we show that the optimal policy also makes a similar prediction. To set the

goal to choosing the less desirable option, we simply flip the signs of the expected reward associ-

ated with choosing either item from r̂j to �r̂j in Equation (19),

Vy r̂1; r̂2; t1; t2ð Þ ¼max

�r̂1;�r̂2;

Vy r̂1ðtþ dtÞ; r̂2ðtþ dtÞ; t1 þj2� yjdt; t2 þj1� yjdtð Þĵr1; r̂2; t1; t2;y

 �

� cdt;

V3�y r̂1; r̂2; t1; t2ð Þ� cs

8

>

<

>

:

9

>

=

>

;

: (25)

This sign switch makes the item with the higher value the less desirable one to choose. Otherwise,

the same principles apply to computing the value function and optimal policy space.

4 Optimal decision policy for perceptual decisions
To apply the same principles to perceptual decision-making, we need to re-visit the interpretation of

the latent states, z1 and z2. Those could, for example, be the brightness of two dots on a screen,

and the decision maker needs to identify the brighter dot. Alternatively, they might reflect the

length of two lines, and the decision maker needs to identify which of the two lines is longer. Either

way, the reward is a function of z1, z2, and the decision maker’s choice. Therefore, the expected

reward for choosing either option can be computed from the posterior z’s, Equations (5) and (6).

Furthermore, these posteriors are fully determined by their means, r̂1, r̂2, and the attention times, t1
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and t2. As a consequence, we can formulate the expected reward for choosing item j by the

expected reward function Rj r̂1; r̂2; t1; t2ð Þ.
What are the consequences for this change in expected reward for the optimal policy? If we

assume the attention-modulated evidence accumulation process to remain unchanged, the only

change is that the expected return for choosing item j changes from r̂j to Rj r̂1; r̂2; t1; t2ð Þ. Therefore,
Bellman’s equations changes to

Vy r̂1; r̂2; t1; t2ð Þ ¼max

R1 r̂1; r̂2; t1; t2ð Þ;R2 r̂1; r̂2; t1; t2ð Þ;
Vy r̂1ðtþ dtÞ; r̂2ðtþ dtÞ; t1 þj2� yjdt; t2 þj1� yjdtð Þĵr1; r̂2; t1; t2;y

 �

� cdt;

V3�y r̂1; r̂2; t1; t2ð Þ� cs

8

>

<

>

:

9

>

=

>

;

: (26)

The optimal policy follows from Bellman’s equation as before.

The above value function can only be turned into one over expected reward differences under

certain regularities of R1 and R2, which we will not discuss further at this point. Furthermore, for the

above example, we have assumed two sources of perceptual evidence that need to be compared.

Alternative tasks (e.g. the random dot motion task) might provide a single source of evidence that

needs to be categorized. In this case, the formulation changes slightly (see, for example,

Drugowitsch et al., 2012), but the principles remain unchanged.

5 Properties of the optimal policy
Here, we will demonstrate some interesting properties of the optimal policy, and the associated

value function and decision boundaries. To do so, we re-write the value function in its non-recursive

form. To do so, let us first define the switch set T ¼ fT1; . . . ; TMg, which determines the switch times

from the current time t onwards. Here, t þ T1 is the time of the first switch after time t, t þ T1 þ T2 is

the second switch, and so on. A final decision is made at t þ �T, where �T ¼PM
m¼1

Tm, after M � 1

switches with associated cost ðM � 1Þcs. As the optimal policy is the one that optimizes across

choices and switch times, the associated value function can be written as

Vy r̂1; r̂2; t1; t2ð Þ ¼max
T

maxfr̂1ðtþ �TÞ; r̂2ðtþ �TÞg� c�T �ðM� 1Þcs ĵr1; r̂2; t1; t2;yh i; (27)

where time expectation is over the time-evolution of r̂1ðtÞ and r̂2ðtÞ, that also depends on T . In what

follows, we first derive the shift-invarance of this time-evolution, and then consider its consequences

for the value function, as well as the decision boundaries.

5.1 Shift-invariance and symmetry of the expected reward process

Let us fix some T , some time t, and assume that we are currently attending item 1, yðtÞ ¼ 1. Then, by

Equation (12), r̂1ðt þ �TÞ can be written as

r̂1 tþ �Tð Þ ¼ r̂1ðtÞþ
Z T1

0

s

s2s�2
z þðt1 þ s1Þþgt2

dB1;s1 þ
Z T2

0

s
ffiffiffi

g
p

s2s�2
z þðt1 þT1Þþgðt2 þ s2Þ

dB1;s2

þ
Z T3

0

s

s2s�2
z þðt1þT1 þ s3Þþgðt2 þT2Þ

dB1;s3 þ . . . ;

(28)

where the B1;sj ’s are white noise processes associated with item 1. This shows that, for any T , the

change in r̂1, that is, r̂1 tþ �Tð Þ� r̂1ðtÞ, is independent of r̂1ðtÞ. Therefore, we can shift r̂1ðtÞ by any sca-

lar C, and cause an associated shift in r̂1 tþ �Tð Þ, that is

p r̂ tþ �Tð Þ ¼ RþCĵr1ðtÞ ¼ rþC; t1; t2;yð Þ ¼ p r̂ðtþ �TÞ ¼ Rĵr1ðtÞ ¼ r; t1; t2;yð Þ; (29)

As this holds for any choice of T , it holds for all T . A similar argument establishes this property

for r̂2.

The above decomposition of the time-evolution of r̂1 furthermore reveals a symmetry between

r̂1ðt þ �TÞ � r̂1ðtÞ and r̂2ðt þ �TÞ � r̂2ðtÞ. In particular, the same decomposition shows that r̂1ðt þ �TÞ �
r̂1ðtÞ equals r̂2ðt þ �TÞ � r̂2ðtÞ if we flip t1, t2 and yðtÞ. Therefore,
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p r̂1 tþ �Tð Þ ¼ Rĵr1ðtÞ ¼ r; t1 ¼ a; t2 ¼ b;y¼ jð Þ ¼ p r̂2 tþ �Tð Þ ¼ Rĵr2ðtÞ ¼ r; t1 ¼ b; t2 ¼ a;y¼ 3� jð Þ: (30)

5.2 Shift-invariance of the value function

The shift-invariance of r̂1 and r̂2 implies a shift-invariance of the value function. To see this, fix some

T and some final choice j, in which case the value function according to Equation (27) becomes

Vy r̂1; r̂2; t1; t2ð Þ ¼ r̂jðtþ �TÞĵr1; r̂2

 �

� c�T �ðM� 1Þcs; (31)

where the expectation is implicitly conditional on t1, t2, y and T . Due to the shift-invariance of the

time-evolution of r̂1 and r̂2, adding a scalar C to both r̂1 and r̂2 increases the above expectation by

the same amount, r̂jðtþ �TÞĵr1; r̂2

 �

þC. As a consequence,

Vy r̂1þC; r̂2 þC; t1; t2ð Þ ¼ Vy r̂1; r̂2; t1; t2ð ÞþC: (32)

As this holds for any choice of T and j, it also holds for the maximum over T and j, and thus for

the value function in general.

A similar argument shows that the value function is increasing in both r̂1 and r̂2. To see this, fix T
and j and note that increasing either r̂1 or r̂2 causes the expectation in Equation (31) to either

remain unchanged or to increase to r̂jðt þ �TÞĵr1; r̂2

 �

þ C. Therefore, for any non-negative C,

Vy r̂1; r̂2; t1; t2ð Þ � Vy r̂1 þC; r̂2; t1; t2ð Þ � Vy r̂1; r̂2; t1; t2ð ÞþC; (33)

Vy r̂1; r̂2; t1; t2ð Þ � Vy r̂1; r̂2 þC; t1; t2ð Þ � Vy r̂1; r̂2; t1; t2ð ÞþC: (34)

This again holds for any choice of T and j, such that it holds for the value function in general.

For the value function on expected reward differences, �VyðD; t1; t2Þ, changing both r̂1 and r̂2 by the

same amount leaves D, and therefore the associated value �Vy D; t1; t2ð Þ, unchanged. In contrast,

increasing only r̂1 or r̂2 by 2C increases or decreases D by C. Thus, we can use Vy r̂1; r̂2; t1; t2ð Þ ¼
�Vy D; t1; t2ð Þ þ r̂1 þ r̂2ð Þ=2 from Equation (21) and substitute it into the two above inequalities to find

�Vy D; t1; t2ð Þ�C� �Vy D�C; t1; t2ð Þ � �Vy D; t1; t2ð ÞþC; (35)

for some non-negative C� 0. This shows that �Vy D; t1; t2ð Þ changes sublinearly with D. However, we

cannot anymore guarantee an increase or decrease in �Vyð�Þ, as an increase in D could arise from both

an increase in r̂1 or a decrease in r̂2.

5.3 Symmetry of the value function

The symmetry in time-evolution across r̂1 and r̂2 results in a symmetry in the value function. To show

this, let us again fix T and j, such that the value function is given by Equation (31). Then, by Equa-

tion (30), the expectation in the value function becomes r̂3�jðt þ �TÞjr̂2; r̂1

 �

if we flip t1, t2, and j,

while leaving the remaining terms of Equation (31) unchanged. Therefore,

Vy r̂1; r̂2; t1; t2ð Þ ¼ V3�y r̂2; r̂1; t2; t2ð Þ: (36)

For the value function on expected reward differences, a flip of r̂1 and r̂2 corresponds to a sign

change of D, such that we have

�Vy D; t1; t2ð Þ ¼ �V3�y �D; t2; t1ð Þ: (37)

Both cases show that we are not required to find the value function for both y¼ 1 and y¼ 2 sepa-

rately, as knowing one reveals the other by the above symmetry.
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5.4 Maximum jV1ð�Þ � V2ð�Þj difference
By Bellman’s equation, Equation (19), it is best to switch attention if the expected return of accumu-

lating evidence equals that of switching attention, that is, if

Vy r̂1; r̂2; t1; t2ð Þ ¼ Vy r̂1ðtþ dtÞ; r̂2ðtþ dtÞ; t1 þj2� yjdt; t2 þ j1� yjdtð Þĵr1; r̂2; t1; t2;y

 �

� cdt

¼ V3�y r̂1; r̂2; t1; t2ð Þ� cs:
(38)

Before that, V3�y r̂1; r̂2; t1; t2ð Þ<Vy r̂1; r̂2; t1; t2ð Þþ cs, as otherwise, an attention switch would have

already occurred. When it does, we have V3�y r̂1; r̂2; t1; t2ð Þ ¼ Vy r̂1; r̂2; t1; t2ð Þþ cs. That is, the attention

switch happens if the value of doing so exceeds that for accumulating evidence by the switch cost

cs. Therefore, the difference between the value functions V1 and V2 can never be larger than the

switch cost, that is

V1 r̂1; r̂2; t1; t2ð Þ�V2 r̂1; r̂2; t1; t2ð Þj j � cs: (39)

Once their difference equals the switch cost, a switch occurs. It is easy to see that the same prop-

erty holds for the value function on expected reward differences, leading to

�V1 D; t1; t2ð Þ� �V2 D; t1; t2ð Þj j � cs: (40)

5.5 The decision boundaries are parallel to the diagonal r̂1 ¼ r̂2

Following the optimal policy, the decision maker accumulates evidence until

Vy r̂1; r̂2; t1; t2ð Þ ¼ max r̂1; r̂2f g. For all times before that, Vy r̂1; r̂2; t1; t2ð Þ>max r̂1; r̂2f g, as otherwise, a

decision is made. Let us first find an expression for the decision boundaries, and then show that

these boundaries are parallel to r̂1 ¼ r̂2. To do so, we will in most of this section fix t1, t2 and y, and

drop them for notational convenience, that is V r̂1; r̂2ð Þ � Vy r̂1; r̂2; t1; t2ð Þ.
First, let us assume r̂1>r̂2, such that maxfr̂1; r̂2g ¼ r̂1, and item 1 would be chosen if an immediate

choice is required. Therefore V r̂1; r̂2ð Þ � r̂1 always, and V r̂1; r̂2ð Þ ¼ r̂1 once a decision is made. For a

fixed r̂1, the value function is increasing in r̂2, such that reducing r̂2 if V r̂1; r̂2ð Þ>r̂1 will at some point

lead to Vðr̂1; r̂2Þ ¼ r̂1. The optimal decision boundary is the largest r̂2 for which this occurs. Expressed

as a function of r̂1, this boundary on r̂2 is thus given by

�1y r̂1; t1; t2ð Þ ¼max r̂2 � r̂1 : Vy r̂1; r̂2; t1; t2ð Þ ¼ r̂1
� 	

(41)

A similar argument leads to the optimal decision boundary for item 2. In this case, we assume

r̂2>r̂1, such that V r̂1; r̂2ð Þ � r̂2 always, and V r̂1; r̂2ð Þ ¼ r̂2 once a decision is made. The sublinear growth

of the value function in both r̂1 and r̂2 implies that V r̂1; r̂2ð Þ grows at most as fast as r̂2, such that

there will be some r̂2 at which V r̂1; r̂2ð Þ>r̂2 turns into V r̂1; r̂2ð Þ ¼ r̂2. The optimal decision boundary is

the smallest r̂2 for which this occurs, that is

�2y r̂1; t1; t2ð Þ ¼min r̂2 � r̂1 : Vy r̂1; r̂2; t1; t2ð Þ ¼ r̂2
� 	

(42)

Note that both boundaries are on r̂2 as a function of r̂1, t1, t2, and y.

To show that these boundaries are parallel to the diagonal, we will use the shift-invariance of the

value function, leading, for some scalar C, to

�1y r̂1; t1; t2ð ÞþC ¼max r̂2 þC� r̂1 þC : Vy r̂1; r̂2; t1; t2ð Þ ¼ r̂1
� 	

¼max ~r2 � ~r1 : Vy ~r1�C;~r2 �C; t1; t2ð Þ ¼ ~r1�C
� 	

¼max ~r2 � ~r1 : Vy ~r1;~r2; t1; t2ð Þ ¼ ~r1
� 	

¼ �1y ~r1; t1; t2ð Þ
¼ �1y r̂1þC; t1; t2ð Þ;

(43)

where we have used ~rj ¼ r̂jþC. This shows that increasing r̂1 by some scalar C shifts the boundary on

r̂2 by the same amount. Therefore, the decision boundary for choosing item 1 is parallel to r̂1 ¼ r̂2.

An analogous argument for �2yð�Þ results in
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�2y r̂1; t1; t2ð ÞþC¼ �2y r̂1 þC; t1; t2ð Þ; (44)

which showing that the same property holds for the decision boundary for choosing item 2. Overall,

this confirms that the decision boundaries only depend on the expected reward difference (i.e., the

direction orthogonal to r̂1 ¼ r̂2), confirming that it is sufficient to compute �Vð�Þ instead of Vð�Þ.

5.6 Impact of re-scaled costs, rewards, and standard deviations

To investigate the impact of re-scaling all reward and cost-dependent parameters, c, cs, s, and sz,

by a constant factor a, we first show that this re-scaling causes an equal re-scaling of the reward

expectation process. To do so, note that s ! as and sz ! asz causes the expected reward expec-

tation decomposition, Equation (28) to yield

ar̂1 tþ �Tð Þ ¼ ar̂1ðtÞþ
Z T1

0

as

s2s�2
z þðt1þ s1Þþgt2

dB1;s1 þ
Z T2

0

as
ffiffiffi

g
p

s2s�2
z þðt1 þT1Þþgðt2 þ s2Þ

dB1;s2

þ
Z T3

0

as

s2s�2
z þðt1 þT1þ s3Þþgðt2 þT2Þ

dB1;s3 þ . . . :

(45)

That is, the expected reward process now describes the evolution of a re-scaled version, r̂1 ! ar̂1,

of the expected reward. Therefore, with slight abuse of notation, for a fixed switch set t and final

choice j,

r̂jðtþTÞjar̂1;ar̂2;as;asz


 �

¼ a r̂jðtþTÞĵr1; r̂2;s;sz


 �

; (46)

where we have made explicit the dependency on s and sz.

To show the effect of this on the value function, keep again t and j fixed, and use c ! ac and

cs ! acs, resulting in the value function

Vy ar̂1;ar̂2; t1; t2;ac;acs;as;aszð Þ ¼<r̂jjar̂1;ar̂2;as;asz>�ac�T �aðM� 1Þcs
¼ a <r̂j ĵr1; r̂2;s;sz>� c�T �ðM� 1Þcs

� �

;
(47)

which establishes that

Vy ar̂1;ar̂2; t1; t2;ac;acs;as;aszð Þ ¼ aVy r̂1; r̂2; t1; t2;c;cs;s;szð Þ (48)

As this holds for all t and j, it is true in general. Therefore, re-scaling all costs, rewards, and stan-

dard deviations of prior and likelihood results in equivalent re-scaling of the value function, and an

analogous shift of switch and decision boundaries.

6 Simulation details
6.1 Computing the optimal policy

In Section 3, we described the Bellman equation (Equation (22)) which outputs the expected return

given these four parameters: currently attended item (y), reward difference (D), expected return for

accumulating more evidence, and expected return for switching attention. Note that the symmetry

of the value function (Section 5) allows us to drop �D from the original Equation (22). Solving this

Bellman equation provides us with a four-dimensional ‘policy space’ which assigns the optimal action

to take at any point in this space defined by the four parameters above.

The solution to the optimal policy can be found numerically by backwards induction

(Tajima et al., 2016). To do so, first we assume some large t ¼ t1 þ t2, where a decision is guaran-

teed. In this case, VyðD; t1; t2Þ ¼ maxf�D;Dg ¼ jDj for both y ¼ 1 and y ¼ 2. We call this the base case.

From this base case, we can move one time step backwards in t1 (y ¼ 1):

�V1 D; t1 � dt; t2ð Þ ¼max

D;

�V1 D; t1; t2ð ÞjD; t1; t2h i� cdt;

�V2 D; t1� dt; t2ð Þ� cs

8

>

<

>

:

9

>

=

>

;

; (49)

The second expression in the maximum can be evaluated, since we assume a decision is made at
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time t. But �V2 D; t1� dt; t2ð Þ� cs, which is the value function for switching attention, is unknown. This

unknown value function is given by

�V2 D; t1 � dt; t2ð Þ ¼max

D;

�V2 D; t1 � dt; t2 þ dtð ÞjD; t1; t2h i� cdt;

�V1 D; t1� dt; t2ð Þ� cs

8

>

<

>

:

9

>

=

>

;

; (50)

In this expression, the second term can again be found, but �V1 D; t1 � dt; t2ð Þ� cs is unknown. Look-

ing at the two expressions above, we see that under the parameters D; t1 � dt; t2ð Þ, V1 � V2� cs, and

V2 � V1 � cs, which cannot both be true. Therefore, we first assume that V1 is not determined by

V2 � cs, removing the V2 � cs term from the maximum. This allows us to find �V1 D; t1� dt; t2ð Þ in Equa-

tion (49). Then, we compute Equation (50) including the V1� cs term. If we find that V2 ¼ V1� cs,

then V1 6¼ V2 � cs, which means the V2� cs term could not have mattered in Equation (49), and we

are done. If not, we re-compute V1 with the V2� cs term included, and we are done. Therefore, we

were able to compute V1 and V2 under the parameters D; t1 � dt; t2ð Þ using information about
�V1 D; t1; t2ð Þ and �V2 D; t1 � dt; t2þ dtð Þ.

Using the same approach, we can find V1;2 D; t1; t2 � dtð Þ based on �V1 D; t1 � dt; t2 þ dtð Þ and
�V2 D; t1; t2ð Þ. Thus, given that we know Vy D; t1; t2ð Þ above a certain t ¼ t1 þ t2, we can move backwards

to compute V1 and V2 for D; t1 � dt; t2ð Þ, then D; t1 � 2dt; t2ð Þ, and so on, until D; 0; t2ð Þ for all relevant
values of D. Subsequently, we can do the same moving backwards in t2, solving for Vy D; t1; t2 � dtð Þ,
Vy D; t1; t2 � 2dtð Þ, . . ., Vy D; t1; 0ð Þ. Following this, we can continue with the same procedure from

Vy D; t1 � dt; t2 � dtð Þ, until we have found V1;2 for all combinations of t1 and t2.

In practice, the parameters of the optimal policy space were discretized to allow for tractable

computation. We set the large time at which decisions are guaranteed at t ¼ 6s, which we deter-

mined empirically. Time was discretized into steps of dt ¼ 0:05s. The item values, and their difference

(D) were also discretized into steps of 0.05.

Upon completing this exercise, we now have two 3-dimensional optimal policy spaces. The

decision maker’s location in this policy space is determined by t1, t2, and D. Each point in this space

is assigned an optimal action to take (choose item, accumulate more evidence, switch attention)

based on which expression was largest in the maximum of the respective Bellman equation. The

decision maker moves between the two policy spaces depending on which item they are attending

to (y 2 ½1; 2�).
In order to find the three-dimensional boundaries that signify a change in optimal action to take,

we took slices of the optimal policy space in planes of constant D’s. We found the boundary between

different optimal policies within each of these slices. We in turn approximated the three-dimensional

contour of the optimal policy boundaries by collating them along the different D’s.

6.2 Finding task parameters that best match human behavior

In computing the optimal policy, there were several free parameters that determined the shape of

the policy boundaries, thereby affecting the behavior of the optimal model. These parameters

included s2, s2

z , c, cs, and g. Our goal was to find a set of parameters that qualitatively mimic human

behavior as best as possible. To do so, we performed a random search over the following parameter

values: cs 2 ½0:001; 0:05� (steps size 0.001), c 2 ½0:01; 0:4� (steps size 0.01), s2 2 ½1; 100� (step size 1),

s2

z 2 ½1; 100� (step size 1), g 2 ½0:001; 0:01� (step size 0.001) (Bergstra and Bengio, 2012).

To find the best qualitative fit, we simulated behavior from a randomly selected set of parameter

values (see next section for simulation procedure). From this simulated behavior, we evaluated the

match between human and model behavior by applying the same procedure to each of Figure 3B,

C,E. For each bin for each plot, we subtracted the mean values between the model and human

data, then divided this difference by the standard deviation of the human data corresponding to

that bin, essentially computing the effect size of the difference in means. We computed the sum of

these effect sizes for every bin, which served as a metric for how qualitatively similar the curves were

between the model and human data. We performed the same procedure for all three figures, and

ranked the sum of the effect sizes for all simulations. We performed simulations for over 2,000,000

random sets of parameter values. The set of parameters for which our model best replicated human
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behavior according to the above criteria was cs ¼ 0:0065, c ¼ 0:23, s2 ¼ 27, s2

z ¼ 18, g ¼ 0:004.

6.3 Simulating decisions with the optimal policy

The optimal policy allowed us to simulate decision making in a task analogous to the one humans

performed in Krajbich et al., 2010. For a given set of parameters, we first computed the optimal

policy. In a simulated trial, two items with values z1 and z2 are presented. At trial onset, the model

attends to an item randomly (y 2 ½1; 2�), and starts accumulating noisy evidence centered around the

true values. At every time step (dt ¼ 0:05), the model evaluates D using the mean of the posteriors

between the two items (see Equations (5) and (6)). Then, the model performs the optimal action

associated with its location in the optimal policy space. If the model makes a decision, then the trial

is over. If the model instead accumulates more evidence, then the above procedure is repeated for

the next time step. If the model switches attention, it does not obtain further information about

either item, but switches attention to the other item. Switching attention allows for more reliable evi-

dence from the now-attended item, and also switches the optimal policy space to the appropriate

one (see Figure 2).

To allow for a relatively fair comparison between the model and human data, we simulated the

same number of subjects (N ¼ 39) for the model, but with a larger number of trials. For each simu-

lated subject, trials were created such that all pairwise combinations of values between 0 and 7 were

included, and this was iterated 20 times. This yielded a total of 1280 trials per subject.

6.4 Attention diffusion model

In order compare the decision performance of the optimal model to that of the original attentional

drift diffusion model (aDDM) proposed by Krajbich et al., 2010, we needed to ensure that neither

model had an advantage by receiving more information. We did so by making sure that the signal-

to-noise ratios of evidence accumulation of both models were identical. In aDDM, the evidence accu-

mulation evolved according to the following process, in steps of 0.05 s (assuming y = 1):

vt ¼ vt�1þ dðz1�gkz2Þþht; (51)

where vt is the relative decision value that represents the subjective value difference between the

two items at time t, d is a constant that controls the speed of integration (in ms�1), gk controls the

biasing effect of attention, and ht ~N 0;s2ð Þ is a normally distributed random variable zero mean and

variance s2. Written differently, the difference in the attention-weighted momentary evidence

between item 1 and item 2 can be expressed as

dD¼ d z1 �gkz2ð Þþht ~N dðz1 �gkz2Þ;s2
� �

~N kðz1 �gkz2Þdt;s2

kdt
� �

;
(52)

where d and s2 were replaced by kdt, and s2

kdt, respectively. Here, the variance term s2

kdt can be

split into two parts, such that the dD term can be expressed as

dD~N z1kdt;
1

2
s2

kdt

� �

�N gkz2kdt;
1

2
s2

kdt

� �

: (53)

The signal-to-noise ratios (i.e. the ratio of mean over standard deviation) of the two terms in the

above equation are z1kdt
ffiffi

dt
2

p
sk

and z2kdt
1

gk
sk

ffiffi

dt
2

p , respectively.

Continuing to assume y ¼ 1, in the Bayes-optimal model, evidence accumulation evolves accord-

ing to

dx1 ~N z1dt;s
2

bdt
� �

;

dx2 ~N z2dt;g
�1

b s2

bdt
� �

:
(54)

Therefore, the difference in the attention-weighted momentary evidence between item 1 and

item 2 can be expressed as:

Jang et al. eLife 2021;10:e63436. DOI: https://doi.org/10.7554/eLife.63436 30 of 31

Research article Neuroscience

https://doi.org/10.7554/eLife.63436


dD ~N z1dt;s
2

bdt
� �

�gbN z2dt;g
�1

b s2

bdt
� �

~N z1dt;s
2

bdt
� �

�N gbz2dt;gbs
2

bdt
� �

:
(55)

The signal-to-noise ratios of the two terms in the above equation are z1dt
ffiffiffi

dt
p

sb

and z2dt
1
ffiffiffi

gb
p sb

ffiffiffi

dt
p ,

respectively.

In order to match the signal-to-noise ratios of the two models, we set equal their corresponding

expressions, to find the following relationship between the parameters of the two models:

k ¼ 1;

s2

k ¼ 2s2

b;

gk ¼ ffiffiffiffiffi

gb

p
:

(56)

Therefore, we simulated the aDDM with model parameters gk ¼
ffiffiffiffiffi

gb

p
and s2

k ¼ 2s2

b.

In the original aDDM model, the model parameters were estimated by fitting the model behavior

to human behavior after setting a decision threshold at ±1. Since we adjusted some of the aDDM

parameters, we instead iterated through different decision thresholds (1 through 10, in increments

of 1) and found the value that maximizes model performance. To keep it consistent with behavioral

data, we generated 39 simulated participants that each completed 200 trials where the two item val-

ues were drawn from the prior distribution of the optimal policy model, zj ~N �z;s2

z

� �

using both the

optimal model and the aDDM model.
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