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ABSTRACT
Objectives  In critically ill patients requiring mechanical 
ventilation for at least 21 days, 1-year mortality can be 
estimated using the ProVent score, calculated from four 
variables (age, platelet count, vasopressor use and renal 
replacement therapy). We aimed to externally validate 
discrimination and calibration of the ProVent score and, if 
necessary, to update its underlying regression model.
Design  Retrospective, observational, single-centre study.
Setting  11 intensive care units at one tertiary academic 
hospital.
Patients  780 critically ill adult patients receiving invasive 
mechanical ventilation for at least 21 days.
Primary outcome measure  1-year mortality after 
intensive care unit discharge.
Results  380 patients (49%) had died after 1 year. One-
year mortality for ProVent scores from 0 to 5 were: 15%, 
27%, 57%, 66%, 72% and 76%. Area under the receiver 
operating characteristic curve of the ProVent probability 
model was 0.76 (95% CI 0.72 to 0.79), calibration 
intercept was −0.43 (95% CI −0.59 to −0.27) and 
calibration slope was 0.76 (95% CI 0.62 to 0.89). Model 
recalibration and extension by inclusion of three additional 
predictors (total bilirubin concentration, enteral nutrition 
and surgical status) improved model discrimination and 
calibration. Decision curve analysis demonstrated that the 
original ProVent model had negative net benefit, which 
was avoided with the extended ProVent model.
Conclusions  The ProVent probability model had adequate 
discrimination but was miscalibrated in our patient cohort 
and, as such, could potentially be harmful. Use of the 
extended ProVent score developed by us could possibly 
alleviate this concern.

INTRODUCTION
The field of critical care medicine has 
undergone considerable change over recent 
decades, enabling many patients to overcome 
acute critical illness and recover to their 

former state of health. However, approxi-
mately 8% of all patients admitted to an inten-
sive care unit (ICU) require organ support 
measures over a long period of time; this is 
a condition known as chronic critical illness 
(CCI).1 One of the proposed definitions of 
CCI is prolonged mechanical ventilation 
(MV) for at least 21 days.2 Among patients 
with CCI, 1-year mortality after ICU discharge 
is about 50%,3 4 and functional outcomes 
often remain poor in surviving patients.5 
Commonly used ICU scoring systems fail 
to adequately predict long-term mortality 
in patients with CCI.6 7 In addition, survival 
and functional outcome is frequently over-
estimated by patients, their surrogates and 
clinicians,8 hampering informed decision 
making. As a consequence, the Prognosis 
for Prolonged Ventilation (ProVent) logistic 
regression model was derived in 2008 to esti-
mate 1-year mortality of patients with MV for 

STRENGTHS AND LIMITATIONS OF THIS STUDY
	⇒ This is one of the largest external validation studies 
of the ProVent score.

	⇒ In contrast to previous studies, we provide compre-
hensive data on discrimination and calibration as 
recommended by guidelines for external validation 
of predictive models.

	⇒ Our study is the first to incorporate decision curve 
analysis to highlight the performance of the ProVent 
model.

	⇒ Besides 1-year mortality, we could not analyse other 
important outcome variables such as functional sta-
tus, liberation of mechanical ventilation or depen-
dency on nursing care.
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at least 21 days using four variables (age, platelet count, 
vasopressor use and renal replacement therapy).9 10 To 
facilitate clinical use, the ProVent probability model was 
simplified to generate the ProVent score that could be 
easily calculated at the bedside.

External validation of predictive models is an 
important task that should be performed prior to its 
implementation in clinical practice, and it should use a 
different patient cohort from which the predictive model 
was derived. While several studies from the USA and Asia 
have validated the ProVent score, only one European 
external validation study, with 200 French CCI patients, 
has ever been conducted.11 Considerable differences 
in ICU number, size and bed availability exist between 
the USA, Asia and Europe and limit the comparability 
between these regions.12 13 In addition, cultural differ-
ences regarding patient autonomy and treatment at 
the end of life could lead to either shortened or length-
ened survival in some regions.14 It is known that prog-
nostic scores have to be adjusted to compensate for such 
regional differences when they are used in new settings 
and their performance declines in time.15 Because of 
this, further external validation of the ProVent model 
seems warranted.

Therefore, the aim of this study was to evaluate the 
ability of the ProVent probability model to predict 1-year 
mortality in a large Austrian cohort of critically ill patients 
with MV for at least 21 days.

METHODS
Patients and data export
For this single centre, retrospective, observational study, 
we screened the electronic health records of all patients 
admitted to 11 ICUs at the General Hospital of Vienna, a 
tertiary care centre of the Medical University of Vienna, 
Austria, from January 2015 to December 2019 for 
study eligibility. Patients who had received invasive MV 
mechanical ventilation for at least 21 days were eligible 
for study inclusion. Of note, patients were still eligible 
if MV was interrupted for less than 72 hours but then 
restarted.

We exported data (demographics, hospital and ICU 
admission and discharge data, diagnosis, ProVent vari-
ables: age, platelet count, vasopressor use and renal 
replacement therapy) from all eligible patients from the 
IntelliSpace Critical Care and Anaesthesia patient data 
management system (Philips Austria GmbH, Vienna, 
Austria). We obtained information on 1-year mortality 
from Statistics Austria, the Austrian national statistical 
institute. We excluded paediatric patients, patients with 
severe burn injuries or acute or chronic neuromuscular 
disease, patients who were ventilated longer than 24 hours 
prior to ICU admission and patients missing mortality 
data or ProVent input parameters. We did not perform 
a sample size calculation for this study as we analysed all 
patients available in our database.

Model validation
We calculated estimated 1-year mortality using the 
ProVent probability model formula10 and assessed model 
discrimination graphically by plotting receiver operating 
characteristic curves and numerically by calculating Brier 
score, area under the receiver operating characteristic 
(AUROC) curve, true positive rate (TPR; ie, sensitivity), 
true negative rate (TNR; ie, specificity), positive predic-
tive value (PPV) and negative predictive value (NPV), all 
at a threshold probability of 50%. We also determined 
the optimal threshold probability by maximising Youd-
en’s index. We assessed model calibration graphically by 
plotting calibration plots and numerically by calculating 
calibration intercept and calibration slope. We used the 
complete data set to validate the original ProVent model.

Model recalibration and extension
We performed model recalibration in a subset of the data 
consisting of 70% of the patients randomly sampled from 
the total cohort (training set). The remaining set was used 
for internal validation (test set). At first, necessary updates of 
miscalibrated regression coefficients were determined. For 
this, we fitted a logistic regression model using the original 
linear predictor as offset variable (ie, a variable with regres-
sion coefficient fixed at 1) and performed forward-stepwise 
selection with the four candidate variables (age, platelet 
count, vasopressor use and renal replacement therapy) 
using a significance level for entry of 0.05. The resulting 
regression coefficients determined the change in the orig-
inal regression coefficient that was necessary to improve 
calibration. The regression coefficients of variables that 
were not selected remained unchanged. The final regres-
sion coefficients of the recalibrated model were given as the 
sum of the original coefficient and the coefficient from the 
forward-stepwise selection.16

In addition, we investigated if any new predictors would 
improve the model. We analysed the following 26 labora-
tory parameters, all measured on day 21 of MV: red blood 
cell count, haemoglobin, leucocyte count, arterial partial 
oxygen pressure, arterial partial carbon dioxide pres-
sure, arterial pH value, base excess, standard bicarbonate 
concentration, sodium, chloride, potassium, calcium, 
magnesium, phosphate, lactate, glucose, creatinine, total 
bilirubin, albumin, alanine transaminase, aspartate trans-
aminase, gamma glutamyl transferase, activated partial 
thromboplastin time, prothrombin time and fibrinogen. 
First, we fixed the recalibrated model by using its linear 
predictors as offsets and performed single-variable logistic 
regressions with each candidate variable using the offsets. 
The final extended model was built using the most signif-
icant laboratory parameter and included two additional 
variables, which were decided on as per clinical expertise: 
provision of enteral nutrition (yes/no) and any surgery 
(yes/no) prior to or while admitted to the ICU.

The original, recalibrated and extended models were then 
internally validated on the test data set. We calculated Brier 
score, AUROC, TPR, TNR, PPV and NPV (at a threshold 
probability of 50%).
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Decision curve analysis
To evaluate the clinical usefulness of the original and 
the extended ProVent probability model, we performed 
decision curve analysis (DCA). We calculated net benefit 
as the number of patients correctly identified as non-
survivors after 1 year (true positive count) minus the 
weighted number of patients falsely identified as non-
survivors (false positive count) for the entire range of 
threshold probabilities (pt; ie, from 0% to 100%)17:

‍Net benefit = true positive count
n − false positive count

n ( pt
1−pt

)‍.
Threshold probability refers to the probability above 

which a patient is classified as non-survivor (eg, a patient 
predicted to have a 60% chance of non-survival is classi-
fied as non-survivor at a pt of 50%, but not if pt is 70%). 
n refers to the total number of patients. Net benefit can 
be interpreted as the number of true positives per 100 
patients without any false positives.18 We analysed these 
data graphically as decision curve.

Descriptive statistics
Categorical variables are given as absolute and relative 
frequencies. Continuous variables are given as median 
with first and third quartiles.

Software
Data handling and statistical analysis was performed 
using R V.4.1.2.19 DCA was performed using the dcurves 
package.20

Patient and public involvement
None.

RESULTS
We screened 1015 potentially eligible patients undergoing 
MV for at least 21 days for study inclusion and included 
780 patients in the final analysis (figure 1). The median 

ICU length of stay was 40 days (IQR 30–54), and median 
hospital length of stay was 65 days (IQR 42–102). Baseline 
information at day 21 of MV is provided in table 1.

After 1 year, 380 patients (49%) had died. The median 
survival time after study inclusion (ie, day 21 of MV) was 
34 days (IQR 12–103). One-year mortality for ProVent 
scores from 0 to 5 was 15%, 27%, 57%, 66%, 72% and 

Figure 1  Patient inclusion flow chart. Note that some patients met more than one exclusion criteria. ICU, intensive care unit.

Table 1  Baseline information of included patients (n=780) 
obtained on day 21, if not specified otherwise

Male gender, n (%) 460 (59)

Age (years; median (IQR)) 62 (49 to 71)

Platelet count (109 l-1; median (IQR)) 285 (162 to 421)

Renal replacement therapy, n (%) 192 (25)

Vasopressor use, n (%) 301 (39)

Surgery, n (%) 364 (47)

Simplified Acute Physiology Score III at 
admission (−), median (IQR)

66 (56 to 78)

ICU, n (%)

 � Medical 289 (37)

 � Surgical 367 (47)

 � Neurosurgical 124 (16)

ProVent Score, n (%)

 � 0 95 (12)

 � 1 175 (22)

 � 2 252 (32)

 � 3 160 (21)

 � 4 81 (10)

 � 5 17 (2)

Intensive care unit mortality, n (%) 198 (25)

Hospital mortality, n (%) 259 (33)

1-year mortality, n (%) 380 (49)
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76%. A Kaplan-Meier plot depicting changes in mortality 
over time, stratified by ProVent score, is provided in 
online supplemental material 1.

ProVent probability model
Validation
We validated the ProVent probability model using data 
from the complete patient cohort. Brier score was 0.21, 
and AUROC was 0.76 (95% CI 0.72 to 0.79). At a threshold 

probability of 50%, TPR (ie, sensitivity) was 0.81 (95% CI 
0.76 to 0.85), TNR (ie, specificity) was 0.58 (95% CI 0.53 
to 0.63), PPV was 0.65 (95% CI 0.60 to 0.69) and NPV was 
0.76 (95% CI 0.71 to 0.81). The optimal threshold prob-
ability which maximised Youden’s index was 52%. Cali-
bration intercept was −0.43 (95% CI −0.59 to −0.27) and 
calibration slope was 0.76 (95% CI 0.62 to 0.89). Receiver 
operating characteristics curves are depicted in figure 2, 
and calibration plots are shown in figure 3.

Recalibration
As the ProVent model was miscalibrated and therefore 
overestimated 1-year mortality, we performed recalibra-
tion using data from 546 patients. Recalibrated model 
coefficients are provided in online supplemental mate-
rial 2. Internal validation in a subset of 234 patients not 
used for recalibration yielded a Brier score of 0.19 and 
an AUROC of 0.78 (95% CI 0.73 to 0.84). At a threshold 
probability of 50%, TPR was 0.75 (95% CI 0.65 to 0.82), 
TNR was 0.66 (95% CI 0.57 to 0.74), PPV was 0.64 (95% 
CI 0.55 to 0.73) and NPV was 0.76 (95% CI 0.67 to 0.83). 
The threshold probability that maximised Youden’s index 
was 38%. At this cut-off, TPR was 0.91 (95% CI 0.88 to 
0.94), TNR was 0.47 (95% CI 0.42 to 0.52), PPV was 0.62 
(95% CI 0.58 to 0.66) and NPV was 0.85 (95% CI 0.79 
to 0.89). Calibration intercept was −0.21 (95% CI −0.50 
to 0.07) and calibration slope was 1.19 (95% CI 0.84 to 
1.53).

Extension
In the next step, we aimed to improve the ProVent prob-
ability model by introducing additional predictors from 
data available at our institution. We evaluated a collec-
tion of 26 laboratory values measured on day 21 of MV, 

Figure 2  Receiver operating characteristic curve for original 
and extended ProVent probability models.

Figure 3  Calibration plots for original and extended ProVent probability model.

https://dx.doi.org/10.1136/bmjopen-2022-066197
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as well as information on provision of enteral nutrition 
and surgical status. We constructed a multivariate predic-
tion model including the recalibrated linear predictor as 
model offset and included three additional predictor vari-
ables in the final extended model: total bilirubin concentra-
tion (mg/dL), enteral nutrition (yes/no) and surgical status 
(any surgery/no surgery). These variables were signifi-
cantly associated with 1-year mortality: univariate ORs for 
1-year mortality were 1.15 (95% CI 1.07 to 1.26) for total 
bilirubin concentration, 0.33 (95% CI 0.15 to 0.67) for 
enteral nutrition and 0.6 (95% CI 0.41 to 0.88) for any 
surgery. Coefficients of the extended model are provided 
in online supplemental material 2. Internal validation of 
the extended ProVent model in 234 patients not used for 
construction of the extended model yielded a Brier score 
of 0.18 and an AUROC of 0.81 (95% CI 0.76 to 0.87). At 
a threshold probability of 50%, TPR was 0.78 (95% CI 
0.69 to 0.86), TNR was 0.66 (95% CI 0.57 to 0.75), PPV 
was 0.66 (95% CI 0.57 to 0.74) and NPV was 0.78 (95% 
CI 0.69 to 0.86). The optimal threshold probability that 
maximised Youden’s index was 48%. Calibration inter-
cept was −0.27 (95% CI −0.57 to 0.03) and calibration 
slope was 1.10 (95% CI 0.78 to 1.41). Receiver operating 
characteristics curves are depicted in figure 2, and cali-
bration plots are shown in figure 3.

Decision curve analysis
Figure 4 presents the DCA of the original as well as the 
extended ProVent probability models. For this, we calcu-
lated net benefit, which can be interpreted as the number 
of true positives per 100 patients without any false posi-
tives, over the entire range of threshold probabilities, that 
is, from 0% to 100%. Up to threshold probabilities of 68%, 
net benefit of the original ProVent model is positive but 
declining. Above 68%, net benefit of the original ProVent 
model turns negative, indicating that the amount of false 
positive non-survivors is disproportionate to the number 
of correctly identified true positive non-survivors. Net 
benefit of the extended ProVent probability model does 

not differ from the original model up to a threshold prob-
ability of 45%, above which net benefit of the extended 
ProVent probability model exceeds net benefit of the 
original ProVent model. As such, the extended model can 
identify more true positive non-survivors and/or less false 
positives than the original model.

DISCUSSION
We performed the first external validation study of the 
ProVent score and its underlying logistic regressing 
model in a large Austrian patient cohort. We found that 
the ProVent model was able to discriminate between 
non-surviving and surviving patients adequately but—
in contrast to previous studies—overestimated 1-year 
mortality. We were able to correct this through recalibra-
tion of the ProVent model and enhance model discrim-
ination by including three easily available variables 
(total bilirubin concentration, provision of enteral nutri-
tion and surgical status) as additional predictors in an 
extended ProVent model.

The ProVent model has been derived from a cohort of 
300 patients enrolled between 2001 and 2005. Since then, 
the model has been externally validated several times 
with single-centre as well as multicentre cohorts from the 
USA,10 21 Asia22–24 and Europe.11 A common metric to 
assess discrimination is AUROC, which—in the context 
of the ProVent model—can be interpreted as probability 
that a non-surviving patient with CCI is assigned a higher 
probability of non-survival than a surviving patient. 
AUROC varied between previous studies between 0.64 
and 0.79,10 22 with our results lying in the middle. However, 
the results of those studies are not readily comparable, as 
most validated only the ProVent score,11 22 24 which cate-
gorised the ProVent predictor variables depending on the 
magnitude of the regression coefficients in the ProVent 
logistic regression model. Simplification of prediction 
models in this way is common in medical research as it 
enables quick manual calculation but at the same time 
sacrifices predictive performance.25 As digitalisation 
becomes increasingly more incorporated into medicine 
and the automatic calculation of various scores becomes 
more readily available in patient data management 
systems, simplification of logistic regression models may 
no longer be needed. Because of this, we chose to validate 
the ProVent probability model in this study rather than 
the simplified ProVent score.

Besides model discrimination, evaluation of model 
calibration is equally important. Calibration refers to 
the agreement between predicted probability of death 
at 1 year as compared with actual 1-year mortality. In 
contrast to other external validation studies and in line 
with reporting guidelines for evaluation of statistical 
models,26 we report, for the first time, extensive cali-
bration metrics of the ProVent probability model. We 
found that observed 1-year mortality was lower than in 
the ProVent derivation studies, which found nearly 100% 
mortality in patients with ProVent scores of 4 or 5.9 10 As a 

Figure 4  Decision curve analysis of original and extended 
ProVent probability models. A detailed description is provided 
in text.

https://dx.doi.org/10.1136/bmjopen-2022-066197
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result, the ProVent model overestimated mortality in our 
patient cohort and specificity (ie, TNR) for death at 1 year 
at a threshold probability of 50% was 0.58 (95% CI 0.53 to 
0.63) as compared with 0.91±0.16 in the original ProVent 
study. As such, the model, which was developed with the 
goal of a low false positive rate, underperformed in our 
study cohort.

Several factors could explain the varying performance 
of the ProVent model in our cohort compared with other 
studies. First, there are significant geographical differ-
ences regarding all aspects of critical care medicine: 
ICU bed number,27 28 availability, staffing and even the 
definition of what is considered an ICU bed.12 These all 
vary considerably between different regions and even in 
between European countries. This in turn influences the 
case-mix of admitted patients, their medical therapy prior 
to ICU admittance and after ICU discharge and there-
fore also the short-term and long-term outcomes of those 
patients.29 Indeed, it is known that geographical variance 
limits the international comparability of studies in crit-
ical care.13 Furthermore, the patient cohort used for the 
development of the ProVent score was recruited more 
than 10 years prior to our study. Subsequently, differences 
in therapy while admitted to the ICU, as well as after ICU 
discharge, likely influence patient outcomes. Another 
possible source of variation are different end-of-life care 
practices, which also vary considerably across geograph-
ical regions and have changed over recent years.30 31 Such 
variations could particularly contribute to differences 
in short-term mortality and thereby explain divergent 
performance of the ProVent probability model.

One shortcoming of traditional metrics of discrimina-
tion and calibration is the difficulty in applying it in clin-
ical practice. While PPV, respectively NPV, can be useful 
in estimating whether the result of a prediction model will 
likely occur, they do not account for the consequences 
of false positives or negatives. DCA is an increasingly 
common method used to illustrate the value of predic-
tion models and is recommended by current guidelines.26 
In DCA, the net benefit of a given statistical model is anal-
ysed over a range of threshold probabilities. Net benefit 
represents the number of true positives identified minus 
a weighted number of false positives at a given threshold 
probability and can be interpreted as the number of true 
non-survivors identified by the ProVent probability model 
without any false positive non-survivors. Our study is the 
first to apply DCA to evaluate the ProVent model. First, 
we found that when applying the original model, net 
benefit turned negative at threshold probabilities above 
68%. This can be interpreted as the application of the 
original, miscalibrated ProVent model leads to identi-
fying relatively more false positive non-survivors than 
true non-survivors and that it could therefore be harmful. 
This confirms results from a simulation study that demon-
strated negative net benefit following model miscalibra-
tion.32 Second, regarding net benefit, the recalibrated 
extended model was superior to the original one at 
higher threshold probabilities, which highlights the need 

for careful evaluation of predictive models before their 
implementation into clinical practice. Correct interpreta-
tion of DCA warrants careful consideration of the appro-
priate range of threshold probabilities, which is highly 
dependent on the clinical consequences resulting from 
being classified as non-survivor. In the case of low stakes 
decisions, such as mandatory ethics counselling, low 
threshold probabilities would be appropriate, whereas in 
the case of severe consequences, such as the decision to 
forego cardiopulmonary resuscitation or to limit surgical 
interventions, high thresholds probabilities are appro-
priate. Currently, there are no recommendations on 
which therapeutic measures are appropriate in patients 
with CCI. We therefore chose to present net benefit over 
the entire range of threshold probabilities.

We must recognise relevant limitations of our study: 
possible selection bias could have been introduced by 
excluding mechanically ventilated patients that had 
been transferred to our centre, but this was necessary as 
we did not have structured data on those patients prior 
to admittance to our hospital. In addition, we did not 
analyse data on pre-ICU and post-ICU therapy, patient 
comorbidities and do-not-resuscitate orders in place, all 
of which could have possibly been useful for the inter-
pretation of our results. Furthermore, data on long-term 
outcomes, including patients’ cognitive and/or func-
tional status, liberation from MV or place of living (eg, 
hospital, nursing facility or at home) were not available 
but are highly relevant and should be addressed in future 
studies. Given the ongoing COVID-19 pandemic, we did 
not include patients with COVID-19 induced acute respi-
ratory distress syndrome in this study and as such, care 
must be taken when applying the ProVent model to those 
patients, who may have better long-term outcomes than 
the patients included in this study.33

In summary, we externally validated the ProVent prob-
ability model for prediction of 1-year mortality in a large 
cohort of patients with CCI. Model performance was in 
line with previous studies, adding to existing evidence that 
the ProVent model is generally robust. However, the orig-
inal ProVent model overestimated 1-year mortality, and 
application of the unmodified probability model could 
therefore be harmful. The recalibrated and extended 
model provided good discrimination and calibration 
superior to the original ProVent model. Our study indi-
cates that careful evaluation of prediction models is 
necessary before they are introduced into clinical prac-
tice. Future studies should evaluate how the application 
of the ProVent model can improve decision making in 
CCI and additionally investigate functional outcomes as 
well as long-term mortality.
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