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ABSTRACT

The linaridin antibiotic cypemycin is a ribosomal synthesized and post-translationally modified peptide (RiPP) that possesses potent activity against mouse leukemia
cells. This peptide natural product contains an S-[(Z)-2-aminovinyl]-p-cysteine (AviCys) moiety in the C-terminus. Formation of AviCys moiety requires an oxidative
decarboxylation of the C-terminal Cys of the precursor peptide CypA, and this process is catalyzed by a flavin-containing protein CypD. In this work, we tested CypD
substrate specificity with a series of synthetic oligopeptides. We show that most of the N-terminal sequence of CypA is not required for CypD activity, and the C-
terminal three residues serve as the minimal structural element for enzyme recognition. We also show that CypD tolerates various substrates with modified C-termini,
allowing for the generation of four novel cypemycin variants with modified AviCys moiety by site direct mutagenesis of the precursor peptide CypA. Our study
demonstrates the relaxed substrate specificity of CypD and lays a foundation for future bioengineering of AviCys-containing natural products.

1. Introduction

Ribosomally synthesized and post-translationally modified peptides
(RiPPs) are a major class of natural products as revealed by the genome
sequencing efforts in the past decade [1,2]. These compounds exist in
all three domains of life and possess vast structural and biological di-
versity, and their biosynthesis involves highly diverse biochemistries
[3-7]. Among these peptide natural products are linaridins, defined as
linear dehydrated (arid) peptides [8]. As with most RiPPs, linaridins are
produced from a precursor peptide, of which an N-terminal leader
peptide is finally removed by proteolysis, and a C-terminal core region
is posttranslationally modified to the mature product. Although only
three members of linaridin family have been structurally characterized
[8-10], a recent genome mining study showed that this RiPP family is
widespread in nature and the members are structurally diverse [11].

Cypemycin is a prototypical member of the linaridin family pro-
duced by Streptomyces sp. OH-4156. This compound exhibits potent in
vitro activity against mouse leukemia cells, and a narrow-spectrum
antibiotic activity against Micrococcus luteus [12,13]. Derived from the
precursor peptide CypA, cypemycin comprises 21 amino acid (aa) re-
sidues, including a N,N-dimethylalanine [14], two allo-isoleucines, four
dehydrobutyrine residues, and an S-[(Z)-2-aminovinyl]-p-cysteine
(AviCys) moiety (Fig. 1A). The presence of multiple dehydroamino
acids (i.e. dehydrobutyrine or dehydroalanine) is usually an important
characteristic of lanthipeptides, a large and well-studied class of RiPPs
[15-17]. However, biosynthesis of cypemycin dehydroamino acids in-
volves a unique set of enzymes with unclear functions and mechanisms
[8,11]. AviCys moieties are also found in several lanthipeptides such as
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epidermin, mersacidin, NAI-107 [18,19], and microvionine [20]. The
flavoproteins responsible for the biosynthesis of lanthipeptide AviCys
moieties are generically termed LanDs (e.g. EpiD and MrsD are involved
in the biosynthesis of epidermin and mersacidin, respectively) [17]. A
flavoprotein CypD is involved in cypemycin biosynthesis (Fig. 1B), but
this protein appears to be divergent from LanD enzymes, as it shares no
sequence similarity with EpiD and MrsD.

In contrast to many enzymes involved in RiPP biosynthesis that are
leader peptide-dependent, LanD-catalyzed Cys decarboxylation does
not require the presence of leader peptide. Kupke et al. showed that
epidermin decarboxylase EpiD is capable of decarboxylating a variety
of oligopeptide substrates, and the minimal sequence for enzyme re-
cognition is the C-terminal four residues of the precursor peptide EpiA
[21]. EpiD exhibits remarkable substrate tolerance and acts on various
oligopeptides containing a C-terminal Cys. In contrast, the substrate
specificity of mersacidin decarboxylase MrsD appears to be strict, as it
did not act on a synthetic octa-peptide corresponding to the MrsA C-
terminal sequence [22]. Similar to MrsD, a recent study indicated that
the NAI-107 decarboxylase MibD did not show appreciable substrate
tolerance [19]. These studies suggested that the substrate specificity of
Cys decarboxylases is diverse in different biosynthetic systems.

2. Material and methods
2.1. Chemicals, biochemicals, plasmids and strains

This information is provided in the Supplementary Information.
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2.2. Protein expression and purification

The construct pET-CypD (see Supplementary Information) for over-
expressing CypD was transformed in to E. coli BL21 (DE3) cells. A single
colony transformant was used to inoculate a 5mL culture of LB sup-
plemented with 50 pg/mL kanamycin. The culture was grown at 37 °C
for 12 h and was used to inoculate 1 L of LB medium containing 50 ug/
mL kanamycin. Cells were grown at 37 °C and 220 rpm to an ODggg ~
0.6-0.8, and then IPTG was added to a final concentration of 0.5 mM.
After additional 24 h of Incubation at 18 °C and 150 rpm, the cells were
harvested by centrifugation at 4000 X g for 15 min at 20 °C. The pellet
was used directly for protein purification or stored at —80°C upon
further use.

The cell pellet collected by centrifugation was re-suspended in
20 mL lysis buffer (50 mM Tris, 200 mM NaCl, and 10% glycerol, pH
8.0), and was lysed by sonication on ice. Cell debris was removed via
centrifugation at 21000 x g for 30 min at 4 °C. The supernatant flowed
through a column filled with 5mL Ni-NTA resin pre-equilibrated with
the lysis buffer. The desired elution fractions were combined and con-
centrated using an Amicon Ultra-15 Centrifugal Filter Unit, and the
concentrated protein solution was desalted using a DG-10 column (Bio-
Rad) pre-equilibrated with the elution buffer (50 mM Tris, 25 mM NaCl,
and 10% (v/v) glycerol, pH 8.0). The protein fraction was collected and
concentrated, analyzed by SDS-PAGE (10% Tris-glycine gel), and was
used directly for in vitro assay or stored at —80 °C upon further use.
Protein concentration was determined using Bradford assaywith bovine
serum albumin (BSA) as a standard.

2.3. Enzyme assays of CypD

The typical CypD reactions were performed in 200 ul mixture,
containing 100 pM peptide substrates and 20 uM enzyme in 50 mM Tris-
HCI buffer (pH 7.5). The assays were carried out at room temperature
(25°C) for 2h before quenching by addition of trichloroacetic acid
(TFA) to a final concentration of 5% (v/v). After removal of the protein
precipitates by centrifugation, the supernatant was subjected to liquid
chromatography coupled with high resolution mass spectrometry (LC-
HR-MS) analysis.

2.4. Construction of the recombinant plasmids for expressing CypA mutants

PCR amplification was performed by using pHB-CypA-wt as the
template [11], and a primer pair including a general primer CypA-For
and a specific primer for each mutant (i.e. CypA-I20L-Rev, CypA-V21A-
Rev, CypA-V21C-Rev, CypA-V21I-Rev for the I120L, V21A, V21C, V21I
mutants of CypA, respectively, see Table S1 in SI for the primer se-
quence). The PCR products were digested with the restriction enzymes
Ndel and Hidlll, recovered by agarose gel electrophoresis, and ligated
into the same restriction site of pIJ10257 [8], giving the plasmids that

11

core

160

Synthetic and Systems Biotechnology 3 (2018) 159-162

Fig. 1. Biosynthesis of cypemycin. (A) Structure of cype-
mycin. The amino acid sequence of the precursor peptide
CypA is shown. Negative numbers represent the position of
amino acids within the leader peptide with respect to the
first amino acid in the core region (highlighted in yellow).
Dehydrobutyrine and AviCys moiety are shown in blue and
red. Cypemycin also contains two alloisoleucine (a-Ile) re-
sidues that are shown in green. PTM represents post-
translational modifications. (B) The CypD-catalyzed oxida-
tive decarboxylation of the C-terminal Cys, a key step in the
formation of the cypemycin AviCys moiety. The blue line
represents the peptide chain, and X represents either the
CypA Cys19 or a dehydroalanine residue generated by di-
thiolation of Cys19.

16 21

express the corresponding CypA mutants. The plasmids were confirmed
by DNA sequencing at Genewiz Co. Ltd and RuiDi Biological Tech-
nology Co. Ltd.

2.5. Intergeneric conjugation between E. coli and Streptomyces

E. coli ET12567 derivatives containing the corresponding plasmids
were grown to an ODgg of 0.4. Cells from a 20 mL culture were col-
lected by centrifugation, washed twice with same volume of LB broth,
and re-suspended in 2 mL of LB broth as the E. coli donor. Spores of S.
coelicolor M1414 [8] (0.5 mL, 103-10°/mL) stocked in 20% glycerol at
—80 °C were washed twice with 0.5 mL of TES buffer (0.05 M, pH 8.0),
re-suspended in 0.5 mL of TES buffer, and then incubated for 10 min at
50 °C (heat shock) to activate germination. The culture of spore sus-
pension was incubated for 2-3 h at 37 °C after additional 0.5 mL of TSB
broth was added. The cells were recovered and re-suspended in 0.5 mL
of LB broth as the Streptomyces recipients. The donors (100 ul) and the
recipients (100 ul) were mixed in different ratios and the resulting
mixture was spreaded evenly onto a MS plates freshly supplemented
with 10 mM MgCl,. The plates were incubated at 28 °C for 20 h. After
removal of most of the E. coli cells by washing the plate surface with
sterile water, the plates were overlaid with 1 mL of LB containing na-
lidixic acid (final concentration, 50 pug/mL) and hygromycin (final
concentration, 100 ug/mL) and were incubated at 28 °C for further 3-5
days. The exconjugants were then inoculated into a fresh TSB medium
containing 100 pg/mL hygromycin, and the genotype of these strains
were confirmed by DNA sequencing.

2.6. In vivo production of cypemycin variants

SPA medium (in grams per liter of solution: soluble starch, 20; beaf
extract, 1; MgSOy, 0.5; KNOg, 1; NaCl, 0.5; KosHPO,, 0.5; agar, 20) was
used for spore production. The spore suspension of the Streptomyces
strains were inoculated into 5mL TSB medium, and were grown at
30°C and 180rpm for 72h. The resulting cultures were used to in-
oculate 50 mL SOC medium (in grams per liter of solution: tryptone 20,
yeast extract 5, NaCl 0.5, KCl 0.19, MgCl, 0.95, glucose 3.6), which was
grown at 30 °C and 180 rpm for 72 h. 3 mL of the resulting seed culture
was used to inoculate 30 mL solid fermentation medium (in grams per
liter of solution: glucose 5, yeast extract 30, KBr 10, KH,PO,4 0.5,
MgSO, 0.5 g, agar 20 g). The cells were grown at 30 °C and culture for
15-18 days, and the resulting solid culture was collected, cut into small
pieces, and mixed with 3 x volume of acetone. After overnight in-
cubation at room temperature, the resulting mixture was filtered. The
filtrate was collected, evaporated to dryness under vacuum, and the
residue was dissolved in methanol before HPLC or LC-HR-MS analysis.
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Table 1
Determination of the substrate specificity of CypD. “+” and “-” denote dec-
arboxylation was observed and not observed, respectively.
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3. Results and discussion

The in vitro activity of CypD was previously reconstituted by
Claesen and Bibb, showing that CypD catalyzes oxidative decarbox-

Peptide Sequence Activity MS Spectrum
ylation of the CypA Cys22 [8]. However, it is unclear whether the N-
1 QGSTISLVC + Fig. S1 terminal sequence of CypA is required for CypD activity. To test this
2 STISLVC + Fig. 52 . hesized ies of oli tid dine to th
3 ISLVC N Fig, 53 point, we synthesized a series of oligopeptides corresponding to the
4 SLVC + Fig. S4 nine, seven, five, four, three, and two C-terminal sequence of CypA
5 LVC + Fig. S5 (peptide 1-6, Table 1). Because we previously showed the C19S mutant
6 Ve - / of CypA was modified to cypemycin with only a slightly decreased ef-
7 STISLVS - /. ficiency [11], the C-terminal fourth Cys residue (corresponding to
8 STISLAC + Fig. S6 . . . .
° STISLCC + Fig. 57 Cys19) was changed to Ser in all the oligopeptides to prevent formation
10 STISLIC + Fig. S8 of intramolecular disulfide bonds. Biochemical analyses with these
11 STISLYC - / peptides showed that peptides 1-5 were decarboxylated by CypD (Figs.
12 STISLEC - / S1-S5), whereas decarboxylation of 6 was not observed. These results
3 :E:;I/(g " 1/: i SO suggest that the C-terminal three residues of CypA serve as the minimal
15 STISKVC _ / & structural element for CypD recognition.
16 STISYVC / As expected for all the Cys decarboxylases, peptide 7 in which the C-
17 STIALVC Fig. 510 terminal Cys is changed to Ser, was not decarboxylated by CypD, sug-
18 STITLVC - / gesting that, similar to LanD enzymes, CypD is only able to act on Cys.
19 STILLVC - / . -
We next tested the substrate tolerance on the penultimate C-terminal
position. To this end, we synthesized peptides 8-11, in which the pe-
nultimate Val was changed to Ala, Cys, Ile, and Tyr, respectively.
A 2+
CYP V21A [M+H]
cal. 1034.5566 b5 b8
obs. 1034.5548 v8
y7 k yi3
" : b13 b15
: : : 16
b4 b6 3o’ b9E -"ZJb”§ bi6 |
| I A 1 Lok AL JoJddi I
T T T 1 T v L) T M T h L) T T
1034 1035 1036 1037 m/z 400 600 800 1000 1200 1400 1600 m/z
2
[M+H]*
B CYPV21C b10 T
3
cal. 1050.5426 4
obs. 1050.5419 b s bI3 ?15
: b6: I_\lz bl"' b16 yl16
A | JLa _l A s 1ol & . i 1
T T T T T T T T T T T i
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2
[M+H]™
C CYP V21l ~

cal. 1055.5801
obs. 1055.5812

10551056 1057 1058 m/z 400 600 800 1000 1200 1400 1600miz
[M+H]2+
D CYP L20! bs ~
cal. 1048.5722
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b13Y12 ip14 v16
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Fig. 2. LC-HR-MS characterization of (A) V21A, (B) V21C, (C) V211, and (D) L21I variants of cypemycin. For the detailed HR-MS/MS spectra, see Figs. S11-S14.
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Incubation of CypD with each of these substrate showed that peptides 8,
9, and 10 were decarboyxlated (Table 1 and Figs. S6-S8). However,
peptide 11 was not decarboxylated by CypD, suggesting that the en-
zyme tolerates structural variation at the penultimate position to some
extend, but does not accept large aromatic residue at this position. To
test whether charged residues can be accepted at this position, we
synthesized peptides 12 and 13, in which the penultimate Val was
changed to Glu and Lys, respectively. LC-HR-MS analysis of each re-
action mixture with peptides 12 or 13 show that neither of these two
peptides was decarboxylated, suggesting that CypD does not accept
charged residues at the penultimate C-terminal position.

To test the substrate tolerance of CypD at the antepenultimate C-
terminal position, we synthesized peptides 14-16, in which the ante-
penultimate Leu was changed to Ile, Lys, and Tyr. Biochemical analysis
showed that although peptide 14 was decarboxylated (Fig. S9), no
decarboxylated product of peptide 15 and 16 were observed, suggesting
neither charged residues nor large aromatic residues can be accepted by
CypD.

We next tested the CypD activity with peptide 17-19, in which the
fourth Ser was changed to Ala, Thr, and Leu. LC-HR-MS analysis of each
reaction mixture showed that although peptide 17 was decarboxylated
(Fig. S10), no decarboxylation was found for peptide 18 and 19. The
fact that CypD does not act on peptide 18 is consistent with our pre-
vious engineering study, showing that although CypA C19S was con-
verted to cypemycin, CypA C19T was not converted to the corre-
sponding cypemycin variant [11].

The relaxed substrate specificity of CypD raises the possibility to
modify the cypemycin AviCys moiety by biosynthetic engineering. To
test this possibility, we utilized the heterologous expression system
developed previously that uses Streptomyces coelicolor as a host for cy-
pemycin production [8,11]. Based on the results presented above, we
generated four plasmids by site-directed mutagenesis, which express
the L20I, V21A, V211, and V21C mutants of CypA, respectively. Each
mutant-expressing plasmid was introduced into the cypA-knockout
strain, and the resulting fermentation cultures were analyzed by LC-HR-
MS analysis. This analysis showed that all the four expected cypemycin
variants (L20I, V21A, V21I, and V21C) were produced from the cor-
responding recombinant strains, and each cypemycin variants was
further validated by HR-MS/MS analysis (Fig. 2 and Figs. S11-14).

4. Conclusion

In summary, by testing CypD activity with a series of synthetic
oligopeptides, our study revealed that most of the N-terminal sequence
of CypA is not required for CypD activity, and the C-terminal three
residues serve as the minimal structural element for enzyme recogni-
tion. Although peptides containing charged or aromatic residues at the
C-terminal position were generally not acceptable by CypD, many other
variations were modified by the enzyme, allowing for the generation of
various novel cypemycin variants with varied AviCys moiety.
Bioengineering of the AviCys-containing natural products certainly
warrants future investigation because of their intriguing biological ac-
tivities [18], and we expect this study will contribute to these en-
deavors.
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