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In health and disease, liver cells are continuously exposed to cytokines and growth
factors. While individual signal transduction pathways induced by these factors were
studied in great detail, the cellular responses induced by repeated or combined stimula-
tions are complex and less understood. Growth factor receptors on the cell surface of
hepatocytes were shown to be regulated by receptor interactions, receptor trafficking and
feedback regulation. Here, we exemplify how mechanistic mathematical modelling based
on quantitative data can be employed to disentangle these interactions at the molecular
level. Crucial is the analysis at a mechanistic level based on quantitative longitudinal data
within a mathematical framework. In such multi-layered information, step-wise mathemat-
ical modelling using submodules is of advantage, which is fostered by sharing of standar-
dized experimental data and mathematical models. Integration of signal transduction with
metabolic regulation in the liver and mechanistic links to translational approaches
promise to provide predictive tools for biology and personalized medicine.

Introduction
Cell-to-cell communication is known since the mid-1800, when Claude Bernard developed the
concept of le milieu intérieur, addressing the concept of molecule secretion and action on a distant
organ [1,2]. Since then, efforts have been made to discover secreted signal transduction molecules,
such as cytokines and growth factors, and their mode of action to transmit the intracellular signal
with consequent biological response.
In this review, we discuss signal transduction in human and rodent cells, as they share similar

modalities of cell-to-cell and intracellular communication. For many years, studies on signal transduc-
tion focused on individual factors inducing single intracellular cascades. However, complexity vastly
increased with the discovery that single factors regulate multiple signal transduction pathways and
that the interplay of several ligands, cross-talk and feedback mechanisms regulate the biological
output. As an additional layer of complexity, recently awareness increased on the importance of
understanding mechanisms that determine dynamic behaviour of signal transduction pathways, such
as signal duration, activation kinetic, signal specificity and ultimately biological responses [3]. At this
level, several layers of regulations can be distinguished: (i) ligand–receptor interaction, (ii) receptor
trafficking; (iii) downstream signal transduction cross-talk and feedback and (iv) transcriptional regu-
lation. To functionally understand the behaviour of signal transduction pathways with complex regula-
tion, mechanistic mathematical modelling based on quantitative data was performed in the examples
discussed here. In contrast with statistical modelling, such as machine learning based on big data [4],
mechanistic models seek to establish a causal relationship between inputs and outputs. Thus, these
models can even be calibrated based on small data sets and, rather than inferring correlations, can be
used as predictive tools [5].
Cytokines are small secreted glycoproteins that by binding to specific cell surface receptors initiate a

cascade of intracellular signals. Their mode of action can be autocrine, paracrine or endocrine [6].
Their primary functions include the regulation of the immune system, haematopoiesis and
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developmental processes. In the liver, they play an import part in immunity, inflammation including the acute
phase response, liver regeneration, fibrosis and cancer [7]. Here, we focus on interferons (IFN) and interleukins
(IL) that are recognized by cytokine receptors. Cytokine receptor chains comprise an extracellular domain that
interacts with the cytokine, a single transmembrane domain and a signal-transducing cytoplasmic domain.
Upon ligand binding, the cytokine receptor chains on the cell surface associate or are stabilized as dimers or
oligomers [8]. The cytoplasmic domain lacks intrinsic kinase activity and associates with a protein tyrosine
kinase of the Janus kinase ( JAK) family [9]. Tyrosine phosphorylation of the cytoplasmic receptor chains acti-
vates several signal transduction components, predominantly proteins of the signal transducer and activator of
transcription (STAT) family. Upon recruitment of the STAT proteins via their SH2 domain to the phosphory-
lated tyrosines of the receptor chains, they in turn are phosphorylated by the JAK kinases. STAT proteins
dimerize, enter the nucleus and induce gene transcription. Dephosphorylated STAT proteins translocate back
to the cytoplasm and can be phosphorylated again [10]. Among the induced target genes are negative regula-
tors including the suppressor of cytokine signalling (SOCS) proteins [11], which inhibit the kinase activity of
the JAK proteins. As examples, we here concentrate on three interferons — the type I interferons IFNα and
IFNβ and the type II interferon IFNγ — and two interleukins — IL6 and IL1β (Figure 1).
IFNα can be divided into 13 different subtypes that are encoded by different genes, while there is only one

type of IFNβ [12]. In the studies discussed here, mostly IFNα2 encoded by IFNA2 was used to represent IFNα.
Both IFNα and IFNβ preferentially bind to the cytokine receptor subunit interferon alpha/beta receptor
(IFNAR)2. Upon binding of the ligand, the other subunit IFNAR1 is recruited and a ternary complex is
formed [13]. While IFNAR1 is constitutively associated with the JAK family member TYK2, JAK1 is bound to
IFNAR2. Upon activation of these two kinases, STAT1 and STAT2 are recruited to the receptor chains and
tyrosine phosphorylated. A unique feature of type I IFN-induced JAK/STAT signal transduction is that STAT1
and STAT2 bind an additional protein, IRF9, to form the ISGF3 complex, which is the main transcription
factor complex [14]. In contrast, IFNγ binds to the receptor chains IFNGR1, associated with JAK1, and
IFNGR2, associated with JAK2. Ligand binding induces phosphorylation of STAT1, which forms homodimers
as active transcription factor complexes [15].
IL6 first binds to the IL6R subunit alpha and this complex then recruits two molecules of the glycoprotein

gp130. The major receptor-bound kinase is JAK1 and signal transduction is mediated by STAT3 homodimers [16].
Lastly, IL1β associates with high affinity to its cognate receptor IL1R [17] and upon binding forms a complex
with the co-receptor IL1 receptor accessory protein (IL1RAP). Besides activation of the p38 and the NFκB
pathways, IL1β was also reported to lead to phosphorylation of STAT3 [18].
Thus, these five cytokines activate identical or overlapping transcription factors in the liver and the mechan-

isms that ensure that each ligand induces a specific cell fate response are unclear. It is further not yet under-
stood what happens if a hepatocyte encounters the same ligand repeatedly and how the cell reacts if it is
stimulated with different ligands simultaneously or sequentially. In the next chapter, we will delineate how

Figure 1. Biological questions addressed with mechanistic mathematical modelling.

Cytokines activate identical or overlapping transcription factors; interaction of the HGF receptor MET with other receptors

influences its signalling strength; EGF induces internalization of its cognate receptor EGFR; TNFα-induced signal transduction

is subject to complex feedback regulation.
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experimental data generation in combination with mechanistic mathematical modelling is beginning to answer
some of these questions.
Growth factors such as the hepatocyte growth factor (HGF) and the epidermal growth factor (EGF) are

recognized by liver cells via receptor tyrosine kinase (RTK) receptors [19]. These transmembrane proteins, in
contrast with the cytokine receptors discussed above, harbour intrinsic tyrosine kinase activity. HGF binds to
the RTK receptor MET, leading to the phosphorylation of its cytoplasmic domain and activation of various
signal transductions pathways including the MAPK and the PI3K/AKT pathway [20]. However, HGF-induced
signal transduction is not an isolated cascade. Cross-talk mechanisms that can be initiated at the plasma mem-
brane by the interaction of unrelated receptors as well as at the intracellular level with interaction among differ-
ent signal transduction cascades vastly increase the complexity of signal transduction. These mechanisms
influence the ligand-induced amplitude and duration of the activation of signal transduction [21]. It was shown
that MET interacts with other receptors, such as plexins, CD44, FAS, VEGFR, EGFR and integrins, modulating
HGF-induced receptor activation and degradation [22]. EGF binds to its cognate receptor EGFR, leading to the
phosphorylation of numerous tyrosine residues on its cytoplasmic domain [23], which induce activation of
downstream signal transduction components and regulate receptor trafficking, including internalization, recyc-
ling and degradation [24]. The final factor discussed here that is involved in functional regulation of the liver is
tumour necrosis factor alpha (TNFα). TNFα is decoded by liver cells via the binding of the transmembrane
receptor TNF receptor 1 (TNFR1 or p55) or TNF receptor 2 (TNFR2 or p75), with TNFR1 regulating a wider
range of functions, including liver regeneration [25]. TNFα acts by activating the intracellular nuclear factor
κ-light-chain-enhancer of activated B cells (NFκB) leading to the activation of transcription factor complexes
formed by homo or heterodimers of p50, p52, p65, RelB and Rel C subunits [26]. These complexes are retained
in the cytoplasm by binding to inhibitors such as IκBα, IκBβ and IκBε. Upon TNFα stimulation, the inhibitory
proteins are phosphorylated with subsequent release of the transcription factor complexes, which translocate to
the nucleus and activate gene transcription. Among the TNFα target genes there are also regulators of the
NFκB pathway, such as IkBα [27] and A20 [28], which are key negative feedback regulators of the pathway.
Unresolved questions relate to the molecular mechanisms resulting from the interaction of MET with other
receptors and its medical implications, internalization of EGFR depending on the ligand dose and the mechan-
ism of the A20-dependent feedback regulation in the TNFα-induced signal transduction cascade. In the follow-
ing, we will illustrate how step-wise mechanistic mathematical modelling using submodules was employed to
answer these questions.

Cytokine waves augmenting or diminishing pathway
activation in hepatocytes
The liver is targeted by several viruses. Hepatotropic viruses such as hepatitis B virus (HBV) and hepatitis C
virus (HCV) are currently still the major risk factors for hepatocellular carcinoma (HCC) [29]. Type I interfer-
ons such as interferon alpha (IFNα) and interferon beta (IFNβ) act as the first line of defence of the hepato-
cytes against hepatotropic viruses [30]. Type I IFNs play a vital role in innate immune responses against
viruses and have an immunomodulatory effect on natural killer cells, macrophages and dendritic cells [31].
IFNα and IFNβ are produced in most cell types upon viral or microbial infection. The presence of viruses in
cells is perceived by pattern recognition sensors, which detect conserved pathogen-associated molecular pat-
terns, e.g. viral RNA and DNA. Via different signal transduction pathways, including AP-1, IRF3/IRF7 and
NFκB, these sensors induce the expression of IFNα and IFNβ [32]. IRF7 is required for an efficient expression
of IFNα, but is not essential for the induction of IFNβ [33]. Because IRF7 concentrations are initially low, the
first increase in interferon production mainly consists of IFNβ. To disentangle the molecular events upon
dynamic changes of interferon production in the liver, the question arises how the antiviral response of hepato-
cytes is altered if the cells have previously been exposed to interferon. Quantitative immunoblotting experi-
ments performed in hepatoma cells and primary human hepatocytes showed that pre-stimulation with a low
dose of IFNα hypersensitizes the pathway, i.e. the antiviral response is stronger than in cells that were not
pre-stimulated [34]. However, pre-stimulation with a high dose of IFNα desensitized the pathway, i.e. the cells
were no longer responsive to stimulation. Mathematical modelling revealed that hypersensitization was caused
by the positive feedback protein IRF9. In contrast, high doses of IFNα induced the negative feedback proteins
USP18 and SOCS1, which synergistically act on the receptors and induce pathway desensitization. The IFNα
regimes that lead to pathway hyper- or desensitization were shown to be patient-specific and controlled by the
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basal abundance of pathway components. Microfluidics time-lapse microscopy experiments in combination
with mathematical modelling confirmed these results in non-liver cells (HeLa) [35]. In these studies, the dur-
ation of the stimulus rather than the dose was varied. A short pre-stimulation was shown to induce hypersensi-
tization via IRF9, while a long pre-stimulation caused desensitization via USP18. Thus, hepatocytes possess a
cellular memory of experienced environmental signals established by positive and negative feedback loops [36].
However, in the liver, hepatocytes not only encounter one ligand, but a multitude of different cues. For

example, cells react to IFNα and IFNβ in a specific way, even though the exactly same receptors and intracellu-
lar signal transduction proteins are employed [37]. While both IFNα and IFNβ lead to the induction of anti-
viral genes, IFNβ is much more potent in inducing an anti-proliferative response. Interestingly, this
phenomenon cannot be compensated by higher concentrations of IFNα. However, by mutating IFNα biochem-
ically to increase its affinity to IFNAR1, this variant resembles IFNβ in its phenotype [38]. These results con-
firmed that the affinity of the interferons to the receptor subunit IFNAR1 is decisive for the induced cellular
responses. However, it remained unclear how the JAK/STAT signal transduction pathway can decode these
quantitative differences in affinity.
In a recent simulation study, this question was treated as an inference problem in information theory. The

receiving cell should be able to discriminate between interferon IFNα, IFNβ or the absence of both ligands [39].
The simulations revealed that to optimally do this, the receptor system should comprise (i) heterodimeric
receptors with (ii) asymmetric binding of the ligands to each receptor chain and (iii) receptor turnover.
Interestingly, the organization of the interferon pathway is in line with all these proposed features. However,
experiments have shown that the interferon pathway does not only qualitatively discriminate between the
ligands, but also quantitatively responds differently to specific ligand doses [40]. By combining diverse data sets
from different experimental systems using a minimal computational model, it was recently shown that while
these differences in ligand binding strengths are theoretically sufficient for ligand discrimination, experiments
failed to show a region of absolute discrimination between IFNα and IFNβ [41]. Rather, the mathematical
model based on previous experimental data [42] showed that the negative feedback loop via USP18 contributes
to ligand discrimination. Ligand binding assays showed that USP18 binds to IFNAR2, and thereby reduces the
ability to recruit IFNAR1 to form a ternary complex [42]. Therefore, the presence of USP18 would reduce the
dose–response curve of IFNα — the ligand with lower affinity to IFNAR1 — rather than the one elicited by
IFNβ. This ligand-specific desensitization was previously not only shown in cell culture with hepatoma cells,
but also in vivo by repeated interferon injections in mice followed by immunoblot analysis of liver tissue [43].
Thus, pre-stimulation of the interferon system is not only preparing the hepatocyte for the next ligand wave,
but also seems to enable ligand discrimination.
Cross-talk with other cytokines complicates the input–output relationships even more. Moreover, it is very

difficult to experimentally determine all possible scenarios, even if only two cytokines are considered. For a
comprehensive analysis, cells would need to be stimulated with one factor, with both factors simultaneously,
pre-stimulated with the first factor and stimulated with the second and vice versa. Furthermore, because
pre-stimulation can result in both desensitization or hypersensitization, different doses of both ligands and/or
time periods between first and second stimulation are required. As a readout, the activation of the signal trans-
duction pathway as well as the physiological cellular response should be recorded. Here, mathematical model-
ling provides tools to in silico simulate all these different conditions to zoom in on interesting scenarios, which
are addressable by experimental validation. Exemplary for such an approach, the cross-talk of IFNγ with IL6
was interrogated with a simulation study [44]. The simulations predicted that co-stimulation with IFNγ with
IL6 increased STAT1 and STAT3 activation compared with stimulations with individual ligands. As an explan-
ation for this increase, the mathematical model predicted that the cytoplasmic and nuclear phosphatases, which
dephosphorylate phosphorylated STAT1 and phosphorylated STAT3, became limiting upon stimulation with
both ligands. Furthermore, pre-stimulation with IFNγ reduced IL6-induced STAT3 phosphorylation, mediated
by SOCS3, while IL6 did not desensitize the IFNγ-induced STAT1 pathway.
In a study employing mathematical modelling based on experimental data, factors that enhance the antiviral

response to IFNα were identified. Co-stimulation with IL6 and IL8 had only a minor impact on gene expres-
sion. However, combining IFNα with IL1β resulted in a higher antiviral gene response in the human hepatoma
cell line Huh7.5. Consistently, viral replication was shown to be enhanced in mice lacking the receptor for
IL1β [45].
In conclusion, as visualized in Figure 2, waves of cytokines augment or diminish pathway activation, depend-

ing on the order, dose and identity of the stimuli.

© 2022 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution License 4.0 (CC BY).1364

Biochemical Journal (2022) 479 1361–1374
https://doi.org/10.1042/BCJ20210548

https://creativecommons.org/licenses/by/4.0/


Temporal fluctuations are not restricted to cytokines in the liver. The secretion of growth factors and hor-
mones, the metabolism and the cell cycle are all under periodic control, which may have implications for
tumour growth and cancer therapy [46]. For example, the concentration of the peptide hormone insulin in vivo
is not static, but displays rapid pulses of 10–15 min [47]. To investigate the decoding of these pulses by hepato-
cytes, rats were injected with different patterns of insulin while keeping glucose levels constant and blocking
endogenous insulin secretion. These patterns included steps, ramp and pulses. The activation of the main com-
ponents of the insulin-induced AKT pathway in the liver was measured by quantitative immunoblotting and
qRT-PCR. An ordinary differential equation-based mathematical model was calibrated based on these data.
Analysis of the mathematical model revealed that the information encoded by the temporal patterns of insulin
was transferred to AKT without much loss of information. While this information was further transferred to
GSK3β, S6K decoded information concerning the rate of change of insulin rather than its concentration.

Figure 2. Cytokine waves augment or diminish pathway activation.

Pre-stimulation and stimulation are indicated as consecutive waves, shades of red indicate the extent of activation of the JAK/

STAT pathways. Data taken from references [34, 43–45].
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Contrary to this, the FoxO1 target gene G6Pase responded preferentially to basal secretion. Thus, combining
quantitative data generation with mathematical modelling, it was shown that insulin patterns are selectively
decoded by downstream molecules in the liver [48].
Major temporal fluctuations of hormone concentrations in the blood are encoded by circadian rhythms gen-

erated by the hypothalamo–pituitary–adrenal axis [49]. Endogenous glucocorticoid steroid hormones are
secreted from the adrenal gland in a pulsatile manner with a circadian pattern. Therefore, plasma glucocortic-
oid concentrations are high during the active phase (day-time in humans and night-time in rodents), and low
in the resting phase [50]. It was observed that synthetic glucocorticoids can inhibit EGF-mediated cell migra-
tion. Cell culture experiments revealed that glucocorticoid-induced signal transduction repressed EGF-induced
gene expression. In line with this finding, it was demonstrated in mouse livers that positive and negative feed-
back regulators of EGF signal transduction display circadian oscillatory patterns in vivo. Thus, the authors con-
cluded that the glucocorticoids enable circadian control of EGFR-induced signal transduction. During the
active phase, EGF-induced cell fate responses are suppressed by high glucocorticoids, while they are enhanced
during the resting phase [51].
In conclusion, cytokines and hormone concentrations in the liver are not static, but come and go in waves of

varying amplitude and frequency. Depending on the order, dose and identity of the stimuli, cell fate decisions
are augmented or diminished. Therefore, statistical analysis of static information is not sufficient, but dynamic
mathematical analyses based on longitudinal data are required for decoding such multi-layered information.

Interactions, trafficking and feedback regulations of
receptors in the hepatocyte membrane
The liver is characterized by its remarkable capacity to regenerate upon injury such as partial hepatectomy and
drug-induced liver injury [52]. Regeneration is triggered by several growth factors and cytokines, among which
HGF plays a crucial role as it induces hepatocyte proliferation by activating its transmembrane receptor
MET [53,54]. Numerous studies reported that MET deregulation by overexpression, activating mutations, spli-
cing variants and amplification is implicated in tumour development and progression [55], positioning MET as
therapeutic target for the treatment of cancer, including HCC [56]. Understanding the cell context-dependent
mechanisms of HGF-induced activation of MET and its signal transduction pathways is essential to predict the
cellular response to drug treatment. An example of such a cell context-dependent regulation is given by the
interaction of MET with integrin α5β1. It was shown that reduction in integrin β1 by siRNA impaired hepato-
cytes proliferation and survival after partial hepatectomy [57] as well as HCC development [58]. The effect of
integrin β1 on hepatocyte proliferation was associated with a lower activation of MET and EGFR in the former
study and MET and β-catenin in the latter. A more recent study showed that the HGF-induced signal transduc-
tion was influenced by the treatment with the integrin inhibitor AXT050, an extracellular matrix derived
mimetic peptide [59]. However, despite the knowledge of interactions between unrelated receptors at the cell
surface, mechanistic understanding of the effect of such interactions is still missing. To investigate the impact
of MET and integrin α5β1 interaction in response to drug therapy in HCC, Jafarnejad et al. [60] applied a
systems biology approach. The authors implemented the interaction of MET with the integrin α5β1 in an
ordinary differential equation-based mathematical model, which was established previously and described the
HGF-induced cross-talk between the PI3K and MAPK signal transduction pathways [61]. The extended model
considered that MET internalization, degradation and recycling is dependent on the interaction with the integ-
rin α5β1, assuming that this interaction plays an important role in the regulation of HGF-induced signal trans-
duction. This model was calibrated based on published data generated in primary mouse hepatocytes as well as
in HCC cell lines, including the kinetics of protein phosphorylation and protein abundance [61,62].
Additionally, data generated in HCC cell lines treated with the integrin inhibitor, AXT050, and the Raf inhibi-
tor, sorafenib, was used [59,63].
Based on the assumption that the interaction between MET and the integrin α5β1 influences MET internal-

ization, degradation and recycling, the model predictions showed that the treatment with the inhibitor AXT050
strongly reduced MET activation as well as downstream signalling, such as AKT and ERK phosphorylation.
Using the method of multidimensional synergy of combinations [64], the authors predicted the synergistic
effect of co-treatment of AXT050 in combination with small molecule inhibitors against Raf or MET or with a
monoclonal antibody directed against HGF. Such simulations that quantify the impact of a combined treatment
with two inhibitors in comparison with the effect of a single compound facilitate prediction of the benefit of
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combinatorial therapy versus treatment with single drugs. Model predictions suggested that AXT050 has a syn-
ergistic effect on the early AKT activation when applied in combination with a potential HGF inhibitor and an
additive effect on ERK phosphorylation. These observations were used to simulate the response to mono- and
combination therapy in HCC patients based on TCGA data [65]. Since the model was calibrated on protein
data, the authors extracted the mRNA information of the TCGA data and considered the fold-change of the
mRNA as protein abundance of the HCC sample of each patient compared with the corresponding tumour-
free sample. The model suggested that the interaction of MET with integrin α5β1 contributes to resistance
mechanisms attributed to HGF signalling and that co-treatment of HCC cell lines with α5β1 inhibitor and
RTK inhibitors inhibit the intracellular signalling response in a synergistic manner. This study is characterized
by (i) accounting for signal transduction cross-regulation at the receptor and intracellular level; (ii)
cell-type-specific experimental data; (iii) implementation of an already existing mathematical model of intracel-
lular signal transduction cross-talk and (iv) translation of the mechanistic finding on patient-derived data.
Another prominent example of a growth factor that induces hepatocyte proliferation and is characterized by

regulation at the receptor level is the EGF [66]. EGFR internalization can be triggered by clathrin-mediated
endocytosis, involving the formation of vesicles coated by clathrin proteins, or by non-clathrin endocytosis.
While at low doses of EGF clathrin-mediated endocytosis is the predominant mechanism and it is mainly
involved in receptor recycling, at high EGF doses both internalization mechanisms are employed by the cell.
The non-clathrin mechanism is linked to EGFR ubiquitination and therefore degradation of the receptor [67].
These observations indicate that clathrin-mediated endocytosis triggering EGFR recycling leads to sustained sig-
nalling, while non-clathrin endocytosis leads to termination by EGFR internalization and degradation, support-
ing the central role of receptor trafficking in signalling regulation. Mechanistically, the phosphorylation of
specific tyrosine sites on EGFR is responsible for the recruitment of CBL, which binds to EGFR in complex
with GRB2, and is necessary for EGFR ubiquitination [68]. Whereas tyrosine phosphorylation on EGFR lin-
early increased with increasing doses of EGF, EGFR ubiquitination and non-clathrin-mediated endocytosis
showed a threshold response between 1 and 10 ng/ml of EGF. Capuani et al. [69] established an ordinary dif-
ferential equation-based model aiming to understand the effect of the threshold response of non-clathrin
internalization and receptor degradation on downstream signalling regulation. The model described EGFR acti-
vation by multisite phosphorylation events and receptor ubiquitination. First, the authors established a multisite
phosphorylation model based on published data [68], representing the early EGFR phosphorylation mechan-
ism. The applied model suggested that EGFR and phosphatases are not the limiting factors for the receptor
phosphorylation and that all phosphorylation sites on EGFR have similar phosphorylation kinetics in the early
activation after stimulation. CBL ubiquitinates EGFR via direct binding to phosphorylated EGFR or via
complex formation with GRB2. Thus, to understand the ubiquitination process, in addition to EGFR and CBL,
the authors experimentally measured the total amount of GRB2 in Hela cells. These measurements revealed
CBL to be the rate-limiting factor regulating ubiquitination. Based on these results, the authors expanded the
multisite phosphorylation model by implementing a module describing the ubiquitination process. The
expanded model was used to understand the contribution of GRB2, CBL and EGFR in respect of the EGFR
ubiquitination threshold by simulating a cooperative versus a non-cooperative interaction mechanism. These
mechanisms are represented by the binding of CBL via a singly phosphorylated EGFR, of by binding through
GRB2 to a doubly phosphorylated EGFR. Simulations showed that the singly phosphorylated EGFR is con-
verted into the doubly phosphorylated form with increasing doses of EGF only with the cooperative interaction
mechanism, suggesting that cooperativity is necessary for the ubiquitination threshold. It was previously shown
that protein abundance can regulate the biological response [70] and it is known that EGFR is overexpressed in
cancer [71]. The authors, therefore, utilized the model to make predictions to unravel the impact of EGFR
abundance at the cell surface on its phosphorylation and ubiquitination upon a wide range of EGF doses.
While phosphorylation increased with escalating doses of EGF, ubiquitination increased with lower numbers of
EGFR molecules and at high EGF concentrations. This uncoupled mechanism between phosphorylation and
ubiquitination was confirmed experimentally with cell lines expressing different levels of EGFR that were
exposed with increasing doses of EGF. Because cancer cells expressed EGFR at high levels, the authors analysed
cancer cell lines compared with fibroblasts and could confirm that the ubiquitination process is reduced in
presence of a high abundance of EGFR. By employing the mathematical model, the authors showed that phos-
phorylation and ubiquitination of EGFR are uncoupled in lung cancer cells harbouring EGFR mutations
without overexpression [72], suggesting that the impaired EGFR ubiquitination is enhancing EGFR signalling
and therefore the tumourigenic characteristics. By mathematical modelling of the regulation of EGFR trafficking
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at the cell membrane, this study suggests that the interplay between the range of ligand, abundance and phos-
phorylation of the receptor expressed at the cell surface and intracellular regulators of internalization determine
EGF-regulated downstream signal transduction.
The regulation of signal transduction pathways can take place at different levels, from the cell membrane

with the regulation of receptor trafficking, to intracellular signalling cross-talk and finally to transcriptional
regulation including feedback control of the signal transduction pathway. A prominent example of feedback
regulation examined by a modular modelling approach is given by TNFα-induced signal transduction. TNFα is
part of the inflammatory response upon liver damage and it is characterized by a wide spectrum of biological
responses, ranging from pro-survival to pro-apoptosis [73]. In the liver, TNFα is secreted by macrophages
upon liver damage and contributes to the initiation phase of liver regeneration by activating pro-survival signal-
ling [74]. The mode of action of the negative feedback regulator A20 on the upstream signal transduction
pathway has not been fully described and it is, therefore, formalized in different ways in mathematical models
describing TNFα signal transduction. A20 can inhibit the inhibitor of NFκB kinase (IKK) directly or by inter-
fering with the interaction between IKK and TNF receptor. Aiming to understand how the mode of action of
A20 impacts TNFα signalling, Mothes et al. [75] compared the different A20 implementation modules of three
published mathematical models of TNFα signal transduction [76–78]. The authors established an ordinary dif-
ferential equation-based model (core model) describing NFκB binding to IκBα followed by its activation upon
TNFα stimulation and IκBα degradation. Activated NFκB induces the transcriptional activation of IκBα, repre-
senting a negative feedback loop of known mechanism, and A20, whose mode of action on inhibiting NFκB
can be formalized in different manners. To compare the mechanism of action of A20, the authors generated
three modules describing different A20 regulation mechanisms upstream of the NFκB activation. Specifically,
the authors compared the mode of action of A20 as follows: Model 1: A20 inhibits TNFα-dependent and
TNFα-independent activation of IKK. Model 2: A20 inhibits the reaction of inactive IKK towards its neutral
state, the so-called IKK form that can be activated by TNFα stimulation. This mechanism of action of A20 is
dependent on TNFα stimulation. Model 3: A20 actives the TNFα-dependent transition of active IKK to inactive
IKK. In this case, both the reaction neutral IKK towards active IKK and active IKK to inactive IKK are
TNFα-dependent. To compare the impact of the three formalizations of A20, the core model was trained on
the same experimental dataset [78] resulting in comparable protein kinetics among the three models. The
effect of A20 on signalling dynamics was explored by predicting NFκB kinetics in combination with different
strengths of A20 feedback alone and in combination with the other negative feedback regulations mediated by
IκBα. The effect of the two negative feedbacks and their strengths was analysed on key features of signalling
kinetics: (i) amplitude, (ii) peak time and (iii) signal duration. This analysis showed the impact of the combin-
ation of negative feedback regulators on signal transduction depending on their mode of action and feedback
strength. In this specific study, only model 2 showed that the peak time of NFκB activation is regulated by
IκBα, while A20 influences the NFκB signal duration in all three models. The advantage of using mathematical
modelling resides in the possibility to test hypotheses that would not be possible to test experimentally. The
combination of different strengths of A20 and TNFα was tested to analyse their impact on signalling features
as described above. While the peak time and the amplitude of NFκB were influenced by the strength of TNFα
in all models, the impact of A20 could be observed only in models 1 and 3. The authors showed that high
TNFα increased NFκB signal duration in model 1, while in models 2 and 3 the same stimulation would cause
a decrease in NFκB signal duration, suggesting that the different formalization of the mode of action of A20 in
the three models affects the simulated predictions. Experimental validations of conditions tested with the
model indicated that, at least in HeLa cells, model 1 represents the biological mode of action of A20.
Taken together, these studies provide an overview of the complexity of the regulation of signal transduction

at different levels. This complexity can be disentangled by mathematical modelling and quantitative experimen-
tal data. To identify the mode of interaction of signal transduction components, a modular modelling approach
was shown to be of advantage (Figure 3). Additionally, it is important to note that in case of the HGF study
presented here, the model has been established and validated in hepatocytes, therefore, can be regarded as a
tissue-specific model. The EGF model suggests a general mechanism of receptor trafficking, allowing to adapt
the model to different cell types. The TNFα model is an example of how modular modelling can be applied to
identify a mode of signalling interaction, which can be cell type specific. Finally, it is noteworthy that mathem-
atical models as well as experimental studies can be based on well-established models, which can be further
developed to include new modules of a new level of signalling regulation or by integrating additional signal
transduction pathways.
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Conclusions and future directions
In the last few decades efforts were undertaken to establish methods for the generation of mechanistic mathem-
atical models and reliable parameter estimation based on quantitative experimental data [79]. These approaches
allow understanding which parameters are mostly affected by perturbation [80] and enables the quantification
of parameters that are difficult to measure experimentally [81]. Typically, the methodological development is
performed on subsets of signal transduction pathways. In this review, we presented an improvement of
dynamic modelling represented by modular approaches, allowing to accurately integrate different parts of a

Figure 3. Modular approaches that were used for mechanistic mathematical modelling.

On the left side, the core model is shown (dark cyan). On the right side, additional species and reactions that were used to

extend the model are shown in orange. Top: HGF-induced ERK and AKT activation extended by interaction of MET with integrin

α5β1 [60]. Middle: EGFR activation by multisite phosphorylation extended by CBL-based ubiquitination and internalization of

EGFR [69]. Bottom: TNFα-induced NFκB signal transduction extended by specific A20 regulation mechanisms [75].
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signal transduction pathway. However, methods for the integration of several signal transduction pathways still
remain to be improved. The combination of different modelling approaches might be required to tackle the
complexity of the signalling interaction among several pathways [61] and for the mechanistic modelling of
single cell behaviour [82]. To be able to build mechanistic models of cell-to-cell communication, further meth-
odological developments are necessary. For such a case, it was suggested to generate mechanistic models on the
single cells, simplify these models by sampling their input–output behaviour and combine these as multi-
cellular and multi-compartment models [83].
The examples for mechanistic modelling of signal transduction in liver cells discussed here frequently

employed step-wise mathematical modelling using submodules. Signal transduction is a paradigm for a bio-
logical processes that is carried out by modules consisting of many species of interacting molecules [84]. It was
quickly realized that it is of advantage to define modules during the establishment of a mathematical model.
Especially, by defining the inputs and outputs of the modules, this approach allows to calibrate the individual
modules separately based on experimental data [85]. The use of submodules is fostered by the re-use of both
experimental data and mathematical models. Providing the experimental data to the community in public
repositories such as the Gene Expression Omnibus [86] and the Proteomics Identification [87] database and as
source data in publications [88] was shown to be extremely valuable. Similarly, progress in mathematical mod-
elling was accelerated by public repositories for mathematical models, including JWS online [89] and the
Biomodels database [90]. A precondition for such an exchange is the standardization of formats. For mechanis-
tic mathematical models, the Systems Biology Markup Language (SBML) was widely adopted by the commu-
nity [91]. Additionally, a unified format to support the mathematical model with data files describing the
observation functions, experimental data and the parameters to be estimated was suggested, termed PEtab [92].
A recent study underscored the urgency of such standardizations by demonstrating that nearly half of the pub-
lished mathematical models could not be directly reproduced given the information in the manuscript, mostly
due to the lack of information [93]. To improve the reproducibility of mathematical models, a checklist was,
therefore, suggested that would help to reproduce the simulation results. As mechanistic models grow in size,
calibration of the mathematical model based on experimental data becomes more and more challenging.
Therefore, efficient optimization tools for parameter estimation are required. Recently, a collection of bench-
mark problems ranging from 20 data points and 10 parameters to more than 1000 data points and 200 para-
meters to be estimated was presented [94]. This collection allows to evaluate model calibration algorithms by
an unbiased assessment. Still, such data sets are small compared with approaches based on big data. However,
because mechanistic models are theory-based, the model structure independent of the model parameters
already confines the possible outputs. In contrast, the output of data-driven models used in the analyses based
on big data are mostly determined by the data set used for machine learning [95]. In the future, we expect that
hybrid approaches will show to be of advantage. For example, the simulated output of a mechanistic model
describing signal transduction could be linked to phenotypic responses measured for various conditions by a
machine learning approach.
The onset of liver cancer was reported to be frequently accompanied by changes in metabolic pathways,

hinting to an intersection of metabolism and signal transduction in liver diseases [96]. Both, comprehensive
metabolic reconstructions of the human hepatocyte [97] and detailed biochemistry-based kinetic models of
liver metabolisms [98] have been developed. The regulation of metabolism regulation is interlinked with the
immune response and intercellular interactions, requiring the integration of different aspects, such as genomic
and proteome studies. While there are models linking genotype and metabolic phenotype [99], a unified frame-
work for mechanistic mathematical models combining liver metabolism and signal transduction is still missing.
Apart from being applied to signal transduction and metabolism in the liver for basic research, mechanistic

models disentangling intracellular complexity were employed for translational approaches. Mechanistic models
were reported to predict the responses to drug treatment in NFκB signal transduction in hepatoma cell
lines [100] and to simulate disease states of iron disorders in the liver [101]. Diabetes is a complex disease that
is characterized by alterations in glucose metabolism. Treatment of diabetes with insulin is a prime example for
mathematical modelling that can now be applied to suggest personalized dosing schemes. Several mathematical
models have been established and applied to optimize insulin therapy [102]. The models describing glucose
metabolism are continuously improved by inclusion of compartments representing different organs linked by
the blood flow [103]. In the future, mathematical models promise to become part of clinical workflows to
predict and optimize patient outcome after complex liver surgery [104]. In conclusion, mechanistic mathemat-
ical modelling was shown to be of advantage in deciphering liver signal transduction networks based on
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quantitative data. We expect that mechanistic modelling approaches will contribute to advance high-definition
medicine [105], a data-driven practice of personalized medicine combining longitudinal and multi-parametric
measurements to assess and manage health for the benefit of the individual patient.
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