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One of the most unique characteristics of cancer metabolism is activated

aerobic glycolysis, which is called the “Warburg effect”, and is a hallmark of

cancer. An acidic tumor microenvironment (TME) resulting from activated

anaerobic glycolysis is associated with cancer progression, multi-drug

resistance, and immune escape. Several in vitro and in vivo studies reported

that neutralization of the acidic TME by alkalizing agents, such as bicarbonate,

resulted in the suppression of cancer progression and a potential benefit for

anti-cancer drug responses. In clinical settings, alkalizing effects were achieved

not only by alkalizing agents, but also by a following a particular diet. An

epidemiological study demonstrated that more fruits and vegetables and less

meat and dairy products are associated with an increase in urine pH, whichmay

reflect the alkalizing effect on the body. However, it remains unclear whether

alkaline dietary intervention improves the effects of cancer treatment.

Moreover, there are few clinical reports to date regarding cancer treatments

being performed on patients together with alkalization therapy. In this review,

we investigated whether alkalization therapy, which includes an alkaline diet

and/or alkalizing agents, improves cancer treatment.

KEYWORDS

cancer, cancer metabolism, tumor microenvironment, alkalization therapy, urine
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Introduction

There are numerous lines of evidence that pH gradient reversal, intracellular

alkalization, and extracellular acidification are commonly seen in malignant tumors

and are associated with the progression, metastasis, and multidrug resistance (MDR) of

cancer cells (1–3). Activation of aerobic glycolysis, which is also known as the “Warburg

effect”, is a characteristic feature of cancer metabolism and a hallmark of cancer (4).

Cancer cells require rapid adenosine triphosphate (ATP) generation to maintain their

energy state, increase macromolecule biosynthesis, and maintain an appropriate cellular

redox state for their survival and growth. Activated aerobic glycolysis produces reduced

nicotinamide adenine dinucleotide phosphate, which is necessary to maintain redox
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balance, and also acts as an antioxidant to protect against

reactive oxygen species that are generated during rapid cancer

growth (5). Therefore, aerobic glycolysis, which is a shift from

ATP generation by oxidative phosphorylation to ATP

generation by glycolysis, is observed even under normal

oxygen concentrations (5–7). The constant increase in aerobic

glycolysis is considered to be an adaptation to the hypoxia that

occurs as precancerous lesions become increasingly distant from

the blood supply (6). However, recent reports indicate that the

glycolytic phenotype is an important component of the

metabolic reprogramming of cancer cells that occurs early in

carcinogenesis, i.e., before the development of tissue hypoxia (1,

5–7). Aerobic glycolysis can be caused by genetic instability,

mutations, abnormal gene expression, or altered signaling

pathways (1). Increased lactate production owing to increased

glycolysis leads to acidosis of the extracellular tumor

microenvironment (TME) (5, 6, 8). Moreover, the systemic

extrusion of H+ by different proton transporters, and the

neutralization of protons in cancer cells by bicarbonate anions

from the chloride bicarbonate exchanger are the main

mechanism for reversing the pH gradient in cancer cells (5, 7,

9, 10). The extrusion of H+ from cancer cells is positively

regulated by several membrane-bound proton transporters,

such as Na+/H+ exchanger 1 (NHE1), Na+/K+ ATPase pump,

vacuolar H+-ATPase (V-ATPase), H+/Cl− symporter,

monocarboxylate transporter (MCT), and carbonic anhydrase

(CA) (10).

Although emerging lines of evidence from both in vivo and

in vitro studies suggest that the reversed pH gradient of cancer

cells may be a promising new target of cancer treatment, the

mainstream treatments for advanced cancer are chemo

therapeutic drugs and molecularly targeted therapies, and

there are few strategies aiming at the pH regulation of cancer

cells in clinical settings. In this article, we aimed to summarize

the association between the acidic TME and cancer treatments,

and introduce several approaches of alkalizing the external TME

and associated treatment strategies.
An acidic TME leads to resistance to
cancer therapy

A direct cause and effect association among the degree of

MDR, decrease in external tumor pH (pHe), and increase in

internal tumor pH (pHi) has been reported, and the reversed pH

gradient of cancer cells is known as a key factor in driving the

progression of malignancy and resistance to conventional

therapies (8, 11, 12). An in vitro study of human lung tumor

cells demonstrated that a close to 2,000-fold increase in

doxorubicin resistance was observed when the pHi increases

from 7.0 to 7.4 (13). Furthermore, a decrease in pHe and

increase in pHi mediated by proton-extruding mechanisms is
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responsible for not only the maintenance of MDR but also

protection against the induction of apoptosis (14–16). P-

glycoprotein, a drug efflux transporter, is regulated in a pH-

dependent manner, and a decrease in pH of the TME has the

potential to enhance its efflux function (17, 18). Moreover, the

uptake of weakly basic chemotherapeutic drugs by tumors is

highly affected by the pH of the TME and the ionization

properties of the drug (19). That is, an acidic TME reduces the

cellular uptake of weakly basic chemotherapeutic drugs, such as

anthracyclines (doxorubicin, daunorubicin, mitoxantrone, etc.)

because weakly basic chemotherapeutic drugs become trapped

in extracellular compartments owing to being positively charged

in acidic conditions (20–22). Characteristics of the TME, such as

having an acidic pH, being hypoxic, and lacking nutrients, are

associated with cancer stem cells that demonstrate self-renewal

and multilineage potential, leading to heterogeneity within the

tumor and contributing to treatment resistance and clinical

relapse (23). It is also known that the acidic TME is associated

with a decreased anti-cancer immune response. Lactic acid in the

TME suppresses immune cells, such as dendritic cells, natural

killer cells, cytotoxic T cells, and macrophages, resulting in the

inhibition of antitumor immune responses, and cancer immune

escape (24, 25). An in vitro study demonstrated that the acidic

TME is associated with both the suppression of T-cell responses

and a decrease in the secretion of IFN–g and TNF–a, and the

effects of anti-programmed cell death 1 therapy were reported to

be enhanced by alkalization using bicarbonate in mouse models

of melanoma (26).

In summary, reversal of the pH gradient of the TME of

cancer cells leads to MDR and reduced cancer immunity,

resulting in resistance to cancer therapy. Current cancer

treatment strategies do not consider pH changes in cancer and

its association with sensitivity to drug therapies, and treatment

approaches aiming at pH regulation of the TME may hence be a

future therapeutic strategy.
Approaches of alkalization of the
acidic TME

There are two main therapeutic approaches that target the

acidic pH of the TME. One is buffer therapy, in which alkalizing

agents are administered to neutralize protons, and the other is

the inhibition of proton efflux transporters expressed on the

cancer cell membrane (Figure 1).
Alkalizing agents

Several studies have been reported on buffer therapies that

neutralize the acidic TME of cancer cells. Alkalizing agents, such as

bicarbonate, are commonly used in in vitro and in vivo studies. A
frontiersin.org
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mathematical simulation study showed that oral bicarbonate

consumption as a systemic pH buffer increases the pH of the

external TME and inhibits tumor invasion (27). Inmousemodels of

metastatic breast cancer, it was reported that bicarbonate

administration increased the pH of the TME, resulting in the

suppression of metastasis and improvements of survival rates

(28). It was also reported that alkalization of the acidic TME

improves the anticancer immune response. As described above,

the effects of anti-programmed cell death 1 therapy in mouse

models of melanoma have been shown to be enhanced by

alkalization through bicarbonate consumption (26). A prospective

clinical trial in healthy volunteers was conducted for investigation of

the safety of the long-term consumption of sodium bicarbonate for

cancer care, and demonstrated that 90 days of sodium bicarbonate

consumption (median 0.17 g/kg/day) was feasible and safe, and an

increase in urine pH as a surrogate marker for buffering effect was

observed following bicarbonate intake (29). It has also been

reported that the oral administration of sodium potassium citrate

as an alkalizing agent increases HCO−
3 concentrations in the blood

and urine, leading to an increase in urine pH and neutralization of

the acidic TME in a pancreatic cancer xenograft model, thereby

enhancing the therapeutic effects of anticancer drugs (tegafur/

gimeracil/oteracil) (30).
Proton transport inhibitors

NHE1 inhibitors
NHE1 is known to play not only an essential role in the

survival of normal cells, but also a key role in cancer progression.

In normal cells, NHE1 is quiescent in the steady-state resting

intracellular pH, and is activated only upon cytosolic acidification.

In cancer cells, NHE1 is activated even at resting pH, and the

activation of NHE1 directly results in an increase in intracellular

pH and a decrease in extracellular pH of cancer cells (7). NHE1 is
Frontiers in Oncology 03
a major plasma membrane pump that extrudes intracellular

protons from cells, and is associated with tumor growth and

progression (7). There are several NHE1 inhibitors, including

derivatives of amiloride, such as 5-(N-ethyl-N-isopropyl)

amiloride, 5-(N,N-dimethyl) amiloride, 5-(N,N-hexamethylene)

amiloride (HMA), and cariporide (9). In vitro and in vivo studies

using breast cancer cells have reported that cariporide improves

doxorubicin sensitivity (31). It was reported that a patient with

metastatic ovarian cancer who was treated with amiloride as a

Na+/H+ exchanger inhibitor showed a favorable outcome (32).

However, as NHE1 is widely present in many tissues and plays a

fundamental role in important physiological processes, there is a

potential risk of life-threatening side effects associated with NHE1

inhibitors. To take advantage of NHE1 inhibition in cancer

therapy, it will be important to develop drugs that selectively

target NHE1 in tumors (33).

CA inhibitors
CA acts as a catalyst to reversibly hydrate carbon dioxide to

produce bicarbonate and protons, and the overexpression of CA

isoforms IX and XII is involved in cancer progression and

metastasis (34). These enzymes contribute to acidification of

the extracellular pH of cancer cells (35). Inhibitors of CA IX and

CA XII are considered as potential anticancer agents, and several

clinical trials using these inhibitors have been conducted (34). A

study using girentuximab, a chimeric antibody against CA IX,

was reported and showed no significant effects on recurrence-

free survival in clear cell renal cell carcinoma. However,

subgroup analysis showed that patients with high CA IX

expression have significantly longer recurrence-free survival

than those with low CA IX expression (36).

MCT inhibitors
The activated glycolysis of cancer cells results in the

overproduction of lactate, which is transported out across the
FIGURE 1

Therapeutic approaches targeting the acidic pH of the TME. Alkalizing agents and proton transporter inhibitors are shown.
frontiersin.org

https://doi.org/10.3389/fonc.2022.1003588
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Hamaguchi et al. 10.3389/fonc.2022.1003588
cancer cell membrane via the MCT (mainly MCT1) (9, 37).

Expression of MCT1 and MCT4 has been reported to be a

characteristic of cancer cells and to contribute to tumor

invasiveness, and hence these MCTs are potential targets for

cancer treatment (37). In vivo and in vitro studies on the effects

of MCT1 inhibitors against diffuse large B-cell lymphoma and

Burkitt lymphoma reported that the accumulation of

intracellular lactate and cancer cell proliferation were reduced

by these inhibitors (38).

V-ATPase inhibitors
V-ATPase is an ATP-dependent proton transporter that

expels protons from cancer cells, and V-ATPase activation

promotes the progression of cancer. The inhibition of V-

ATPase was reported to reduce cancer cell growth and induce

apoptosis in several in vivo and in vitro studies (39). Moreover,

proton pump inhibitors (PPIs), which act as H+/K+-ATPases

and are used for the treatment of gastric ulcers and

gastroesophageal reflux, are also known to inhibit V-ATPase.

In vivo and in vitro studies have shown that PPIs induce

apoptotic cell death and lead to chemosensitization and

reversal of chemoresistance via the inhibition of V-ATPase

(40, 41). Population-based studies also reported that treatment

with PPIs may prevent the progression of breast cancer (42, 43).

Although clinical trials are limited, favorable results have been

reported in three patients with advanced colorectal cancer

treated with chemotherapy in combination with high-dose

PPIs (44). In addition, in patients with metastatic breast

cancer treated with a combination of chemotherapy and PPIs,

significantly prolonged progression-free survival (PFS) and

overall survival (OS) were observed compared with patients

treated with chemotherapy alone (45).
Can diet affect the pH regulation
of the TME?

It is known that diet is associated with cancer risk. The

World Cancer Research Fund/American Institute for Cancer

Research reported their recommendations associated with food

intake to reduce cancer risk as follows: ‘Eat a diet rich in

wholegrains, vegetables, fruit and beans’ and ‘Limit

consumption of red and processed meat’ (46). Although the

benefit of an alkaline diet on cancer risk still remains unclear, a

case-control study reported that a diet with a high acid load may

increase lung cancer risk (47). However, to our knowledge, there

are no studies to date regarding the association between food

intake and pH of the TME. On the other hand, the acid-base load

on the body can be affected by food. In a study investigating the

effects of food on urine pH, the acid and base precursors in food

were quantified and the potential renal acid load was calculated

to predict net renal acid excretion, and the potential renal acid
Frontiers in Oncology 04
load of meat was calculated as +9.5 mEq, whereas that of fruit

was −3.1 mEq and vegetables was −2.8 mEq (48). An

epidemiological study showed that an alkaline diet consisting

of high fruit and vegetable and low meat intake had a significant

association with an increase in urine pH (49). Therefore, the

alkalizing effect of food results in an increase in urine pH;

however, further studies are required to clarify the association

between an alkaline diet and pH of the TME.
Clinical reports of alkalization
therapy for cancer

Although pH regulation of the acidic TME is considered to

be a potential target of cancer therapy, research on the effects of

alkalizing agents and proton transport inhibitors on cancer are

mainly limited to in vivo and in vitro studies, and there are few

clinical reports regarding alkalization therapy for cancer

treatment. In this section, we will introduce some retrospective

studies of alkalization therapy for cancer conducted by

our group.

First, we report on a retrospective study investigating the

effects of an alkaline diet on advanced or recurrent non-small

cell lung cancer patients with epidermal growth factor receptor

(EGFR) mutations, who were treated with EGFR-tyrosine kinase

inhibitor (TKI) (50). All patients in this study were given

instructions to follow an alkaline diet as part of their routine

clinical care. In this study, the mean urine pH (n = 11) was

significantly increased after an alkaline diet, which was defined

as that with a large amount of vegetables and fruits and minimal

amount of meat and dairy products. Although the average

dosage of EGFR-TKI administered to the patients was less

than the standard dosage (56% ± 22% of the standard dosage),

the median PFS was 19.5 (n = 11, range = 3.1–33.8) months. It is

known that the median PFS reported in publications of a similar

population treated with EGFR-TKI alone was 10.9–13.1 months

(51, 52). This was a preliminary observational study that did not

have a comparator group; however, the favorable results of these

11 cases might suggest the importance of the combination of

alkalization and EGFR-TKI therapy.

Second, a retrospective study was conducted to investigate

the effects of alkalization therapy performed concurrently with

chemotherapy on recurrent or metastatic pancreatic cancer

patients (53). A total of 28 patients with advanced pancreatic

cancer who agreed to receive alkalization therapy, were treated

with alkalization therapy, consisting of an alkaline diet with oral

sodium bicarbonate (3.0−5.0 g/day). We found that alkalization

therapy significantly increased the mean urine pH. A

significantly prolonged median OS was observed in patients

with a urine pH of higher than 7.0, compared with patients with

a urine pH of 7.0 or lower (n = 28, 16.1 vs. 4.7 months; p< 0.05).

Moreover, a retrospective case-control study was conducted to
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investigate the effects of alkalization therapy on chemotherapy

outcomes in recurrent or metastatic pancreatic cancer patients

(54). Patients in the alkalization group (alkalization therapy plus

chemotherapy, n = 36), which included patients from the above

retrospective study, were compared with patients in the control

group (chemotherapy only, n = 89). The median OS was

significantly longer in the alkalization group than in the

control group (15.4 vs. 10.8 months; p< 0.005) (Figure 2A). In

addition, the median OS of patients with an increased urine pH

(pH > 7.0) in the alkalization group (n = 13) was significantly

longer than that of the control group (n = 89) (25.1 vs. 10.8

months; p< 0.005) (Figure 2B). These studies suggest that

alkalization therapy may be associated with more favorable

outcomes in advanced pancreatic cancer patients treated with

chemotherapy. A prospective randomized study is required in

the future to clarify the effects of alkalization therapy.

Third, we conducted a retrospective study investigating the

effects of alkalization therapy combined with intravenous

vitamin C treatment on small cell lung cancer patients treated

with chemotherapy (55). Twelve patients who agreed to be

assigned to the intervention group (alkalization therapy plus

vitamin C treatment together with chemotherapy) were

compared wi th 15 pat ients in the contro l group

(chemotherapy only) who did not agree to receive

interventional treatment. Similar to our previous studies, urine

pH of the intervention group was significantly increased

compared with that of the control group (Figure 3A). A

prolonged median OS was observed in the intervention group

compared with the control group (44.2 vs. 17.7 months; p< 0.05)

(Figure 3B). Although this study was a retrospective study with a

small number of patients, alkalization therapy may be associated

with favorable outcomes in patients with small cell lung cancer
Frontiers in Oncology 05
receiving chemotherapy, and it is speculated that supplementary

intravenous vitamin C may have also affected their treatment

outcomes. However, the effect of intravenous vitamin C

treatment in combination with alkalization therapy remains

unclear, and further investigation is needed.

As described above, we summarized our clinical studies of

alkalization therapy, consisting of an alkaline diet and alkalizing

agents, such as bicarbonate. Alkalization therapy can be used in

conjunction with any of the current standard chemotherapies,

and may improve the outcomes of standard chemotherapies.

However, these studies were not randomized, and were

retrospective studies that analyzed a small number of patients

from a single center, and hence the results should be interpreted

with caution. Moreover, these clinical studies focused on

patients with non-small cell lung cancer, pancreatic cancer,

and small cell lung cancer, and did not investigate patients

with other cancer types. In addition, our group has encountered

patients with renal cancer, malignant lymphoma, gastric cancer,

and breast cancer in whom alkalization therapy increased their

urine pH, which may have been associated with their favorable

outcomes. However, these are only case reports and require

further investigation (56).

It was reported that intestinal alkalization by bicarbonate

treatment showed a preventive effect for irinotecan-induced

diarrhea in both in vivo and in vitro studies (57). In clinical

studies investigating whether oral administration of bicarbonate

(1.8–2.0 g/day) has preventive effects for irinotecan-induced

diarrhea in patients with non-small cell lung cancer, small cell

lung cancer, and colorectal cancer, no significant differences

were observed in the effects of chemotherapy between the

bicarbonate-treated and non-treated groups (58, 59). However,

the effects of bicarbonate administration as alkalization therapy
BA

FIGURE 2

Overall survival between advanced pancreatic cancer patients who were treated with alkalization therapy plus chemotherapy and those who
were treated with chemotherapy only. Kaplan–Meier curves of the OS of the alkalization group and the control group are shown. (A) The
median OS of the alkalization group was significantly longer than that of the control group. (B) In patients with an increased urine pH (pH > 7.0),
a more prolonged median OS was observed than in the control group. [Adapted from reference (54)].
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requires further investigation, as the number of patients in these

previous studies were also small, the amount of bicarbonate

consumption was low, and urine pH was not measured. Thus,

there are not enough clinical studies to date to validate the

efficacy of alkalization therapy, and further studies focusing on

the treatment of alkalizing agents or proton transport inhibitors

are required to further clarify the effects of alkalization therapy.
Future directions of
alkalization therapy

Alkalization therapy is a buffering therapy aimed at neutralizing

the acidic TME. An animal study has shown that there is a

correlation between changes in pH of the TME and changes in

urine pH induced by alkalizing agents (30). Alkalization therapy

tended to be more effective in patients with a higher urine pH in our

clinical studies described above (50, 53–55), suggesting that urine

pHmay be an alternative indicator of the pH around cancer cells. It

should be noted that these studies have not demonstrated the

association between urine pH and tumor pHe/pHi ratio. Blood pH

is tightly regulated, and the HCO−
3 buffer system plays an important

role in maintaining blood pH homeostasis by balancing the

composition of carbonic acid, HCO−
3 and carbon dioxide. In

addition, renal filtration regulates the blood concentration of HC

O−
3 through glomerular filtration and acid secretion (60). It is

speculated that bicarbonate administration increases the blood HC

O−
3 concentration, delivering excess HCO−

3 into the tumor, where

HCO−
3 molecules traps H+ ions in the TME and form carbonic acid,

resulting in neutralization of the tumor pHe (28). However, further
Frontiers in Oncology 06
objective evaluation of the association between urine pH and pH of

the TME is needed. Onemethod of measuring pH in tumor tissue is
31P-magnetic resonance spectroscopy (31P-MRS). It has been

reported that measurement of pH by MRS is largely standardized,

providing an accuracy of ± 0.1 pH units (61). Novel imaging probes

have been developed to assess the acidic TME. 89Zr-labeled pH-low

insertion peptide is a radiopharmaceutical imaging probe for in vivo

analysis to quantify the acidic TME using positron emission

tomography, and has potential clinical applications (62). Acido-

chemical exchange saturation transfer magnetic resonance imaging

can measure the extracellular pH of the TME using the ratio of two

pH-dependent signals, and may be useful in revealing the

association between urine pH and pH of the TME (63, 64). It is

also necessary to investigate how alkalizing therapy affects the

expression of cancer-associated genes, and whether the response

to alkalizing therapy differs depending on the gene expression

status. In addition, as regulation of pH in the body is affected by

daily diet and lifestyle, numerous factors are involved, and an

exhaustive analysis using artificial intelligence may be useful in

the future.
Conclusions

We here summarized the therapeutic approaches against

cancer targeting pH regulation. Although alkalization therapy as

a buffer therapy using alkalizing agents, and therapies inhibiting

proton transporters expressed on cancer cells are potentially

promising, their clinical applications remain still limited.

Further clinical investigations are hence needed in the future.
BA

FIGURE 3

Urine pH and overall survival of small cell lung cancer patients who were treated with alkalization therapy plus vitamin C treatment together
with chemotherapy and those who were treated with chemotherapy only. (A) Box-whisker plots of urine pH of the intervention group
(alkalization therapy plus vitamin C treatment together with chemotherapy) and of the control group (chemotherapy only) are shown. Urine pH
in the intervention group was significantly higher than that in the control group. The thick lines indicate the median values, the error bars
indicate the maximum and minimum values, and the boxes indicate the values between the upper and the lower quartiles. (B) Kaplan–Meier
curves of the OS of the intervention group and the control group are shown. The median OS of the intervention group was significantly longer
than that of the control group. [Adapted from reference (55)].
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