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Abstract
Background: The anaerobic degradation of organic matter in natural environments, and the
biotechnical use of anaerobes in energy production and remediation of subsurface environments,
both require the cooperative activity of a diversity of microorganisms in different metabolic niches.
The Geobacteraceae family contains members with three important anaerobic metabolisms:
fermentation, syntrophic degradation of fermentation intermediates, and anaerobic respiration.

Results: In order to learn more about the evolution of anaerobic microbial communities, the
genome sequences of six Geobacteraceae species were analyzed. The results indicate that the last
common Geobacteraceae ancestor contained sufficient genes for anaerobic respiration, completely
oxidizing organic compounds with the reduction of external electron acceptors, features that are
still retained in modern Geobacter and Desulfuromonas species. Evolution of specialization for
fermentative growth arose twice, via distinct lateral gene transfer events, in Pelobacter carbinolicus
and Pelobacter propionicus. Furthermore, P. carbinolicus gained hydrogenase genes and genes for
ferredoxin reduction that appear to permit syntrophic growth via hydrogen production. The gain
of new physiological capabilities in the Pelobacter species were accompanied by the loss of several
key genes necessary for the complete oxidation of organic compounds and the genes for the c-type
cytochromes required for extracellular electron transfer.

Conclusion: The results suggest that Pelobacter species evolved parallel strategies to enhance their
ability to compete in environments in which electron acceptors for anaerobic respiration were
limiting. More generally, these results demonstrate how relatively few gene changes can
dramatically transform metabolic capabilities and expand the range of environments in which
microorganisms can compete.

Background
The global carbon cycle and the production of a number
of biofuels depends on the cooperative interaction of a

physiological diversity of anaerobic microorganisms.
These include microorganisms that ferment complex sub-
strates to simpler molecules; respiratory microorganisms
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that convert fermentation products to carbon dioxide
and/or methane; and syntrophic organisms that anaerobi-
cally oxidize some fermentation products and other sub-
strates in reactions that are only thermodynamically
feasible when respiratory organisms consume the syn-
trophs' products. The family Geobacteraceae has represent-
atives of all three metabolic groups, providing an
opportunity to evaluate how microorganisms might
evolve to fill these various niches in anaerobic ecosystems.

Within the Geobacteraceae, Geobacter and Desulfuromonas
are specialists in the complete oxidation of organic com-
pounds to carbon dioxide coupled to the reduction of
insoluble, extracellular electron acceptors [1]. In aquatic
sediments and submerged soils they influence the cycling
of carbon and metals by oxidizing acetate, the central fer-
mentation intermediate in anaerobic environments, with
the reduction of iron and manganese oxides [1,2]. In
hydrocarbon-contaminated subsurface environments
Geobacter species can play an important role in the biore-
mediation of aromatic hydrocarbons by oxidizing the
contaminants with the reduction of Fe(III) oxides natu-
rally present in the subsurface [3,4]. This is a process
which can be artificially stimulated [5,6]. Another biore-
mediation application involving Geobacter species is to
add acetate to uranium-contaminated subsurface environ-
ments. This stimulates the growth of Geobacter species
which reduce soluble, mobile U(VI) to insoluble U(IV)
[7] and thus immobilize the uranium in situ [4,8]. The
ability of Geobacter and Desulfuromonas species to oxidize
organic compounds with electron transfer to graphite
electrodes provides a convenient method for harvesting
electricity from aquatic sediments and organic wastes to
power electronic devices [9-11].

In contrast, the primary niche of Pelobacter species is
methanogenic environments, functioning either as fer-
mentative microorganisms or living in syntrophic associ-
ations with methanogens by partially oxidizing organic
compounds to hydrogen and acetate which the methano-
gens consume [12,13]. Pelobacter species cannot oxidize

acetate or other organic compounds completely to carbon
dioxide and are ineffective in electron transfer to metals
[14] or electrodes [15]. Therefore, not only the natural
environments, but also the technological applications of
Geobacter/Desulfuromonas versus Pelobacter species are
quite different.

Here we report on the sequenced genomes of six members
of the Geobacteraceae family: Geobacter sulfurreducens [16],
Geobacter metallireducens, Geobacter uraniireducens, Pelo-
bacter propionicus, Pelobacter carbinolicus, and Desulfurom-
onas acetoxidans. We use comparative genomics in an
effort to better understand the enzymes involved in these
unusual metabolisms, and to provide insight in to the
selective pressures that may have contributed to their evo-
lution.

Results and discussion
Identification of protein families in the six genomes
The general features of each of the six genomes are pre-
sented in Table 1. Orthologous proteins, those predicted
to have similar functions in the different organisms, were
identified by Markov clustering of sets of reciprocal best
BLAST matches [17]. Using all 21,716 protein coding
genes in the six genomes (see Additional file 1), 3,696
clusters with members from at least two genomes were
defined (see Additional file 2). 15,207 proteins (70.0%)
were classified into clusters. A functional role was pre-
dicted for each cluster using the G. sulfurreducens in silico
model annotation [18] and COG categorization [19].

The pattern of conservation of the proteins families across
all species (the phyletic pattern) was determined (see
Additional files 2 and 3). By far the most common pattern
was conservation across all species, 5,345 proteins were
members of clusters that included at least one protein
from each genome (see Additional file 3). The second
most common pattern was conservation in the Geobacter
species and P. propionicus only (1,158 proteins). Proteins
unique to the respiratory or fermentative species were rel-
atively rare. Only 370 proteins were found in the respira-

Table 1: General features of the Geobacteraceae genomes

Geobacter 
sulfurreducens

Geobacter 
metallireducens

Geobacter 
uraniireducens

Pelobacter propionicus Pelobacter carbinolicus Desulfuromonas 
acetoxidans

NCBI ID NC_002939 NC_007517 NC_009483 NC_008609 NC_007498 NZ_AAEW00000000
Contigs 1 1 1 1 1 51
Length (nt) 3,814,139 3,997,420 5,136,364 4,008,000 3,665,893 3,828,328
GC Content (%) 60 59 54 59 55 51
Protein coding 3446 3519 4357 3576 3352 3234
rRNA operons 2 2 2 4 2 1
Plasmids none 13.8 kb none 30.7 kb and 202.4 kb none n/a
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tory species but not the fermentative species (see
Additional file 4), and only 260 proteins were found in
the fermentative species but not the respiratory species
(see Additional file 5).

Whole-genome phylogeny
A phylogeny of the family was constructed using the 481
protein families that had a single protein from each of the
six genomes and the outgroup species Anaeromyxobacter
dehalogenans (see Additional file 6). These proteins had
diverse functions, including information storage, metabo-
lism, cell signaling, and unknown. The proteins from each
genome were concatenated then aligned, and this align-
ment was used to create a Bayseian model of the phylog-
eny (Figure 1). This analysis confirmed that, as
housekeeping-gene phylogeny suggests [20], the Geo-
bacteraceae can be divided into two clades, and that the
two fermentative Pelobacter species are not most closely
related to each other, instead there is one Pelobacter spe-
cies in each clade of the respiratory species (Figure 1).

Thus, based on phylogeny, there are at least three possibil-
ities for how modern Geobacteraceae evolved to fill multi-
ple metabolic niches. The ancestor may have been
adapted to a fermentative/syntrophic lifestyle with no reli-
ance on external electron acceptors. In this scenario, the
Geobacter and Desulfuromonas species would have inde-
pendently evolved strategies for the complete oxidation of
organic compounds coupled to Fe(III) reduction. Alterna-
tively, the ancestor may have been a respiratory microor-
ganism, and the Pelobacter species independently evolved
strategies for fermentation and syntrophy and lost the
ability to transfer electrons out of the cell. Another option
was that the ancestor may have had both types of metab-
olism, and the various branches of the family lost certain
abilities. We investigated these possibilities by analyzing

the conservation and evolutionary history of genes for
energy metabolism.

Conservation of pathways for acetate oxidation
In the respiratory species G. sulfurreducens, G. metalliredu-
cens, G. uraniireducens, and D. acetoxidans, acetate is the
primary electron donor and it is oxidized via the TCA
cycle, generating NADH, NADPH, and reduced ferredoxin
(Figure 2) [21-23]. In contrast, Pelobacter species are inca-
pable of acetate oxidation [12]. One protein family pre-
dicted to be acetate transporters (GSU0518) [24] was
conserved in all of the acetate-oxidizing species (see Addi-
tional file 7). However, neither this protein nor any of the
other acetate transporters found in G. sulfurreducens
(GSU1068, GSU1070, and GSU2352) were conserved in
either of the Pelobacter species (see Additional file 7).
Twenty one genes encode the enzymes of the TCA cycle
used by G. sulfurreducens [18] (Figure 2, see Additional file
7). There was full conservation in all of the respiratory
species of at least one copy of each of these enzymes (see

Genome-based Geobacteraceae phylogenyFigure 1
Genome-based Geobacteraceae phylogeny. Bayesian 
inference of the phylogenetic tree of the six Geobacteraceae 
species discussed in the text, using another Deltaproteobacte-
rial species, Anaeromyxobacter dehalogenans, as the outgroup. 
The tree was based on a concatenation of the proteins in the 
481 families that had exactly one ortholog conserved in each 
of the seven genomes (see Additional file 6). Values at branch 
points are posterior probabilities.

The pathways of energy metabolism conserved in the respi-ratory Geobacteraceae speciesFigure 2
The pathways of energy metabolism conserved in the 
respiratory Geobacteraceae species. Shown are the 
pathways, based those characterized in G. sulfurreducens, for 
acetate activation and oxidation via the TCA cycle in the 
cytoplasm, for inner membrane oxidation of TCA cycle 
products coupled with electron and proton transport, and 
for ATP generation. The genes encoding the enzymes of 
these pathways and their conservation pattern in all of the 
Geobacteraceae genomes are given in see Additional file 7. 
The enzymes are colored black if there were orthologs for 
every subunit in all of the respiratory species. The asterisk 
indicates that malate dehydrogenase activity has been shown 
in D. acetoxidans, though genes for the enzyme were not 
found in the draft sequence of the genome. The pathway for 
electron transfer through the periplasm and out to the 
external electron acceptor is not well characterized in these 
species, and is represented here by the three cytochromes 
known to be required in vivo in G. sulfurreducens that are also 
conserved in all of the respiratory species.
Page 3 of 10
(page number not for citation purposes)



BMC Genomics 2009, 10:103 http://www.biomedcentral.com/1471-2164/10/103
Additional file 7). The one exception was the malate dehy-
drogenase in D. acetoxidans. There was no gene predicted
to encode a malate dehydrogenase in the incomplete ver-
sion of the genome, but this enzyme activity is found in
D. acetoxidans [23]. As with the acetate transporters, not all
of the genetic redundancy seen in G. sulfurreducens in the
enzymes of the TCA cycle was conserved across the family.
Only one copy of the aconitase (GSU1660) and the keto/
oxoacid ferredoxin oxidoreductase (GSU1859–
GSU1862) were conserved in all the respiratory species
(see Additional file 7).

The Pelobacter species contained orthologs to many of the
TCA cycle enzymes (see Additional file 7), but there were
two notable exceptions. NADPH metabolism appears to
catalyzed by different enzymes in the Pelobacter species. A
monomeric-type isocitrate dehydrogenase (GSU1465)
was found in all of the respiratory species (see Additional
file 8), but was not conserved in either Pelobacter species
(see Additional file 7). In acetate oxidizers, this reaction is
the primary source of NADPH in the cell [25]. Instead, the
Pelobacter species contained non-orthologous isocitrate
dehydrogenase genes (Ppro_0452 and Pcar_1038 in clus-
ter 3107) of the more common, homodimeric type [25].
In addition, both Pelobacter species lacked the dehydroge-
nase (GSU0509–GSU0510) believed to transfer the elec-
trons from NADPH into the electron transport chain [26].
This enzyme was conserved in all four of the respiratory
species (see Additional file 7). These changes suggest that
the NADPH produced by the Pelobacter species may not be
used primarily as a source of electrons for energy metabo-
lism, as it is for the respiratory species. Furthermore, P.
carbinolicus contained a non-orthologous fumarase
enzyme (Pcar_0324) predicted to be of the class II, Fe(III)-
free type [27], rather than the class I, Fe(III) type found in
the other Geobacteraceae (GSU0994).

Conservation of pathways for extracellular electron 
transfer
In the respiratory Geobacteraceae species, the reducing
equivalents from the TCA cycle are passed to inner mem-
brane quinones via NADH dehydrogenase (Figure 2) [21-
23]. This is predicted to be the only step in the electron
transport chain where protons are pumped across the
inner membrane for ATP generation [18]. G. sulfurreducens
encodes two NADH dehydrogenase operons, one with 12
subunits and one with 14 (see Additional file 7). The 14-
subunit enzyme is conserved in all of the respiratory spe-
cies and P. propionicus (see Additional file 7). In addition,
P. propionicus appears to have recently duplicated this
enzyme, there are three virtually identical copies in the
genome (Ppro_0628–Ppro_0641, Ppro_1623–
Ppro_1636, Ppro_3180–Ppro_3193). In contrast, P. car-
binolicus lacks the 14-subunit enzyme, but encodes an
ortholog to the 12-subunit enzyme (see Additional file 7).

This conservation pattern indicates that the 14-subunit
enzyme may be the more important for inner membrane
proton and electron transport; it is conserved in the four
respiratory species, and in the only fermentative species
predicted to use an NADH dehydrogenase (as described
below and in Figure 3).

The final part of the electron transport chain in the respi-
ratory species is transfer of electrons from the inner mem-
brane to cytochromes for transport to the cell surface. The
differences between the respiratory and fermentative spe-
cies are substantial in this part of the pathway. The
genomes of all four of the respiratory species contained at
least one copy of a putative cytochrome bc complex
(GSU2932–GSU2934), which is predicted to transfer elec-
trons from membrane-bound quinones to periplasmic
cytochromes [28] (Figure 2, see Additional file 7). Neither
of the Pelobacter species had any orthologs to this com-
plex. C-type cytochromes span the periplasm and outer
membrane in the respiratory species [1]. All of the Geo-
bacter and Desulfuromonas genomes contained more than

The pathways of energy metabolism in Pelobacter propionicus and the differences from respiratory Geobacteraceae speciesFigure 3
The pathways of energy metabolism in Pelobacter 
propionicus and the differences from respiratory Geo-
bacteraceae species. Shown are the pathways of butane-
diol and acetoin fermentation used by P. propionicus. 
Vertically-inherited enzymes with orthologs in the other Geo-
bacteraceae are shown in black. Both the vertically-inherited 
NADH dehydrogenase and ATP synthase have been dupli-
cated in P. propionicus and these are shown in dark grey. 
Enzymes acquired by lateral gene transfer are shown in red: 
1) butanediol dehydrogenase, 2) acetoin dehydrogenase, 3) 
pyruvate:ferredoxin oxidoreductase, 4) transcarboxylase, 
and 5) methylmalonyl-CoA mutase, and an ATP synthase. 
Enzymes conserved in the respiratory Geobacteraceae but 
lost in P. propionicus are shown in white. Reactions with mul-
tiple enzymes encoded in the genome for which there are 
diverse conservation patterns are shown as dashed arrows.
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100 ORFs that have the heme-binding motif [29] charac-
teristic of c-type cytochromes (see Additional file 1). Both
Pelobacter genomes had far fewer cytochrome genes, ca. 40
per genome (see Additional file 1). Many of the proteins
found only in the respiratory species were multi-heme, c-
type cytochromes (see Additional file 4), whereas none of
the proteins specific to the fermentative species were
multi-heme (see Additional file 5). In addition, both Pelo-
bacter species lacked most of the specific cytochromes
required for electron transfer in G. sulfurreducens in vivo.
These include those conserved in all of the respiratory spe-
cies: MacA, a c-type cytochrome associated with the inner
membrane [30] and OmcB, an outer-membrane cyto-
chrome [31].

Lateral transfer of fermentation genes
Thus, while the Pelobacter species contained many verti-
cally-inherited genes for respiratory metabolism, several
key enzymes are different or missing in both species. To
investigate evolution of the fermentative and syntrophic
metabolism, Pelobacter-specific genes were analyzed, and
genes originating from lateral gene transfer were identi-
fied using a combination of phylogenetic and BLAST-
based analysis (see Additional file 9). Both Pelobacter spe-
cies catabolize butanediol and acetoin [12]. The butane-
diol dehydrogenase (Bdh, Pcar_0330) and acetoin
dehydrogenase (AcoABCL, Pcar_0343–Pcar0346), which
catalyze the initial steps in the metabolism of these com-
pounds, have been characterized in P. carbinolicus [32]. P.
propionicus has genes with high sequence similarity to
these, but the operon structure of the putative acetoin
dehydrogenase included a duplication of the A and B sub-
units (Bdh, Ppro_1043 and AcoABCABL, Ppro_1024–
Ppro1029, see Additional file 1). Phylogenetic analysis
showed that the most closely related enzymes are not
from Geobacter or Desulfuromonas, nor any other delta-Pro-
teobacteria species (see Additional file 10). Instead the
Pelobacter genes were most closely related to the butane-
diol catabolic genes from Pseudomonas [33] and Gram-
positive species, indicating that these genes originated
from lateral gene transfer (see Additional file 10).

The subsequent steps in the catabolism of the acetyl-CoA
and acetaldehyde from acetoin are markedly different in
the two Pelobacter species. The pathway in P. propionicus is
cyclic and requires membrane-bound electron transport
enzymes (Figure 3) [34]. Several of the key enzymes were
predicted to have been acquired by lateral gene transfer.
Pyruvate:ferredoxin oxidoreductase is required to convert
acetyl-CoA to pyruvate (Figure 3), and there were two het-
erotetrameric pyruvate:ferredoxin oxidoreductases from
lateral gene transfer. One (Ppro_0322–Ppro_0325, see
Additional file 1) is most closely related to the enzymes
from Clostridia tetani and Thermotoga species, and the
other (Ppro_0469–Ppro_0472, see Additional file 1) is

most similar to the enzyme in Syntrophobacter and several
archaeal species.

Pyruvate is then converted to succinyl-CoA to regenerate
NAD+ without the need for a cooperating hydrogen-oxi-
dizing species (Figure 3). P. propionicus has orthologs of
four TCA cycle enzymes and the NADH dehydrogenase
from the respiratory Geobacteraceae that could carry out
these reactions (Figure 3, see Additional file 7). Then, pro-
pionate is generated via a methylmalonyl-CoA mutase
and transcarboxylase (Figure 3). Both of these enzyme
were predicted to have been acquired from lateral gene
transfer. The mutase (Ppro_1284–Ppro_1285, see Addi-
tional file 1) is related to enzymes from Chlorflexus and
Geobacillus species, and the transcarboxylase (Ppro_0033–
Ppro_0034, see Additional file 1) is related to that crystal-
lized from Propionibacterium freudenreichii [35].

Thus, it appears that P. propionicus uses a mosaic of verti-
cally inherited and laterally acquired genes for fermenta-
tion. Interestingly, the pathway uses a complete, vertically
inherited, respiratory electron transport chain – the succi-
nate dehydrogenase operates in reverse as a fumarate
reductase, accepting reducing equivalents from the NADH
dehydrogenase [34]. This is equivalent to that used by
Geobacter species growing by fumarate respiration [18,36].

Differences between Pelobacter species associated with 
syntrophy
P. carbinolicus ferments via much simpler pathway of cyto-
plasmic enzymes (Figure 4). As described above, the
butanediol dehydrogenase and acetoin dehydrogenase
appear to have been acquired by lateral gene transfer.
NAD+ is regenerated either by ethanol production or by
proton reduction to hydrogen, which requires a syn-
trophic partner and ATP is made by substrate level phos-
phorylation by an acetate kinase [12].

Some Pelobacter species live in syntrophic associations
with methanogens by partially oxidizing organic com-
pounds to hydrogen and acetate which the methanogens
consume [12,13]. Both Pelobacter species lacked orthologs
to any of the Geobacter-type [37] hydrogenases
(GSU0121–GSU0123, GSU0782–GSU0785, GSU2417–
GSU2420 or GSU2718–GSU2722, see Additional file 1).
Furthermore, the hydrogenases in the two Pelobacter spe-
cies are dissimilar. This may reflect the fact that P. carbino-
licus is capable of growing syntrophically with a hydrogen-
consuming partner, most typically a methanogen [12].
Reducing equivalents can be disposed with the produc-
tion of hydrogen, as long as the methanogen maintains
hydrogen concentrations low enough for hydrogen pro-
duction to be thermodynamically favorable. P. propionicus
does not grow in this manner [12]. P. carbinolicus has two
highly-similar, four-subunit hydrogenases (Pcar_1602–
Pcar_1605 and Pcar_1633–Pcar_1636) related to the
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cytoplasmic, hydrogen-producing HndABCD hydroge-
nase in Desulfovibrio fructosovorans [38]. P. propionicus,
encodes two highly-similar, 12-subunit enzymes
(Ppro_0587–Ppro_0598 and Ppro_3521–Ppro_3532)
that are related to the membrane-bound, hydrogen-pro-
ducing, NiFe hydrogenase in Pyrococcus furiosus [39].

Approximately -45 kJ/mol is predicted to be available to
P. carbinolicus and its methanogenic partner when they
grow by ethanol oxidation under syntrophic conditions
[13]. This is less than what is predicted to be required for
generation of an ATP by substrate-level phosphorylation,
and it is assumed that some of the ATP from acetyl-CoA
conversion must be reinvested to drive the overall reac-
tion, possibly by reverse electron transport [13]. It has
been suggested that a Rnf-type ion-translocating electron
transfer complex may play a role in reverse electron trans-
port in syntrophs [40], by generating low potential ferre-
doxin from NADH using the membrane potential [41]. P.
carbinolicus contains an Rnf gene cluster (Pcar_0260–
Pcar_0265, Figure 4) that is similar to the enzymes from
Rhodobacter and Clostridium species, both predicted to be
involved in reduction of ferredoxin by NADH [42]. P. pro-
pionicus, which does not grow syntrophically, contains no
Rnf-like genes.

Both Pelobacter genomes contain unusual numbers and
types of ATP synthases, which have been suggested to be
important for maintenance of the membrane potential
[40]. Both contain the ATP synthase that is conserved in
all of the Geobacteraceae, but these genes appear to have
recently been duplicated in both organisms (Pcar_0015–
Pcar_0016/Pcar_3130–Pcar_3136, Pcar_0944–
Pcar_0952, and Ppro_0599–Ppro_0607, Ppro_1500–
Ppro_1508, Figures 3 and 4). In addition, both Pelobacter
species also have a third ATP synthase encoded in operons
organized like that of Methanosarcina barkeri [43], though
they were predicted to have been acquired from different
sources. The genes in P. propionicus (Ppro_844–Ppro851)
are most closely related to enzymes from species of gamma
Proteobacteria: Hahella, Legionella, and Methylococcus. The
P. carbinolicus genes (Pcar_2989–Pcar2997) are only dis-
tantly related to the Geobacter and Desulfuromonas oper-
ons, but because they are similar to genes from a variety of
species including D. acetoxidans, it is difficult to be confi-
dent about the lateral transfer source.

Conclusion
These results provide insights into the evolution of Geo-
bacteraceae species into different environmental niches
and biotechnological applications. The results suggest
that the last common ancestor of the Geobacteraceae was
an acetate-oxidizing, respiratory species capable of extra-
cellular electron transfer, and that specialization for fer-
mentative/syntrophic growth evolved at least twice,
allowing some Geobacteraceae to fill additional niches.

The primacy of the respiratory mode is evident from the
conservation of genes for all steps in this process includ-
ing acetate uptake, central metabolism, and electron
transfer across the cell membranes in both of the clades of
the family. The fermentative/syntrophic Pelobacter species
also contain many of these genes. However, they have lost
several key enzymes that leave the pathways incomplete,
including several necessary for the oxidation of acetate
and most of the cytochromes predicted to provide the
electrical connection between the inner membrane and
the outside of the cell. Instead, the Pelobacter species have
appropriated genes via lateral gene transfer for fermenta-
tive/syntrophic growth. It is clear that this has happened
on two separate occasions. Although both P. carbinolicus
and P. propionicus have closely related dehydrogenase
genes for the initial metabolism of their unique sub-
strates, acetoin and 2,3-butanediol, the genes for the fur-
ther fermentation of these substrates are unrelated in the
two organisms, reflecting the separate evolution of dis-
tinct metabolic pathways. The fact that P. carbinolicus also
fills a syntrophic niche, participating in interspecies
hydrogen transfer with hydrogen-consuming methano-
gens, whereas P. propionicus does not, may be explained by
the genes associated with reverse electron transfer that
only P. carbinolicus has appropriated. The fact that both

The pathways of energy metabolism in Pelobacter carbinolicus and the differences from respiratory Geobacteraceae speciesFigure 4
The pathways of energy metabolism in Pelobacter 
carbinolicus and the differences from respiratory Geo-
bacteraceae species. Shown are the pathways of butane-
diol and acetoin ethanol fermentation and syntrophy used by 
P. carbinolicus. Vertically-inherited enzymes with orthologs in 
the other Geobacteraceae are shown in black. The vertically-
inherited ATP synthase has been duplicated in P. carbinolicus 
and is shown in dark grey. Enzymes acquired by lateral gene 
transfer are shown in red: 1) butanediol dehydrogenase, 2) 
acetoin dehydrogenase, 3) hydrogenases, the RNF electron 
transfer complex, and possibly an ATP synthase (see text). 
Enzymes conserved in the respiratory Geobacteraceae but 
lost in P. carbinolicus are shown in white. Reactions with mul-
tiple enzymes encoded in the genome for which there are 
diverse conservation patterns are shown as dashed arrows.
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Pelobacter species have phylogenetically distinct hydroge-
nase genes that are different from each other as well as
those of the Geobacter species, may also reflect the differ-
ence in syntrophic capabilities of these species.

The selective pressure to specialize in syntrophic/fermen-
tative growth may have initially been found at the inter-
face of redox boundaries in sedimentary environments. As
respiratory Geobacteraceae deplete the supply of the termi-
nal electron acceptor Fe(III) oxide, their capacity for
growth is greatly diminished and organisms with other
respiratory processes, such as sulfate reduction or meth-
ane production, become predominant [2]. Some Geo-
bacter species can oxidize acetate to carbon dioxide and
hydrogen when they lack external electron acceptors [44],
but the slow rate of this metabolism and the requirement
for very low hydrogen partial pressures means that they
are not competitive with acetate-utilizing sulfate reducers
or methanogens. Acquiring the ability to ferment novel
substrates and/or to grow syntrophically could have facil-
itated expansion into Fe(III) oxide depleted environ-
ments. Under such conditions investing energy in the
production of respiratory enzymes such as the c-type cyto-
chromes Geobacteraceae require to grow under Fe(III)-
reducing conditions would be maladaptive.

These findings also provide insight into the types of met-
abolic changes that might take place as these organisms
are being adapted for modern biotechnical applications.
In applications such as the in situ bioremediation of ura-
nium-contaminated groundwater and the conversion of
organic compounds to electricity Geobacter species must
deal with a scarcity of electron acceptor because electron
donor is generally provided well in excess of electron
acceptor availability. During in situ bioremediation Fe(III)
oxides are rapidly depleted near the source of subsurface
acetate amendments, limiting the growth and effective-
ness of Geobacter-catalyzed U(VI) reduction [8]. Geobacter
species form thick biofilms on the electrodes of microbial
fuel cells, forcing many of the cells to metabolize acetate
at a significant distance from this artificial electron accep-
tor [45,46]. Preliminary results suggest that, like the Pelo-
bacter species described here, Geobacteraceae that
predominate during in situ uranium reduction or on the
anodes of microbial fuel cells have fewer c-type cyto-
chromes (DRL, unpublished data). Enhanced ability to
release excess electrons as hydrogen, in a manner similar
to that of P. carbinolicus, could also be beneficial under
conditions in which electron acceptor availability is limit-
ing. Thus, these relatively few changes appear to have
allowed a respiratory ancestor to radiate out into fermen-
tative and syntrophic niches in addition to their respira-
tory roles in anaerobic environments. This information
serves as a guide to the history of these organisms and pro-

vides information that could aid in optimizing their bio-
technological applications.

Methods
Genome sequencing and annotation
With the exception of G. sulfurreducens [16], sequence data
for the Geobacteraceae genomes were produced by the US
Department of Energy Joint Genome Institute http://
www.jgi.doe.gov, using a whole-genome shotgun strategy
for the Sanger-sequencing of 3-Kb, 8-Kb, and 40-Kb DNA
libraries to 8-9X depth. Open reading frames and their
translations and predicted function based on automated
annotation were taken from NCBI http://
www.ncbi.nlm.nih.gov/ (Table 1).

Clustering orthologs into protein families
All proteins in the genomes were clustered into families of
orthologs and recent paralogs using OrthoMCL [17],
which uses reciprocal best similarity pairs from all-vs-all
BLAST [47] to identify orthologs and recent paralogs,
which are then clustered together across all the genomes
using the Markov clustering algorithm [48]. A functional
role was predicted for each cluster using the G. sulfurredu-
cens in silico model annotation [18] and COG categoriza-
tion [19].

Phylogenomics
All the ORFs from the six Geobacteraceae genomes and the
outgroup species Anaeromyxobacter dehalogenans 2CP-C
(NC_007760) were put into orthologous groups using
Hal [49], with inflation parameters from 1.1–5.0 for the
clustering algorithm. The proteins used for the phylogeny
were those that were part of a cluster generated with any
inflation value that had exactly one member from each
genome (see Additional file 6). All of the proteins in the
cluster were concatenated and the resulting sequences
aligned by ClustalW [50]. ProtTest [51] was used to select
a model of molecular evolution and MrBayes [52] was
used to create a Bayesian estimation of the phylogeny.

Lateral gene transfer
A phylogenetic tree was inferred using PhyloGenie [53]
for every protein from the six genomes. Homologous
sequences for each protein were selected by BLAST from
the non-redundant protein database from NCBI http://
www.ncbi.nlm.nih.gov/, alignments were created with
ClustalW [50], and the phylogeny was inferred using
neighbor-joining [54] and 100 bootstrapped replicates.
These trees were used to identify proteins for which the
nearest relative was not from the Geobacteraceae. If the
phylogeny was strongly supported (bootstrap ≥ 50) or if
the phylogeny was weakly supported and the most similar
sequence in the non-redundant protein database from
NCBI was not a Geobacteraceae species, the protein was
considered a candidate. If the next branch out contained a
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single sequence not from Geobacteraceae species, the query
gene was defined as being from lateral transfer. If the next
branch contained a single sequence from Geobacteraceae, it
was not. If the sister group was a clade or was not strongly
supported, the ancestral condition was inferred [55] and
used to determine lateral transfer.
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