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P. Notoginseng Saponins (PNS), the main active component of herbal medicine Panax
notoginseng, has been widely used to treat cerebrovascular diseases. It has been
acknowledged that PNS exerted protection on nerve injuries induced by ischemic
stroke, however, the long-term impacts of PNS on the restoration of neurological
defects and neuroregeneration after stroke have not been thoroughly studied and the
underlying molecular mechanism of stimulating neurogenesis is difficult to precisely clarify,
much more in-depth researches are badly needed. In the present study, cerebral ischemia
injury was induced by microsphere embolism (ME) in rats. After 14 days, PNS
administration relieved cerebral ischemia injury as evidenced by alleviating neurological
deficits and reducing hippocampal pathological damage. What’s more, PNS stimulated
hippocampal neurogenesis by promoting cell proliferation, migration and differentiation
activity and modulated synaptic plasticity. Increased number of BrdU/Nestin, BrdU/DCX
and NeuroD1-positive cells and upregulated synapse-related GAP43, SYP, and PSD95
expression were observed in the hippocampus. We hypothesized that upregulation of
brain-derived neurotrophic factor (BDNF) expression and activation of Akt/mTOR/p70S6K
signaling after ME could partially underlie the neuroprotective effects of PNS against
cerebral ischemia injury. Our findings offer some new viewpoints into the beneficial roles of
PNS against ischemic stroke.
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1 INTRODUCTION

Ischemic stroke is one of the leading causes of long-term lethality and disability in the world (Zhu
et al., 2018), and the incidence and prevalence are on the rise with an aging population globally (Koh
and Park, 2017), which seriously threatens human health and brings heavy mental and economic
burden to families and society (Liu et al., 2012). Stroke patients often suffer from sensory-motor and
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cognitive dysfunction, such as dementia, aphasia, paralysis, etc.
However, ischemia stroke is involved in complex pathological
mechanism and there is currently no effective preparation
especially for neural restoration after stroke, so it is of great
significance to develop drugs or preparations with
neuroprotective and restorative effects in order to promote the
recovery of neurological functions for stoke patients those who
are out of 4.5-hour time window of thrombolysis.

In the past decade, much interest has been focused on
neurogenesis, which provides fundamental support for
remodeling and restoration of brain architecture and function
(Yamaguchi et al., 2016) and may open up a novel therapeutic
method to restore impaired neurological function after ischemic
stroke. Nevertheless, neurogenesis from the embryonic brain
throughout adulthood requires a well-controlled external and
internal signal that guides the neural stem cells (NSCs) to
transition into a properly functioning neuron, which involves
the complex process of cell proliferation, division, differentiation,
migration, and functional integration into neuronal circuits. In
the adult brain, neurogenesis mainly happens in two canonical
neurogenic areas: subgranular zone (SGZ) of dentate gyrus (DG)
in the hippocampus and the subventricular zone (SVZ) of the
lateral ventricle (Fh, 2000; Kempermann et al., 2015; Dillen et al.,
2020), where endogenous NSCs proliferate, migrate and
differentiate to replace dead neurons following cerebral
ischemia (Kong et al., 2016; Piermartiri et al., 2020). However,
due to limited repair capacity, ischemia-induced neurogenesis
alone is not enough to restore neurological deficits, thus
enhancing endogenous neurogenesis through drug stimulation
might be an attractive strategy.

The main active ingredients of herbal medicine P. notoginseng
are P. notoginseng saponins (PNS) whose major constituents are
saponins, including Ginsenoside Rb1 (32.7 %), Ginsenoside Rg1
(32.1%), Notoginsenoside R1 (5.9%), Ginsenoside Rd (6.3%), and
Ginsenoside Re (4.1%). It’s reported that PNS could modulate the
inflammatory response and promote proliferation and
differentiation of hippocampal NSCs in vitro (Si et al., 2011; Luo
et al., 2021), indicating its potential benefits on neurogenesis after
ischemic brain injury. Although the protection of PNS on neural
damage induced by ischemic stroke is well characterized, the
mechanism behind its actions concerning cerebral ischemia is
not fully known. Further, the long-term effects of PNS on the
recovery of neurological defects and neuroregeneration after stroke
have not been thoroughly studied and the underlying molecular
mechanism of stimulating neurogenesis is difficult to precisely
clarify, much more in-depth researches are badly needed.

The mammalian target of rapamycin (mTOR), a large serine/
threonine protein kinase, plays a vital role in cell growth,
proliferation, survival, nutrient metabolism, autophagy, and
protein translation, at present, great endeavor has been made
to transfer targeting mTOR for cancer to CNS diseases and the
extensive role of mTOR has attracted much interest in this field
(Park et al., 2008; Guo and Yu, 2019). Multiple proteins combined
with mTOR constitute two divergent complexes, designed as
mTORC1 and mTORC2, in which mTORC1 is essential to
maintain endogenous neural progenitor pool and for NSC
differentiation into daughter cells (Licausi and Hartman,

2018). Studies have shown that AKT/mTOR signaling pathway
could mediate the development of NSC, including NSC
proliferation, differentiation, neural progenitor migration,
dendrite development, synapse formation, and neuron
maturation, playing a critical role in enhancing neurogenesis
following ischemic stroke (Corsini et al., 2009; Liang et al., 2016;
Zhang et al., 2016).

Regulation of cell signaling towards mTOR may exert
profound effects on neurogenesis and initiate neuroprotection
during cerebral ischemia, however, involvement of mTOR in
cerebral ischemia-induced endogenous neurogenesis is not yet
fully known, much more related researches are still needed to
demonstrate this viewpoint. Here, we firstly demonstrated that
PNS stimulated hippocampal neurogenesis by promoting NSC/
NPC proliferation, migration, and differentiation activity and
modulated synaptic plasticity by increasing synaptic formation-
related proteins synthesis. Meanwhile, upregulation of brain-
derived neurotrophic factor (BDNF) expression and activation
of Akt/mTOR/p70S6K signaling after ME could partially underlie
the neuroprotective effects of PNS against cerebral ischemia
injury.

2 MATERIALS AND METHODS

2.1 Main Chemicals and Reagents
PNS was offered by Chengdu Ruifen Si Biotechnology Co., Ltd.
(Batch No. RFS-DFZY-SQZZG201225, Chengdu, China). CMC-
Na was purchased from Dalian Meilun Biotechnology Co., Ltd.
(Batch No. J1204A, Dalian, China). Sucrose was provided by
Beijing Beihua Fine Chemicals Co., Ltd. (Batch No. 20051012,
Beijing, China). Goat serum was purchased from Proteintech
Group, Inc. (B900780, Wuhan, China). DAPI solution (C00650),
5′-Bromo-2′-deoxyuridine (BrdU, No. 2011031) and TritonX-
100 (No. 1109F0524) were purchased from Solarbio Life Sciences
& Technology Co., Ltd. (Beijing, China). GAP43 (ab75810),
BDNF (ab108319), β-actin (ab8226-100), SYP (ab32127),
PSD95 (ab238135), Anti-BrdU Rat mAb (ab6326), Anti-DCX
Rabbit mAb (ab207175), Anti-NeuroD1 Rabbit mAb (ab213725),
Anti-Nestin Rabbit mAb (ab221260) and Anti-Fade
Fluorescence-aqueous, Fluoroshield (ab104135) were
purchased from abcam (Cambridge, United Kingdom).
Fluorescence microspheres (106–125 μm and 180–212 μm in
diameter, UVPMS-BY2) were purchased from Cospheric (US).
Cy3-labeled Goat Anti-Rat IgG (H&L) (CSA1041) and DyLight
488-labeled Goat Anti-Rabbit IgG (H&L) (CSA1029) were
purchased from Cohesion (Cambridge, United Kingdom). Akt
(4685s), Phospho-Akt (Ser473) (D9E) XP Rabbit mAb (p-Akt,
4060s), mTOR (2983), Phospho-mTOR (Ser2448) (D9C2) XP®
Rabbit mAb (p-mTOR, 5536), p70S6K (2708s), and Phospho-p70
S6 Kinase (Thr389) (D5U1O) Rabbit mAb (p-p70S6K, 97596s)
were purchased from Cell Signaling Technology, Inc. (CST)
(Boston, United States).

2.2 Experimental Animals
Male 8-week-old Sprague-Dawley (SD) rats (weighing 210 ± 10 g)
were purchased from Beijing Sibafu Biotechnology Co., Ltd.
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[Beijing, China; laboratory animal certificate number: SYXK
(jing), 2019-0010]. Animals were kept three to six per cage
on a 12 h light/dark cycle with free access to water and food in a
temperature (22°C ± 2°C) and humidity (55% ± 5%)-controlled
Xiyuan hospital Animal Center. The experimental protocols
were approved by Experimental Ethics Committee at Xiyuan
hospital.

2.3 Animal Model and Drug Administration
2.3.1 Experiment I
To evaluate the effect of PNS on the neurological protection of
microsphere-induced cerebral embolism (ME) rats and screen
out the effective doses of PNS, the rats were randomly divided
into seven groups: sham, ME, ME + PNS 15 mg/kg, ME + PNS
30 mg/kg, ME + PNS 60 mg/kg, ME + PNS 120 mg/kg and ME +
PNS 240 mg/kg groups (n = 9 per group). Microsphere-induced
cerebral embolism (ME) was conducted to induce sustained
cerebral ischemia according to Takeo et al., 1989 with slight
modifications based on previous research in our laboratory.

In short, the rats were fastened in the supine position after
their anesthesia by intraperitoneal injection of 80 mg/kg
pentobarbital sodium. The right common carotid artery
(CCA), internal carotid artery (ICA) and external carotid
artery (ECA) were isolated and exposed, then the right
pterygopalatine arteries were twisted off by electric coagulation
pen and the right ECA were ligated with strings. Next, the right
CCA for the rats were temporarily occluded with vascular clamp.
Fluorescence microspheres, suspended in 200 ul of 5% dextran
solution, were injected into the right ICA through a syringe
inserted into the ECA, then the vascular clamp occluding
CCA was simultaneously removed, allowing 273 microspheres
to move to the various arteries of the brain and lead to embolisms,
and the wound was closed by sutures. The sham rats received
equal volume of vehicle without microspheres.

PNS was prepared fresh daily in 0.5% CMC-Na. The rats in
PNS groups were administrated with 15, 30, 60, 120, or
240 mg/kg PNS accordingly once a day for 14 days via
gavage after surgery. The rats in Sham and ME groups were
given equal volume of vehicle via gavage. The fresh sterile
solution of BrdU was made daily in 0.9% saline at a dilution
of 10 mg/ml. For tracking the neurogenesis, all the rats were
injected intraperitoneally with BrdU (50 mg/kg) once daily for
14 days in order to identify the proliferative cells. Fourteen days
after ME, animals were killed by decapitation under anesthesia
after the last BrdU injection.

In this part, we set five doses of PNS and explored the
pharmacological protection effects of PNS on ME rats through
animal behaviors, ELISA as well as HE staining experiments.

2.3.2 Experiment II
Based on the results of Experiment I, we have selected three
appropriately effective doses of PNS 30, 60, and 120 mg/kg to
further investigate the effect of PNS on neurogenesis and synaptic
plasticity, and finally identified the probable underlying
mechanism through immunofluorescence and Western Blot
experiments.

The experimental protocols are presented in Figure 1.

2.4 Behavioral Test
The modified neuro-functional assessment, forepaw outreaching
test and rope-climbing test were performed by a person blinded to
group designation as previously described (Garcia et al., 1995;
Ohlsson and Johansson, 1995; Wu et al., 2019b). Neuro-
functional assessment and forepaw outreaching test were
conducted at day 1, 3, 7, and 14 after operation, rope-climbing
test were conducted at day 14 after operation.

2.4.1 Weight Percentage
The body weight was measured every day until the end of
experiment and the data were collected at day 1, 3, 7 and 14
after surgery for statistical analysis. Weight percentage = post-
surgery body weight/pre-surgery body weight.

2.4.2 Neuro-Functional Assessment
The neurological functional score was rated from 0 to 4 (0, no
neurological deficit symptoms; 1, unable to completely stretch left
forepaw; 2, circling to the left; 3, falling to the left or rolling on the
ground; 4, no spontaneous activity with consciousness disorder).
Rats with the score between one and three were included in the
following experiments.

2.4.3 Forepaw Outreaching Test
The rats were made to walk on forelimbs while being held by
the tail. Symmetry in the outreaching of both forelimbs was
observed with the hindlimbs of rats kept in the air, and the
scores are as follows. 0, both forelimbs were outstretched
symmetrically, and the rats walked in a straight line; 1, left
forelimb outstretched less than right forelimb, and the rats
leaned slightly to the left when walking; 2, left forelimb
outstretched minimally, and the rats circled to the left when
walking; 3, left forelimb did not move.

2.4.4 Rope-Climbing Test
The rats were allowed to seize the steel rope (2 mm in
diameter) 80 cm above the ground with their forelimbs
while the hindlimbs were kept in the air and the time
hanging on the steel rope was evaluated, the scores are the
following: 0, seize the steel rope for more than 5 s with their
hindlimbs tight to the rope; 1, seize the steel rope for 5 s
without their hindlimbs tight to the rope; 2, seize the steel rope
for 3~4 s; 3, seize the steel rope for 0~2 s.

2.5 Enzyme-Linked Immunosorbent Assay
The BDNF (brain derived neurotrophic factor) concentrations in
the serum of rats after centrifugation (3000 rpm/min, 15 min)
were measured using commercial ELISA kits (Human/Mouse/Rat
Brain Derived Neurotrophic Factor Enzyme-Linked
ImmunoSorbent Assay Kit, Beyotime Biotechnology) based on
the manufacturer’s instructions.

2.6 Hematoxylin-Eosin Staining
Brains of rats in each group were separated and fixed using 10%
formalin overnight, and were then dehydrated through graded
alcohol and embedded in paraffin wax. Then paraffin-embedded
tissue sections (5 μm thick) were stained routinely for HE staining
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in order to observe the neuronal pathological changes in the
hippocampus.

2.7 Immunofluorescence
To explore the function of PNS on proliferation and migration of
newly neural progenitor cells (NPC), expressions of BrdU/Nestin
and BrdU/DCX in brain hippocampus were detected by double
immunofluorescence staining. To study the impact of PNS on
differentiation of neural progenitor cells, expressions of
neurogenic differentiation1 (NeuroD1) in brain hippocampus
were examined by immunofluorescence staining. Brains of rats
were separated and fixed in 4% paraformaldehyde overnight at
4°C and then transferred into 25% sucrose in 0.1 M PB until
sinking to the bottom. After that, the brains were embedded and
frozen in optimal cutting temperature compound (OCT
compound) and a series of brain coronal sections (40 μm)

were cut at −20°C by a freezing microtome (Leica, CM1950,
German). The frozen sections were then immediately processed
for free-floating immunohistochemistry.

For BrdU/Nestin and BrdU/DCX double
immunofluorescence staining, brain sections were washed in
0.1 M PB for 5 mins, then sections were incubated in 1 M HCl
for 46 mins at 37°C to denature DNA, followed by 0.1 M sodium
borate buffer (pH 8.5) for 10 mins at room temperature and
rinsed three times for 5 mins each with 0.1 M PB. After that, brain
sections were incubated in a blocking solution containing 3%
normal goat serum and 1.5% TritonX-100 in 0.1 M PB for 30 min
at room temperature prior to incubating at 4°C overnight in a
solution containing 1% normal goat serum, 1.5% Triton X-100,
with the primary antibodies [Rabbit anti-Nestin monoclonal
antibody (1:100) or Rabbit anti-DCX monoclonal antibody (1:
100)]. After rinsing three times for 5 mins each with 0.1 M PB, the

FIGURE 1 | Diagram of experimental protocols. (A) Screening scheme of the appropriately effective PNS does (B)Mechanism of PNS promoting neural repair after
cerebral ischemia.
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sections were incubated 1.5 h at room temperature in the dark
with corresponding secondary antibody [DyLight 488-labeled
Goat Anti-Rabbit IgG (H&L) (1:400)]. Followed by rinsing in
0.1 M PB, brain sections were incubated in a blocking solution
containing 3% normal goat serum and 1.5% TritonX-100 in 0.1 M
PB prior to incubating in a solution containing 1% normal goat
serum, 1.5% Triton X-100, with another primary antibody [Rat
anti-BrdU monoclonal antibody (1:500)] at 37°C 1.5 h, and after
rinsing three times for 5 mins each with 0.1 M PB, the sections
were incubated 1.5 h at room temperature in the dark with
corresponding secondary antibody [Cy3-labeled Goat Anti-Rat
IgG (H&L) (1:500)]. DAPI solution was added for nuclear
counterstaining.

For NeuroD1 immunofluorescence staining, brain sections
were washed in 0.1 M PB for 5 mins, then sections were incubated
in a blocking solution containing 3% normal goat serum and 1.5%
TritonX-100 in 0.1 M PB for 30 min at room temperature prior to
incubating at 4°C overnight in a solution containing 1% normal
goat serum, 1.5% Triton X-100, with the primary antibody
[Rabbit anti-NeuroD1 monoclonal antibody (1:200)]. After
rinsing three times for 5 mins each with 0.1 M PB, the sections
were incubated 1.5 h at room temperature in the dark with
corresponding secondary antibody [DyLight 488-labeled Goat
Anti-Rabbit IgG (H&L) (1:400)].

The images of immunofluorescence staining including
NeuroD1 and double immunofluorescence staining including
BrdU+/Nestin+ and BrdU+/DCX+ positive cells in ipsilateral
subgranular zone (SGZ) and granule cell layer (GCL) of the
hippocampal dentate gyrus were observed under the fluorescence
microscope (Olympus, Olympus BX53, Japan) at a magnification
of ×200. And the number of positive cells (Nestin/BrdU, DCX/
BrdU and NeuroD1) was counted using ImageJ based on single-
positive or double-positive cells and their nucleus in three coronal
sections per animal (three animals in each group and three
coronal sections per animal were used to separately determine
the number of Nestin/BrdU, DCX/BrdU and NeuroD1-positive
cells), which areas corresponded to coronal coordinates of
−2.8 mm to −4.52 mm from bregma.

2.8 Western Blot
Fifteen rats were killed by decapitation (n = 3 per group) and their
brains were rapidly taken and then frozen by liquid nitrogen. The
ipsilateral hippocampus was isolated and homogenized in RIPA
lysis solution containing phosphatase inhibitors, protein
phosphatase inhibitors and PMSF on ice for thorough lysis of
proteins, then the supernatant was gathered by centrifugation.
Bradford method was adopted to detect the protein contents and
then protein concentration was adjusted to the same level after
quantification. Then it was mixed with 5× loading buffer to
prepare sample solutions of a certain concentration and
samples were separated by SDS-PAGE, and then transferred to
PVDF membranes (Millipore, United States). Membranes were
blocked with 5% non-fatty milk or 5% BSA for 2 h, followed by
incubation overnight at 4°C with the primary antibodies [Akt (1:
1000), p-Akt (1:1000), mTOR (1:1000), p-mTOR (1:1000),
p70S6K (1:1000), p-p70S6K (1:500), GAP43 (1:1000), SYP(1:
1000), PSD95 (1:1000), BDNF (1:1000) and β-actin (1:1000)].

Then, the membranes were washed with TBST for 5 min three
times, and were incubated for another 1 h at room temperature
with corresponding secondary antibodies. Immunoreactive bands
were detected using BeyoECL Moon reagent (beyotime, China)
and the average gray value of each band was calculated using the
software ImageJ, β-actin was used as an internal control.

2.9 Statistical Analysis
All data were presented as mean ± standard deviation and were
analyzed using appropriate statistical methods with SPSS 25.0
software (IBM, Chicago, United States). Differences between two
groups were evaluated by a non-parametric U-test when data
were out of normal distribution. Statistical comparison among
multiple groups was determined through a one-way analysis of
variance or two-way repeated-measures analysis of variance
followed by the LSD test, and p < 0.05 indicates a significant
difference.

3 RESULTS

3.1 P. notoginseng Saponins Treatment
Improved the Recovery of Neurological
Functions in Microsphere Embolism Rats
As shown in Figures 2A–C, the effect of PNS on ME-induced
neurological defects was evaluated by neurological score, forepaw
outreaching and rope-climbing test score. The higher the scores
were, the severer the damage was. The neurological score,
forepaw outreaching test score as well as rope-climbing test
score were all strikingly increased in ME group compared with
sham group at different time nodes, indicating a severe
neurological impairment. However, both the neurological score
and forepaw outreaching score of ME rats obviously decreased
over time after surgery, which means mild recovery after ME, and
PNS administration effectively attenuated the neurological
deficits in ME rats at different time nodes. Compared with
ME group, on day 1 after surgery, PNS 120 mg/kg significantly
reduced the neurological score and forepaw outreaching score, on
day 3 after surgery, PNS 120 mg/kg significantly reduced the
forepaw outreaching score and PNS 60 mg/kg significantly
reduced neurological score, on day 7 after surgery, PNS 30, 60,
120, and 240 mg/kg significantly reduced the neurological score
and forepaw outreaching score, on day 14 after surgery, PNS 30,
60, 120, and 240 mg/kg significantly reduced the neurological
score and forepaw outreaching score, PNS 15 mg/kg significantly
reduced the forepaw outreaching score, and PNS 120 and
240 mg/kg significantly reduced the rope-climbing test score.
Overall, PNS 30, 60, and 120 mg/kg group appeared to
function relatively well. As shown in Figure 2D, remarkedly
time-dependent increase in weight percentage of Sham, ME and
PNS treatment rats were all observed, and the weight percentage
was obviously decreased inME group compared with sham group
at different time nodes, however, treatment with PNS treatment
exhibited an increase in ME rats on day 3, 7, and 14 after surgery.
Compared with ME group, on day 3 after surgery, PNS 15 and
30 mg/kg significantly increased the weight percentage, on day 7
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after surgery, PNS 15, 30, 60, 120, and 240 mg/kg significantly
increased the weight percentage, and on day 14 after surgery, PNS
15 and 60 mg/kg significantly increased the weight percentage.
Taken together, these results indicated that PNS treatment
ameliorated neurological function deficits induced by ME in rats.

3.2 P. notoginseng Saponins Administration
Attenuated Microsphere
Embolism-Induced Decrease of
Brain-Derived Neurotrophic Factor Content
in the Serum
As shown in Figure 3, ME-induced cerebral ischemia led to an
obvious downregulation of BDNF protein level in the serum
compared with sham group, whereas administration with 15, 30,
60, 120, and 240 mg/kg PNS for 14 days all attenuated ME-
induced decrease of BDNF content. Among which, ME + PNS
120 mg/kg group significantly increased the BDNF concentration
after ME.

3.3 P. notoginseng Saponins Administration
Increased the Number of Viable Neurons
and Alleviated Pathological Damage in
Hippocampus of Microsphere Embolism
Rats
HE staining was carried out to investigate the morphological
changes of brain tissue. As shown in Figure 4, neuronal cells in
the CA1, CA3, and DG regions of hippocampus were intact
without vacuoles and necrosis, the cytoplasm was rich and
uniform, cells were arranged neatly and connected tightly in
sham group. But in ME group, obvious neuronal injuries were
observed, including infarctions and a large area of vacuoles,

FIGURE 2 | PNS treatment improved the recovery of neurological functions in ME rats. Comparison of neurological score, forepaw outreaching score and weight
percentage were measured at day 1, 3, 7, and 14 after ME surgery at different time nodes. Rope climbing test score were detected at day 14 after ME surgery. (A)
Neurological score (B) Forepaw outreaching test score (C) Rope climbing test score (D)Weight percentage. The data in experiment (A,B,D)were shown as means and
the data in experiment (C)were presented as means ± standard deviation (n = 9 animals per group). *p < 0.05, **p < 0.01 versus Sham group; #p < 0.05, ##p < 0.01
versus ME group.

FIGURE 3 | PNS administration promoted BDNF protein levels in the
serum of ME rats. Expression level of BDNF was measured by ELISA and
data were presented as means ± standard deviation, n = 8 in sham and
ME, n = 7 in other groups. *p < 0.05, **p < 0.01 versus Sham group;
#p < 0.05, ##p < 0.01 versus ME group.
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accompanied by inflammatory cell infiltration. The neuronal
cells were loosed and disordered, the widened intercellular
space and decreased intact neurons could be clearly seen.
However, these histopathological injuries were attenuated
after PNS treatment and smaller infarctions, reduced
inflammatory cell infiltration and more intact neurons
were found in PNS-treated groups, among which ME +
PNS 30, 60, or 120 mg/kg group seemed to play a relatively
good effect.

These above experimental results showed that PNS 30, 60, or
120mg/kg presented the optimal effect, may be the appropriate doses
andwere then enrolled in the following experiments to further explore
the effect of PNS on neurogenesis, synaptic plasticity and underlying
mechanism through immunofluorescence and Western Blot.

3.4 P. notoginseng Saponins Administration
Stimulated Post-ischemic Hippocampal
Neurogenesis in Microsphere Embolism
Rats
To determine whether the long-term effect of PNS on ischemic
stroke benefits from the proliferation, migration and
differentiation of newborn neuronal cells, we detected the
BrdU/Nestin, BrdU/DCX double labelled and NeuroD1 single
labelled, presumably NSC/NPCs, migrating neuroblasts and
differentiated immature neurons respectively.

As illustrated in Figures 5A,B,D, in sham group, almost few
BrdU/Nestin and BrdU/DCX were found in DG, however, both
the numbers of BrdU/Nestin and BrdU/DCX were remarkably
increased in damaged DG zone of ME rats, demonstrating that
the proliferation and migration of NSC/NPC were triggered in
response to cerebral ischemia. Besides, both the double-positive
cells of BrdU/Nestin and BrdU/DCX in PNS 120 mg/kg group
were significantly upregulated compared with ME rats, showing
that PNS owned the ability to promote NSC/NPC proliferation
and migration after cerebral ischemia.

Similarly, as we can see from Figures 5C,D, in the impaired
DG of ME rats, NeuroD1 obviously expanded as compared with
sham group. Besides, the number of NeuroD1-positive cell of

PNS 60 and 120 mg/kg group was obviously higher than that of
ME group, showing that PNS could further promote the neuronal
differentiation.

Thesefindings suggested that PNS could enhance the proliferation,
migration and differentiation of NSC/NPC in the DG after ME.

3.5 P. notoginseng Saponins Administration
Modulated Synaptic Plasticity by Increasing
the Expressions of Brain-Derived
Neurotrophic Factor and Synaptic
Formation-Related Proteins GAP43, SYP,
and PSD95 in the Hippocampus of
Microsphere Embolism Rats
BDNF, a key neurotrophic factor produced in the brain, has been
proved to protect neurons and promote neurogenesis and
synaptic plasticity during ischemic stroke. To evaluate the
effects of PNS on synaptic connectivity after cerebral ischemia,
BDNF, GAP43 (the crucial component of axonal outgrowth),
SYP (presynaptic marker), PSD95 (postsynaptic marker) were
examined. As presented in Figures 6A–D, the expression levels of
BDNF, GAP43, SYP, and PSD95 were all significantly
downregulated in response to ME, which was reversely
promoted by PNS administration in a dose-dependent
manner, indicating that PNS was possibly involved in the
beneficial effect of synaptic plasticity in ME rats.

3.6 P. notoginseng Saponins Administration
Activated Akt/mTOR/p70S6K Pathway in
Microsphere Embolism Rats
AKT/mTOR signaling plays a crucial role in stimulating
neurogenesis and synaptic plasticity. To further explore the
potential molecular mechanisms of PNS in promoting
neurogenesis and expression of synaptic formation-related
proteins induced by ME, we investigated whether PNS results in
some changes in the AKT-mTOR-p70S6K pathway. The protein
levels of p-Akt, Akt, p-mTOR, mTOR, p-p70S6K, and p70S6K were

FIGURE 4 | Effect of PNS on histopathological changes of hippocampal CA1, CA3, and DG in ME rats under a ×200 light microscope (scale bar = 100 μm).
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measured by Western blot. As depicted in Figures 7A–C, the ratios
of p-Akt/Akt, p-mTOR/mTOR, and p-p70S6K/p70S6K remarkably
descended after ME. However, PNS administration dramatically
raised the p-Akt/Akt, p-mTOR/mTOR, and p-p70S6K/p70S6K
ratios in a dose-dependent manner, suggesting that Akt/mTOR/
p70S6K pathway might participate in the protective mechanisms of
PNS against cerebral ischemia injury.

4 DISCUSSION

Stroke is a leading cause of physical disability and death worldwide,
characterized by high rates of morbidity, mortality, disability and

recurrence, including hemorrhagic and ischemic stroke, and the latter
accounts for a large proportion (Liu et al., 2019; Sun et al., 2020b).
Although there are many drugs developed to cure stroke symptoms,
the effective treatment for management in patients is limited and
sequelae of severe neurological damage remain irreversible. Ischemia-
induced spontaneous neurogenesis is beneficial but not sufficient,
therefore in the present study, we explored the effect of PNS on
endogenous NSCs/NPCs in a rat of ME model.

Oral clinical preparations with PNS as the main component,
such as Xueshuantong soft capsule, Xuesaitong tablet or granule,
were often used to treat cerebrovascular sequelae, and the clinical
PNS dosage was 2.5–10 mg/kg individually per day, which could
be transformed into 15.75–63 mg/kg daily for rats (obversion

FIGURE 5 | PNS administration stimulated post-ischemic hippocampal neurogenesis in ME rats. Representative images of ipsilateral hemisphere sctions under a
fluorescence microscope at a magnification of ×200 (scale bar =100 μm) were shown as (A) BrdU (red, a marker of proliferating cells) and Nestin (green, a marker of
NSC/NPC); (B) BrdU (red) and DCX (green, a marker of migrating neuroblasts); (C) NeuroD1 (green, a marker of differentiation factor). (D) The numbers of double-
positive of BrdU/Nestin, BrdU/DCX, and single-positive NeuroD1 were analyzed and data were presented as means ± standard deviation (n = 3 animals per group).
*p < 0.05, **p < 0.01 versus Sham group; #p < 0.05, ##p < 0.01 versus ME group.
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coefficient = 6.3). What’s more, plenty of previous studies have
shown that 30–120 mg/kg PNS is optimal for protection against
cerebral ischemia injuries in animal models (Wu et al., 2016), and
lower or higher dose, such as 10 or 300 mg/kg, has also been orally
given to the rats in some studies (Fan et al., 2015; Zhou et al.,
2018). Therefore, in this study, PNS dosage was selected as 15, 30,
60, 120, and 240 mg/kg, which is 1.5, 3, 6, 12, and 24 times the
maximum clinical dose (10 mg/kg) respectively. Our results
showed that PNS treatment ameliorated neurological function
deficits induced by ME in rats, and PNS 30, 60 and 120 mg/kg
seemed to play a relatively good effect.

Our findings revealed that PNS relieved neurological deficits
and hippocampal pathological damage caused by cerebral
ischemia. Moreover, PNS increased hippocampal neurogenesis
by reinforcing the proliferation, migration and differentiation
activity of NSC/NPCs in the post-ischemic DG and modulated
synaptic plasticity by strengthening the expression of synaptic
formation-related proteins GAP43, SYP, and PSD95 in the
hippocampus. Meanwhile, BDNF upregulation and activation
of Akt/mTOR/p70S6K pathway could partially underlie the
neuroprotective effects of PNS against cerebral ischemia injury.

Cerebral ischemia could stimulate neurogenesis in the DG and
enhanced hippocampal neurogenesis may be a compensatory
adaptive response to ischemia-induced injuries, which contributes

to improvement of neurological function and remodeling of brain
structures after stroke (Liu et al., 1998; Sun et al., 2020a). Enhancing
endogenous neurogenesis is important for recovery of neurological
function after stroke, and some studies have shown that neurological
deficits were improved in ischemic stroke rat via increasing
neurogenesis (Li et al., 2018; Cheng et al., 2020). Our results
showed that PNS alleviated neurological deficits and hippocampal
pathological damage after ischemic stroke, then to determine
whether improved neurological function benefited from enhanced
neurogenesis in hippocampal dentate gyrus, we detected major
indicators of neurogenesis by immunofluorescence. In the DG,
newly born neurons are locally generated at the border between
the hilus and the granule cell layer and then migrate into the granule
cell layer, where they gradually matured both morphologically and
functionally and finally integrated into neural circuits (Stanfield and
Trice, 1988). Here, we used BrdU (5-Bromo-2-deoxyUridine) as a
principal proliferative marker of only dividing cells during
neurogenesis, which is an analogue for an endogenous DNA base
thymidine, could track the fate of divided cells and their progeny via
the substitution of thymidine during the S phase of mitosis and
participate in the process of newly synthesized DNA (Moon et al.,
2016). As an initial response to neurogenesis, it is necessary to
enhance endogenous NSC proliferation, which helps to promote the
migration, differentiation and survival of newborn neurons. Nestin

FIGURE 6 | PNS administration enhanced synaptic plasticity by increasing the expressions of BDNF and synaptic formation-related proteins GAP43, SYP, and
PSD95 in hippocampus of ME Rats. The expressions of BDNF (A), GAP43 (B), SYP (C), and PSD95 (D) in hippocampus tissues were assessed by Western blot. Data
were presented as means ± standard deviation (n = 3 animals per group). *p < 0.05, **p < 0.01 versus Sham group; #p < 0.05, ##p < 0.01 versus ME group.
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has been widely recognized as a marker of NSC/NPCs and double-
labelled BrdU/Nestin was used for the identification of newly
generated NSCs in the DG (von Bohlen und Halbach, 2011;
Zhang et al., 2020). Therefore, we used BrdU/Nestin to evaluate
DG cellular proliferative ability at day 14 post-ME, and the
immunofluorescence staining results presented that BrdU/Nestin
expression in the DG began to increase after ME, which denoted an
activated proliferative characteristic of NSC as a response to cerebral
ischemia, and PNS 120mg/kg administration remarkedly advanced
BrdU/Nestin expression, suggesting that PNS could augment the
number of NSC populations in the hippocampus. Doublecortin
(DCX) is a microtubule-associated protein, to better specify whether
PNS have potential benefits on immature neuroblasts, we detected
BrdU/DCX double-labelled cell, which is usually accepted as a
marker of newborn migrating neuroblasts (Gleeson et al., 1999).
Researchers reported that PNS treatment enhanced DCX+

expressions in the olfactory bulb at day 14 after global brain
ischemia/reperfusion (He et al., 2015). Similar to these results,
our findings revealed that expressions of BrdU/DCX in the DG
of PNS 60 and 120mg/kg groups were higher than ME groups,

showing that PNS boosted NSCs to differentiate into immature
neuroblasts. NeuroD1, a bHLH transcription factor indispensable
for granule neuron differentiation, could foster the precursor cell
lineage into immature neuron through differentiation (Hodge and
Hevner, 2011; Brulet et al., 2017). In accordance with previous
studies (Kisoh et al., 2017), our results also exhibited significantly
upregulated expression of NeuroD1-positive cells in the DG after
ME, which was further strengthened by PNS 60 and 120mg/kg
administration. All these results demonstrated that PNS advanced
neurogenesis by reinforcing the proliferation, migration and
differentiation ability of newborn cells after ME. And we
speculated that enhancing the proliferation, migration, and
differentiation of NSC/NPC after ME by PNS administration
might be involved in the recovery of neurological function.

BDNF is regarded as an instructive intermedia of functional
and structural plasticity in the brain, playing a critical role in
enhancing adult hippocampal neurogenesis (Liu et al., 2018;
Colucci-D’Amato et al., 2020). And low BDNF concentration
has been associated with the rising risk of stroke. Researchers
found that patients with acute stroke had significantly lower

FIGURE 7 | PNS administration activated Akt/mTOR/p70S6K pathway in ME rats. (A−C) The protein levels of p-Akt, Akt, p-mTOR, mTOR, p-p70S6K, and
p70S6K in hippocampus tissues were detected by Western blot. Data were shown as means ± standard deviation (n = 3 animals per group). *p < 0.05, **p < 0.01
verssus Sham group; #p < 0.05, ##p < 0.01 versus ME group.
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BDNF levels in the serum compared to healthy controls and
decreased concentration of BDNF in the serum was also found
in cerebral ischemic rat model (Chen et al., 2012; Karantali et al.,
2021). Moreover, previous studies have shown that levels of BDNF
in the hippocampus were found to be obviously lower in ischemic
rats than sham rats (Moriyama et al., 2011; Sheikholeslami et al.,
2021). Therefore, in this study, we detected the levels of BDNF both
in the serum and hippocampus tissue, consistent with these
observations, our studies showed that BDNF levels in the serum
and hippocampus of ME rats were both obviously decreased
compared with sham rats, however, administration with 15, 30,
60, 120, and 240 mg/kg PNS for 14 days all attenuatedME-induced
decrease of BDNF content in the serum. Among which, PNS
120 mg/kg group remarkedly increased the BDNF concentration in
the serum after ME surgery. And BDNF expression in the
hippocampus of PNS 30, 60, and 120 mg/kg groups was higher
than ME group. We speculated that BDNF induction may be
related to the protective mechanisms of PNS against cerebral
ischemia injury.

Activating the mTOR signaling pathway revitalizes the NSCs,
restores their proliferation and enhances hippocampal
neurogenesis (Romine et al., 2015). The activity of mTOR is
regulated through phosphorylation on its specific residue serine
2448, which is the target of upstream Akt and downstream p70
ribosomal S6 kinase (p70S6K), and phosphorylation of threonine
389 residue by mTOR is critical for p70S6K activation and serves
as a marker for mTOR activity (Chong et al., 2010; Chong et al.,
2013). When AKT/mTOR pathway is activated, the
phosphorylation level of downstream substrate p70S6K is
remarkably upregulated, thus the development, differentiation,
survival and regeneration of neurons as well as protein translation
can be promoted (Li et al., 2020).To further explore potential
mechanisms of enhanced neurogenesis in the hippocampal DG
after PNS treatment, we next chose hippocampus tissue to
examine the expression of Akt-mTOR-p70S6K signaling. Our
western blot results have shown that the ratio of p-Akt/Akt,
p-mTOR/mTOR, and p-p70S6K/p70S6K was obviously reduced
after ME compared with sham group, however, PNS administration
enhanced phosphorylation of Akt, mTOR, and p70S6K dose-
dependently after ME. We supposed that these quantitative
changes of Akt, mTOR and p70S6K were caused by NSC in the
hippocampal DG, and induction of neurogenesis was possibly
associated with activation of Akt/mTOR/p70S6K signaling pathway.

After cerebral ischemia, axon remodeling and synaptic
connectivity are critical for neurorehabilitation. Differentiated
mature neurons are highly polarized cells that own two units,
namely axons and dendrites, and transmission information
between axons and dendrites in neurons mainly depends on
synaptic function and plasticity. As a principal modulator of
translation, activation of mTOR has also been linked with
synapse-related protein synthesis and synaptic plasticity (Li et al.,
2010; Xie et al., 2018; Xiong et al., 2018). Not only does BDNF have
the ability to promote neurogenesis, but also appears to be vital to
synaptic function and plasticity in the adult hippocampus (Rauti et al.,
2020). Having proved that PNS increased BDNF expression and
activated the Akt/mTOR/p70S6K pathway after ME in this study, we
then focused on the expression of synapse-related proteins in the

hippocampus to further identify whether PNS could also restore the
disrupted synaptic function after cerebral ischemia. GAP43 (growth
associated protein 43), a crucial component of axonal outgrowth, is
involved in neurite outgrowth and axon regeneration during neuronal
development (Abe et al., 2010; Yang et al., 2020). Previous studies
found that GAP43 expression was obviously decreased after cerebral
ischemia/reperfusion insults (Zhang et al., 2019; Chen et al., 2020) and
similar to these results, GAP43 level was also dramatically declined
after ME in our study, whereas PNS administration enhanced axonal
growth capacity by upregulating GAP43 expression with a dose-
dependent trend. The presynaptic marker SYP (synaptophysin) and
postsynaptic marker PSD95 (post-synaptic density protein 95) are
two major synaptic proteins, which were associated closely with
synaptic formation and neurotransmission (Wu et al., 2019a). The
nerve terminal of neurons is filled with some small synaptic vesicles,
specialized secretory organelles participated in the storage and release
of neurotransmitters, and SYP (presynaptic marker) is the major
integral membrane protein of synaptic vesicles, indicates connections
between neurons (Thiel, 1993; Cousin, 2021). PSD95 (postsynaptic
scaffold protein) has been proved to be required for the final stages of
morphological maturation and formation of dendritic spines, which
are vital for the integration of hippocampal granule neurons
(Mardones et al., 2019). Our results found that the expression of
SYP and PSD95 proteins profoundly decreased after ME, which was
in agreement with previous study showing downregulation of
synaptic proteins after ischemia in adult animals (Zhang et al.,
2018), indicating a failure in synaptic functioning. However, rats
treated with PNS showed a higher expression of SYP and PSD95 than
ME rats. We speculated the upregulation of GAP43, SYP, and PSD95
in the hippocampus by PNS administration were originated from
nerve cells, mainly from neurons, implying that PNS probably
induced production of synaptic connectivity between neurons.
Overall, the above results revealed that PNS may contribute to
mediating hippocampal synaptic plasticity through invoking the
synapse-related proteins expression of GAP43, SYP, and PSD95.

Enhancing endogenous neurogenesis through drug stimulation
might be an attractive strategy to recover the damaged neurons after
stroke, and the ability of PNS to synchronously offer neuroprotection,
promote neurogenesis and modulate synaptic plasticity perhaps
make it a promising candidate for developing strategies to
stimulate NSC/NPCs for neural repair after cerebral ischemia. In
spite of these encouraging findings, whether these newborn NSC/
NPC could gradually develop into mature neurons both structurally
and functionally, forming appropriate synapse between newly NPC-
derived neurons and host neurons and finally integrating into existing
neural circuits needs to be explored in-depth in the future.

5 CONCLUSION

Taken together, our study demonstrated that PNS administration
enhanced the recovery of neurological deficits and improved
hippocampal pathological damage caused by cerebral ischemia.
What’s more, PNS stimulated hippocampal neurogenesis by
promoting NSC/NPC proliferation, migration and differentiation
activity and modulated synaptic plasticity. Meanwhile, upregulation
of BDNF expression and activation of Akt/mTOR/p70S6K signaling
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after ME could partially underlie the neuroprotective effects of PNS
against cerebral ischemia injury. Our findings offer some new
standpoints into the beneficial roles of PNS against ischemic stroke.
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