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Abstract: In the scenario where autonomous underwater vehicles (AUVs) carry out tasks, it is
necessary to reliably estimate underwater-moving-target positioning. While cameras often give
low-precision visibility in a limited field of view, the forward-looking sonar is still an attractive method
for underwater sensing, which is especially effective for long-range tracking. This paper describes an
online processing framework based on forward-looking-sonar (FLS) images, and presents a novel
tracking approach based on a Gaussian particle filter (GPF) to resolve persistent multiple-target
tracking in cluttered environments. First, the character of acoustic-vision images is considered,
and methods of median filtering and region-growing segmentation were modified to improve
image-processing results. Second, a generalized regression neural network was adopted to evaluate
multiple features of target regions, and a representation of feature subsets was created to improve
tracking performance. Thus, an adaptive fusion strategy is introduced to integrate feature cues into
the observation model, and the complete procedure of underwater target tracking based on GPF is
displayed. Results obtained on a real acoustic-vision AUV platform during sea trials are shown and
discussed. These showed that the proposed method is feasible and effective in tracking targets in
complex underwater environments.
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1. Introduction

After decades of research and development, autonomous underwater vehicles (AUVs) are
becoming accepted by an increasing number of users in various military and civilian establishments.
AUVs globally sold to customers are becoming progressively sophisticated through improvement of
their self-governance capabilities, which allows them to deal with increasingly complex missions [1–5].
When AUVs move in unknown marine environments, a relative motion state appears between targets
in the scene and AUVs. Thus, it is greatly significant for AUV autonomy to enhance moving-target
prediction ability under complex dynamic backgrounds by using human perception [6–8].

As a particularity of underwater environments, acoustic vision is still a useful means of
long-distance measurement for AUVs, so it is an important issue to understand the moving status
of underwater targets on the basis of acoustic-vision information. At present, some significant
achievements have been obtained. Williams [9,10] used temporal feature measures to provide a
quantitative description of a moving target’s behavior over several scans, which was verified by a diver
tracking experiment. Furthermore, he discussed [11] a tracking method of underwater targets based
on optical-flow theory, and a tracking tree was constructed storing tracking information to enhance
robustness. Chantler [12] and Ruiz [13] presented different approaches for classification and obstacle
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tracking, and the robustness of an interframe feature-measurement classifier for underwater-sector sonar
scan images was examined. Perry [14,15] proposed a detection method of underwater targets based on
machine-learning techniques. The self-learning function of neural networks was used to analyze the
feature variation of acoustic images, and target regions were effectively distinguished. Williams [16]
proposed a tracking method based on Kalman filters. Multiple targets were differentiated by clustering
sonar returns, and Kalman filters were then used to track both stationary and moving obstacles.
DeMarco [17] discussed diver detection and tracking by high-frequency forward-looking-sonar
(FLS). Cluster classification was accomplished by matching observed cluster trajectories with trained
hidden Markov models. Results showed that the diver could be autonomously distinguished from
stationary targets in a noisy sonar image. Petillot [18] proposed a tracker based on a combination of
segmentation and object-based feature extraction, and a nearest-neighbor algorithm was adopted to
match detected targets and tracking-process accuracy and robustness based on the extended Kalman
Filter (EKF) were improved. Clark [19,20] proposed an underwater-target-tracking method based on a
probability-hypothesis density filter, and the predicted target position was fused with trajectory data.
Experiments proved that tracking stability was better than that of Lalman filters. Handegard [21]
presented automatic tracking of fish populations using FLS in which the automatic tracker was
evaluated using three test datasets with different target sizes, observation ranges, and densities.
Ma [22] proposed a single-target tracking method of noncomplexity backgrounds by using a particle
filter (PF) and the correlation-matching method. Liu [23] proposed a target-tracking method based on
variable image templates. Target features were obtained by surface let transform, and a particle filter
was used to estimate the moving state of targets. Quidu [24] used statistical deviations in small patches
of acoustic-vision-sequence information to detect targets in front of AUVs, and experiment results were
in agreement with theoretical analysis. Natàlia Hurtós [25] presented two detectors based on FLS data
and multibeam data, and they were combined with adequate planning and control strategies to detect,
follow, and map an underwater chain. AI Muallim [26] proposed a robust wake-detection algorithm to
improve divers tracking in acoustic vision, and the Kalman tracker was fine-tuned, attaining stable
diver tracks in the test. Ye [27] proposed a moving-target-tracking method based on FLS, and a
five-layer siamese network was designed to achieve a good tracking result. Results showed that it
improved tracking accuracy and real-time performance.

Although many tracking methods were proposed to resolve the acoustic-vision tracking problem
of multimoving targets under dynamic backgrounds, some problems need to be studied further.
First, the mentioned methods are often unable to cope with significant appearance changes. In this
scenario, it was shown that the features of moving targets (such as intensity and shape) in acoustic
vision are often different in two successive times in a shift of relative distance, relative orientation,
and relative attitude between moving targets and AUV. These challenges are particularly difficult
for the mentioned methods when there are limited stable characteristics about targets of interest
in acoustic images. Second, a target presents nonlinear motion relative to AUV. Some mentioned
methods can resolve the tracking problem under these conditions, but their models often involve many
parameters that must be tuned to obtain good performance (e.g., “forgetting factors” that control how
fast the appearance of the model can change, and “resampling strategies” that control resampling
quality and computational complexity), and can suffer from drift problems when an object undergoes
partial occlusion. No solution regarding the feature description of moving targets or the feature set of
targets in acoustic images has been proposed, and no optimization target-tracking strategy based on
forward-looking sonar has been suggested for the complete multimoving-target-tracking procedure.
On the basis of the above achievements, this paper establishes an online processing framework based
on acoustic-vision images, and a novel method based on Gaussian PF (GPF) is presented. The hardware
architecture and software architecture are summarily introduced, and the image characters of an
underwater acoustic image are analyzed. The image-preprocessing method is discussed, and modified
means of a median filter and region-growing segmentation are proposed to obtain regional information,
based on which some suitable features are selected by a generalized regression neural network (GRNN).
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Thus, every subclass is characterized with a unique combination of these features, and multifeature
adaptive fusion was designed for the measurement-model establishment of GPF. Then, the complete
procedure of underwater-target tracking based on improved GPF is displayed. Results showed that the
presented method avoids the resampling step. The particle-degeneracy phenomenon was compared
with PF and it satisfied robustness and real-time properties. Its performance is superior to the EKF and
PF in terms of accuracy, computational load, and other aspects, and it is a feasible and effective method
for target tracking in complex underwater environments.

2. FLS Overview

The acoustic images were gained using Seaking DST Sonar, a type of FLS which is manufactured
by Tritech [28]. The sonar is characterized by a fan-shaped beam that is rotated mechanically to create
a spatial map of its surrounding area, and it produces a single ping at each angle and waits for the
return before stepping to the following angle, continuing until the entire sector is scanned. Returns
from each ping are then used to create the image, as is shown in Figure 1. It is the type of sonar most
commonly used for collision avoidance, but also finds applications in mine detection and surveillance.
Specifications of the sonar are shown in Table 1.

 
Figure 1. Diagram showing scanning procedure and idealization of expected return of used sonar [28].

Table 1. Sonar specifications.

Parameter Operating
Frequency

Horizontal
Beam
Width

Vertical
Beam
Width

Maximum
Range

Range
Resolution Scan Size Weight

Low-frequency
model 325 KHz 3.0◦ 20◦ 300 m

about 15 m 0◦–360◦
3 kg in air,
1.4 kg in

waterHigh-frequency
model 675 KHz 1.5◦ 40◦ 100 m

Acoustic images are formed by the echo intensity from the three-dimensional environmental space.
Despite the wide-range advantage over standard vision, imaging sonar suffers from several drawbacks:

(1) The number of transducers that can be packed in an array is physically restricted because of the
limitations of transducer size. Thus, the resolution of an FLS image is lower, and the gray level of
the target area is generally smaller, so it is more difficult to find some details of targets inside it.

(2) The scattering capability of different parts of the target surface is different, which is affected by the
shape, material, and relative position between target and sonar. The incident angle of an acoustic
wave is also changed with target movement, so different regions may be generated for the same
target in the acoustic image, and they often appear to be unconnected regions in acoustic vision.

(3) The phenomenon of multipath propagation is a distinctive feature in acoustic images, and
reflected acoustic waves may have greater energy than that of ones reflected from obstacles,
leading to false or lack of target detection, increasing the difficulty of acoustic-image processing.
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For the above, some images under different conditions are listed in Figure 2. It is shown that the
characteristic of an acoustic image is different than those of optical images. Thus, some image-processing
methods used in optical images have to be improved so that good results can be obtained.
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3. Feature Selection Based on GRNN

The main goal of feature selection is to choose a number of features from the extracted feature
set that yields minimum classification error. In this work, a feature-selection method based on a
combination of GRNN and search procedures such as sequential forward selection (SFS) and sequential
backward selection (SBS) was used to discover the optimal subset of features.

3.1. Feature Description

It was supposed that the minimum size of outer rectangle of Rk was m × n, No the number of
pixels of which Rk consists, No

e the number of pixels of which the edge of Rk consists, Nb the number of
pixels of which the background region consists, S the number of intensity levels in the image, h(i, j)
the element of second-order histogram H, Do

e(i) the Euclidean distances from point on the target’s
perimeter curve to the target’s centroid, and i = 1, 2, . . . , No

e . Normalized central moments ηpq of
f (x, y) were defined to be:

ηpq =

 m∑
i=1

n∑
j=1

(i− x)p( j− y)q f (i, j)

/

 m∑
i=1

n∑
j=1

f (i, j)


r

(1)

where r = (p + q + 2)/2 for p + q = 2, 3, . . . ,∞, x =
∑m

i=1
∑n

j=1 i f (i, j)/
∑m

i=1
∑n

j=1 f (i, j), and y =∑m
i=1

∑n
j=1 j f (i, j)/

∑m
i=1

∑n
j=1 f (i, j).

Some possible features [29] were considered in this paper, which are described in Table 2.
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Table 2. (a) Basic features of regions. (b) Contrast features of regions. (c) Shape moment features of
regions. (d) Moment-invariant features of regions. (e) Statistical-texture features of regions.

No. Function

(a)

1 Area A0 = No

2 Perimeter length P0 = Neo

3 Mean intensity I0 =
[∑m

i=1
∑n

j=1 f (i, j)
]
/No and p(i, j) ∈ Rk

4 Intensity standard deviation σ0 =
[∑m

i=1
∑n

j=1

[
f (i, j) − I0

]2
]
/No and p(i, j) ∈ Rk

5 Compactness O0 = 4πA0/(P0)
2

6 Background mean B0 =
[∑m

i=1
∑n

j=1 f (i, j)
]
/Nb and p(i, j) < Rk

(b)

7 C1
0 = I0 − B0

8 C2
0 = I0/B0

9 C3
0 =

(
I0 − B0

)
/
(
I0 + B0

)
(c)

10 SM1 =
[(∑P0

t=1

[
Do

e(i) −
∑P0

t=1 Do
e(i)/ P0

]2
)
/P0

]1/2
/
∑P0

t=1 Do
e(i)/ P0

11 SM2 =
[(∑P0

t=1

[
Do

e(i) −
∑P0

t=1 Do
e(i)/ P0

]3
)
/P0

]1/3
/
∑P0

t=1 Do
e(i)/ P0

12 SM3 =
[(∑P0

t=1

[
Do

e(i) −
∑P0

t=1 Do
e(i)/ P0

]4
)
/P0

]1/4
/
∑P0

t=1 Do
e(i)/ P0

13 SM4 = SM3 − SM1

(d)

14 M1 = η20 + η02
15 M2 = (η20 − η02)

2 + 4η2
11

16 M3 = (η30 − 3η12)
2 + (3η21 − η03)

2

17 M4 = (η30 + η12)
2 + (η21 + η03)

2

18
M5 = (η30 − 3η12)(η30 + η12)

[
(η30 + η12)

2
− 3(η21 + η03)

2
]
+

(3η21 − η03)(η21 + η03)
[
3(η30 + η12)

2
− (η21 + η03)

2
]

19 M6 = (η20 − η02)
[
(η30 + η12)

2
− (η21 + η03)

2
]
+ 4η11(η30 + η12)(η21 + η03)

20
M7 = (3η21 − η03)(η30 + η12)

[
(η30 + η12)

2
− 3(η12 + η03)

2
]
+

(η30 − 3η12)(η21 + η03)
[
3(η30 + η12)

2
− (η21 + η03)

2
]

(e)

21 Inertia Mco
1 =

∑s−1
i=0

∑s−1
j=0 (i− j)2h(i, j)

22 Entropy Mco
2 = −

∑s−1
i=0

∑s−1
j=0 h(i, j) ln h(i, j)

23 Angular second moment Mco
3 =

∑s−1
i=0

∑s−1
j=0 h(i, j)2

24 Inverse difference moment Mco
4 =

∑s−1
i=0

∑s−1
j=0

{
h(i, j)/[1 +

(
i− j)2

]}
25 Correlation
26 Variance Mco

6 =
∑s−1

i=0
∑s−1

j=0 (i− µx)
2h(i, j)

27 Sum average Mco
7 =

∑2s
k=2 k

[∑s−1
i=0

∑s−1
j=0 h(i, j)

]
,i + j = k

28 Sum entropy Mco
8 = −

∑2s−2
k=2

[∑s−1
i=0

∑s−1
j=0 h(i, j)

]
ln[

∑s−1
i=0

∑s−1
j=0 h(i, j)], i + j = k

29 Sum variance Mco
9 =

∑2s−2
k=2 (k−Mco

7 )2
[∑s−1

i=0
∑s−1

j=0 h(i, j)
]
, i + j = k

30 Difference entropy Mco
10 = −

∑s−1
k=0

[∑s−1
i=0

∑s−1
j=0 h(i, j)

]
ln[

∑s−1
i=0

∑s−1
j=0 h(i, j)],

∣∣∣i− j
∣∣∣ = k

3.2. Search Procedure

The SBS method performs a greedy space-searching technique. Starting by measuring performance
on the original (unchanged) dataset, it proceeds by measuring classification performance by using
classifiers that are induced in the datasets in which a single feature is omitted. Finally, the least
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significant feature is detected as the one that caused the lowest drop or highest gain in classifier
performance [30]. This feature is afterwards omitted from the dataset, and the procedure is recursively
repeated until the minimal required number of features remains or a certain stopping criterion is
reached. The SBS procedure is as shown in Table 3.

Table 3. Sequential-forward-selection (SBS) procedure.

Algorithm of SBS

1 Start with the full set Y0 = X
2 Remove the worst feature x− = argmaxJ(Yk − x), x ∈ Yk
3 Update Yk+1 = Yk − x−; k = k + 1
4 Go to 2

In contrast to SBS, SFS starts with an empty data set and proceeds by expanding the data set with the
feature, of which addition to the data set boosts the wrapped model performance most. The algorithm
adds features in such manner recursively until the stopping criteria is met [31]. The procedure of SFS
is as Table 4.

Table 4. Sequential-backward-selection (SFS) procedure.

Algorithm of SFS

1 Start with the empty set Y0 = {∅}
2 Select the next best feature x+ = argmaxJ(Yk + x), x ∈ Yk
3 Update Yk+1 = Yk + x+; k = k + 1
4 Go to 2

3.3. GRNN for Classification

The GRNN that was proposed by Specht is a class of neural networks extensively used for function
mapping between input and output variables [32–35], which is shown in Figure 3. It is a one-pass
learning algorithm with a highly parallel network, and it does not require an iterative procedure.
Thus, it provides fast training, and estimates can converge to the underlying (linear or nonlinear)
regression surface even with sparse samples, that is, even with sparse data in a multidimensional
measurement space, GRNN provides smooth transitions from one observed value to another, hence,
it can be used for predicting, modelling, mapping, and interpolating continuous variables.
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For the observed values X of random variable x, the regression of random variable y can be
found using:

E(y/X) =

∫ +∞

−∞

y f (X, y)dy/
∫ +∞

−∞

f (X, y)dy (2)

where f (X, y) is a known joint continuous probability-density function.
When f (X, y) is unknown, it should be estimated from a set of observations of x and y. Probability

estimator f̂ (X, y) can be gained by the nonparametric consistent estimator suggested by Parzen
as follows:

f̂ (X, Y) =
1

(2π)(m+1)/2σm+1n

n∑
i=1

exp[−
(X−X i)

T(X−X i

)
2σ2 −

(Y −Yi)
2

2σ2

 (3)

where n is the number of observations, m the dimension of vector variable x, and σ the smoothing
factor. Xi and Yi are sample values of random variables x and y.

Substituting Equation (3) into Equation (2), the output Ŷ(X) can be written as

Ŷ(X) = Σn
i=1Yiexp[−(X −X i

)T
(X −X i)/(2σ 2

)
]/Σn

i=1exp[−(X −X i

)T
(X −X i)/(2σ 2

)
] (4)

3.4. Experiments and Analysis

Some experiments were carried out to obtain a representative subset of features in the tank, as
shown in Figure 4. The targets consisted of a pontoon, a cube, a triangular prism, a reflector, and a
sphere, which are shown in Figures 5 and 6. A series of FLS images under different situations were
obtained, as shown in Table 5. Results of feature selection obtained by SFS and SBS are shown in
Figures 6 and 7.
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Table 5. Experiment situation.

No. Description

1 Only first target moves.
2 Only second target moves.
3 Only third target moves.
4 Only fourth target moves.
5 First and fourth targets move together in the same direction.
6 Second and fourth targets move together in the same direction.
7 Fourth and fifth targets move together in the same direction.
8 Third and fourth targets move together in the opposite direction, and their trajectory is crossed.
9 Third and fifth targets move together in the opposite direction, and their trajectory is crossed.

10 First and second targets move together in the opposite direction, and their trajectory is crossed.
11 Second and third targets move together in the opposite direction, and their trajectory is crossed.
12 Second, third, and fourth target moves together in the same direction.
13 Second, third, and fourth targets move together in the opposite direction.
14 Second target does not move.
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Figure 6 shows that, if statistic rules could not be founded by SFS and SBS in each test, then the
average values of standard deviation were counted, which are shown in Figure 7. For the classification
method, it was shown that average values gained by SFS were smaller than those gained by SBS if
the number of selected features was less than 12. For selected features, it was shown that average
values declined with the increase of selected features if the number of selected features was less than 5.
This indicated some useful description information drawn into the classification by new added features
of the target, so the accuracy of target classification was improved. In contrast, as the number of
selected features was more than 5, errors increased with the increase of selected features. This indicated
some useless description information draw into the classification by new added features, which had
more of an effect on target classification, so error rate was raised. From the results, it can be seen that
it was not beneficial for target classification to select more features. According to the results, it may
have been the best choice to select five types of features, and for SFS to obtain the smaller classification
error rate.

On the basis of the above conclusions, the sets of features were selected by SFS, and the statistical
results of feature order are shown in Figure 8. As only five types of features were used to set up the
feature set, the feature order was divided into six intervals (shown in Table 6), and statistical results
were rearranged, which are shown in Figure 9. Then, five types of features that had more occurrences
were selected in interval B, and they are shown in Table 7.
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Table 7. Selected features.

Feature Order Gained by SFS 1 2 3 4 5

Feature No. 20 17 3 6 24
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4. Gaussian Particle Filtering

4.1. Basic Principle

GPF is a problem for traditional particle-filter resampling, and the Gaussian density function is
used to approximate the posterior probability distribution of the state [36,37]. The density of Gaussian
random variable x can be expressed as:

N(x; x, σ) = (2π)−m/2
|σ|−1/2 exp[−

(
x− x)Tσ−1(x− x)/2

]
(5)

where x represents an m-dimensional vector, and x represents the mean of x. σ represents covariance.
As observation value yt at time t is obtained, the posterior probability distribution is approximated as:

p
(
xt
∣∣∣y0:t

)
= Ctp(yt|xt )p

(
xt
∣∣∣y0:t−1

)
≈ Ctp(yt|xt )N(xt; xt, σt) (6)

where xt represents the state value at time t; y0:t represents the set of observation sequence numbers
from 0 to t, that is, y0:t =

{
y0, y1, . . . yt

}
; xt represents the mean of xt; σt represents the mean of σ; and Ct

is a normalized constant, expressed as follows:

Ct = (

∫
p(xt

∣∣∣∣∣y0:t−1)p(yt

∣∣∣∣∣xt)dxt)
−1

(7)

p(xt
∣∣∣y0:t−1) is prior probability distribution, and the GPF measurement update approximates

the above prior probability distribution by Gaussian distribution N(xt; xt, σt). Usually, the mean and
covariance of p(xt

∣∣∣y0:t) are obtained by extracting K samples xt,n(n = 1, 2, . . . , K) from importance
function q(xt

∣∣∣y0:t) .
Similarly, by approximating posterior probability distribution with Gaussian distribution function,

the updated posterior probability distribution can be approximated as:

p(xt
∣∣∣y0:t) ≈ N(xt;µt, σt) (8)

As the measurement is updated, the GPF approximates predicted probability distribution
p(xt+1

∣∣∣y0:t) to Gaussian distribution. Then:

p
(
xt+1

∣∣∣y0:t
)
=

∫
p(xt+1

∣∣∣xt)N(xt; xt, σt)dxi =
1
K

ΣK
n=1p(xt+1

∣∣∣∣∣xt,n) (9)

In the formula, particle xt,n is obtained by sampling N(xt; xt, σt). On the basis of observations
at time t, by sequentially sampling state-transition distribution p(xt+1

∣∣∣xt,n) of n = 1, 2, . . . , K, state
particle xt+1,n at time t + 1 is obtained. Then, xt+1 and σt+1 are calculated by the following formula:

xt+1 =
1
K

ΣK
n=1xt+1,n (10)

σt+1 =
1
K

ΣK
n=1(xt+1 − xt+1,n)(xt+1 − xt+1,n)

H (11)

Then, the predicted probability distribution of the GPF can be approximated as:

p
(
xt+1

∣∣∣y0:t
)
≈ N(xt+1; xt+1, σt+1) (12)

4.2. Gaussian Particle-Filter Improvement

Although the particle filter provides a good probabilistic framework for target tracking, the
target region lacks some details, such as those in optical images, and the information of region area,
brightness, and contour is also unsteady, so it is difficult to track a moving target on the basis of only
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single-feature information in FLS image sequences. Thus, the method based on a feature set was used
in this paper.

4.2.1. Likelihood-Function Representation

For the feature set selected in Section 3.4, we supposed that the distribution of the ith feature at
time t is expressed as Si

t =
{
Si

t,n

}
n=1,...,K

, and the reference model of the ith feature is Si
m. Then, the

likelihood function based on the Gaussian model is written as [38]:

PS(yi
t|xt) ∝

1
√

2πα
exp

−βid2
(
Si

t, Si
m

)
2α2

 (13)

where yi
t is the measurement of the i feature clue, α is the likelihood-function noise value, βi is the

distance control coefficient, and d
(
Si

t, Si
m

)
refers to the distance between target template feature and

each particle feature.

4.2.2. Feature-Set Fusion Strategy

Adaptive fusion (AF) is proposed to fuse the likelihood functions formed by the feature set,
which can adaptively adjust fusion strategy according to the tracking situation. As a feature clue is
good, multiplicative fusion (MF) is selected to obtain the likelihood function with higher confidence.
Otherwise, it is switched to weighted fusion (WF), then, a more stable likelihood function is obtained.

WF is more stable for the problem of feature fusion under the interference condition, and its
expression is as follows:

p(y1
t , . . . , ym

t

∣∣∣∣∣∣∣xt) =
m∑

i=1

aip(yi
t

∣∣∣∣∣∣∣xt) (14)

where ai is weighting coefficient of p(yi
t

∣∣∣xt) and
∑n

i=1 ai = 1.
On the basis of the independent assumptions of each feature, MF can achieve better tracking

accuracy under less interference. The likelihood model for m feature multiplicative fusions is as follows:

p(y1
t , . . . , ym

t |xt) =
m∏

i=1

p(yi
t|xt) (15)

Considering the different advantages of WF and MF, the switch condition was set up on the basis
of feature clues, which could be assessed by the covariance matrix. It was assumed that the dimension
of xt is represented as dim, and the covariance of the ith feature is represented as Ai, then, it is written as:

Ai = ΣK
n=1p(yi

t

∣∣∣∣xt,n)[xt,n − ΣK
n=1p(yi

t

∣∣∣∣xt,n)xt,n] [xt,n − ΣK
n=1p(yi

t

∣∣∣xt,n)xt,n]
T

(16)

and covariance matrix ∆i is written as [39,40]:

∆i =
(
Σdim

a=1Σdim
b=1A2

a,b

)1/2
(17)

Threshold Ti was set for each cue to determine whether the cue was degenerated. Then, the
adaptive likelihood model could be written as:

p
(
y1

t , . . . , ym
t

∣∣∣xt
)
=


Πm

i=1p(yi
t

∣∣∣xt), 1/∆i > Ti∑m
i=1 aip

(
yi

t

∣∣∣xt
)
, 1/∆i < Ti

(18)

where ai is computed by the fuzzy logic method, and the algorithm is shown in Table 8.
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Table 8. Computation procedure of ai.

Algorithm of aiCalculation

1 Calculate value f else,i, which is written as: f else,i =
(∑n

j=0 1/∆ j
)
/m, j , i

2 Design fuzzy controller to translate 1/∆ j and f else,i to fuzzy domain; fuzzy-rule table is shown in Table 9.
3 Input 1/∆ j and f else,i into the fuzzy controller, and obtain fuzzy output bi of ith feature.
4 Calculate weighting coefficients of each feature ai, which is written as: ai = bi/Σm

i=1bi

Table 9. Fuzzy rule list of ai.

felse,i 1/∆j

NB NS ZE PS PB

NB 3 4 4 5 5
NS 2 3 4 4 5
ZE 2 2 3 4 4
PS 1 2 2 3 4
PB 1 1 2 2 3

4.2.3. Target-Tracking steps

According to GPF theory, tracking-implementation steps based on FLS images are summarized as:

1. Initialization: to select interesting targets in first image frame. After the image is processed,
target features in Table 7 are calculated, and the number of sample particles K is determined. It is
assumed that the initial importance function is normal distribution function. Then, the mean
value is the center coordinate

(
xtarget, ytarget

)
of the target, and covariance σ is determined by the

tracking environment, that is, particles collected by the initial importance function in the x- and
y-axes can be written as N

(
x; xtarget, 45

)
, N

(
y; ytarget, 40

)
, and each particle is calculated according

to the kinematics model.
2. To capture the image in the next frame, calculate features of particles

{
xt,n

}K
n=1. According

to Equation (17), feature clues are analyzed to check whether they are degenerated, and the
fused weighted value of particles is calculated. The weighted particle value is normalized as
wt,n = wt,n/

∑K
n=1 wt,n; then, µt and σt are calculated.

3. To sample according to posterior probability distribution N(xt;µt, σt), and
{
xt,n

}K
n=1 is gained.

Then, xt+1,n can be calculated by the kinematics model. According to Equation (18), the predicted
mean and covariance values are calculated. If targets are lost, covariance value is expanded,
otherwise, it is turned into Step 2.

5. Example Test and Discussion

In order to evaluate the tracking method proposed in the paper, a series of tests were carried out
in the tank and in the sea. In the tank experiment, it was compared with other methods in different
motion scenarios, and its advantages were assessed. In the sea test, the method was downloaded to the
AUV system, and its adaptability was assessed. Center position error (CLE) was used to calculate the
error that was the Euclidean distance between tracked center position

(
xp, yp

)
and real center position(

xg, yg
)
. Its formula is:

CLE =

√(
xp − xg

)2
+

(
yp − yg

)2
(19)

5.1. Tank Experiment

In the experiment, the moving target consisted of three types of targets (shown in Figure 10).
A trailer was selected as the platform on which FLS was fixed. Due to the limitation of the tank length,
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trailer and FLS remained static during the whole experiment, and the targets are dragged by ropes on
both sides of the tank. Parts of test scene are shown in Figure 11. For each image sequence, the number
of particles was set to 300 in per frame, that is, 300 candidates were collected around the position of
the target in the previous frame. The same image-processing algorithms were used to compare the
accuracy gained by the proposed algorithm with ones gained by other algorithms, and the parameters
in the image-processing algorithm were set as the same value.Sensors 2019, 19, x FOR PEER REVIEW 14 of 28 
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5.1.1. Comparative Experiments of Tracking Methods

In order to analyze tracking performance, tracking experiments of a single target were carried out
(shown in Figure 12), and results are shown in Figure 13.

Figure 12 shows that the moving target was close to the FLS from far and near, and the target
region was quite changeable, but the proposed method could effectively track the target. During
the entire tracking process, some influence existed, such as fluid resistance and the drag speed of
the rope, so the moving direction of the target often suddenly changed. Then, its trajectory did not
obviously appear with regular motion, as shown in Figure 13a, but target can be tracked by each
method. In comparison with each other, the tracking trajectory obtained by the proposed method was
closer to the real trajectory. The EKF is the approximation of the nonlinear non-Gaussian motion state.
Its tracking accuracy is sensitive to the target-motion state, and cumulative error appears in the tracking
process, so the CLE gained by EKF was bigger than that gained by other methods, and it had a trend
of divergence, as shown in Figure 13b. Instead, PF and the proposed method are nonlinear filtering
methods based on Monte Carlo simulations, so the CLE gained by PF and proposed method were
in a small stable interval, and tracking results were more accurate. For the proposed method, it was
not necessary to input strong prior knowledge into the state equation and measurement equation, so
variance of the target movement had less influence on the tracking result. Thus, the CLE gained by the
proposed method was smaller, and tracking was more accurate.
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5.1.2. Fusion-Strategy Experiments

In the experiments, targets kept moving along different paths of motion, and only parts of the
results gained under the existence of crossing and noncrossing trajectories are shown due to the
limitations of this paper.

Figure 14 shows that targets moved in the same direction and they were close to the FLS from far
and near. In the whole moving phase of the targets, targets could be caught by three fusion methods.
In Figure 15, it is shown that target trajectories had unsteady fluctuation, which led to the larger
tracking deviation gained by MF. In this situation, the fusion algorithm was selected by feature analysis
in the proposed method. As feature clues were degenerated, WF was used to calculate the likelihood
function, so trajectories gained were closer to those gained by WF. In Figure 16, it shown that all CLE
curves were affected by the unsteady motion of targets, and they had the same trend. By contrast, the
CLE curve of the first target gained by the proposed method was almost coincident with that gained
by WF, but the CLE of the second target gained by the proposed method is smallest, showing that the
proposed method could track targets more accurately.
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all predicted trajectories were affected. After they left the intersection point, the predicted trajectory 
gained by the MF gradually strayed away from the real target position, which indicated that target 
tracking was a failure. Results gained by WF showed that the tracking of the second target was a 
failure. Although the first target was caught, its predicted trajectory wildly fluctuated, which led to 
a decrease in tracking accuracy. However, predicted trajectories gained by proposed method shortly 
fluctuated, which were in the controlled range; thus, target tracking remained continuous. In Figure 
19, it is shown that, in comparison with the CLE divergence gained by other methods, the CLE gained 
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Figure 17 shows that targets moved in the opposite direction, and their trajectories intersect.
Targets could be caught by three fusion methods before they met each other. After they left the
intersection point, not all targets could be caught by MF. Using WF, the first target could be caught,
but the second target was lost. By contrast, the proposed method was successful in consecutively
tracking targets. In Figure 18, it is shown that all predicted target trajectories were close to the real
trajectory before they met each other. By contrast, trajectory deviation gained by MF is larger, but they
are similar with those gained by WF and proposed method. As targets met each other, all predicted
trajectories were affected. After they left the intersection point, the predicted trajectory gained by the
MF gradually strayed away from the real target position, which indicated that target tracking was a
failure. Results gained by WF showed that the tracking of the second target was a failure. Although
the first target was caught, its predicted trajectory wildly fluctuated, which led to a decrease in tracking
accuracy. However, predicted trajectories gained by proposed method shortly fluctuated, which were
in the controlled range; thus, target tracking remained continuous. In Figure 19, it is shown that,
in comparison with the CLE divergence gained by other methods, the CLE gained by the proposed
method remained a low stable during the tracking process, so the proposed method was more robust
and it could maintain the smoothness of the tracking curve faster in the interference environment.
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detection range was set to 50 m. On the basis of Marr visual theory, software architecture was 
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5.2. Sea Trial

To further evaluate the proposed method, a series of trials were carried out in the sea, where depth
of water was 10 m. An AUV named cShark was used as the moving platform, which was developed
by Harbin Engineering University. cShark is about 5.5 m long, 0.8 m wide, and the redundancy of its
actuators provides important functionalities, such as accurate perception and fine motion. Target size
was less than 1 ×1 m, and they were located at 3 m underwater. Float balls were mounted on top of
the targets, and ballasts were fixed on the bottom of targets, then, targets were levitated in the water.
Targets were dragged by ropes and current, and their velocities were about 0.5–1 m/s. The AUV was
kept running at the same depth as the targets, and the moving targets were tracked online by FLS.
AUV speed was about 0.5 m/s. The sea-trial scene is shown in Figure 20.
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5.2.1. Acoustic-Vision-Based Processing Framework

The hardware architecture comprises two parts that are shown in Figure 21a. One is an acoustic
signal-processing computer, which is where the sonar-controller software and acoustic-image-processing
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software are run, and it passes the predicted measurements to the controller computer through a high-speed
internal network. The second part is an FLS, which was facing front, and its detection range was set to
50 m. On the basis of Marr visual theory, software architecture was developed in the C language and
included two parts, the middle- and high-level layers (shown in Figure 21b). The middle layer is for
image preprocessing, such as image-data-interpolation processing, and acoustic images are formed on
the basis of echo data collected at different times. The high-level layer is the ultimate implementation
part. Acoustic images are processed, and target regions are gained. The possible region is predicted by
the GPF, and the number of particles was set to 200. Results are submitted to the control system for
planning the AUV navigation route, and are also used to determine the image-processing region in the
next frame.
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5.2.2. Target-Tracking Test under Noncrossing-Movement Condition

In Figure 22, it is shown that targets move in the same direction, and the relative position varied
with the movement of targets and the AUV. Then, reflection surfaces were changeable, so target regions
in the FLS images were obviously gradually different. In the whole moving phase of the targets, the
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real trajectory was not smooth, and a situation of sudden change existed. Despite all this, continuous
and stable target tracking was maintaining from the beginning by the proposed method.

Sensors 2019, 19, x FOR PEER REVIEW 21 of 28 

 

by leaps and bounds. However, targets were still caught by proposed method, which maintained 
stable target tracking, and gained trajectories were close to the real ones. 

Figure 24 shows that, because of the influence of the current and AUV movement in the sea test, 
tracking error was larger than that obtained in the tank experiment, so CLE curves swung 
significantly and violently. In general, most CLEs obtained by the proposed method remained lower, 
which indicates that the method could be used to maintain the target tracking under an unstable 
condition of target movement. 

 
(a) 

 
(b) 

Figure 22. Target-tracking results in: (a) first and (b) second sequence of forward-looking-sonar  
(FLS) images. 

Figure 22. Target-tracking results in: (a) first and (b) second sequence of forward-looking-sonar
(FLS) images.

Figure 23 shows that rope and current disturbance were more serious those that in the tank
experiment, so variation of real trajectories was sharper, and it is seemed that they sometimes moved
by leaps and bounds. However, targets were still caught by proposed method, which maintained
stable target tracking, and gained trajectories were close to the real ones.
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Figure 23. Target-tracking trajectory in (a) first and (b) second sequence of FLS images.

Figure 24 shows that, because of the influence of the current and AUV movement in the sea test,
tracking error was larger than that obtained in the tank experiment, so CLE curves swung significantly
and violently. In general, most CLEs obtained by the proposed method remained lower, which
indicates that the method could be used to maintain the target tracking under an unstable condition of
target movement.
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5.2.3. Target-Tracking Test under Crossing-Movement Condition

In the sea trial, it was hard to make more than two targets move under the existence of a crossing
path. Therefore, tracking problems of two kinds of targets are still considered of which trajectories
intersect. Results are shown in Figures 25–27.

In Figure 25, targets are shown to move in different directions, and some features such as area,
length, and shape obviously changed with the movement. In Figure 26, it shown that target trajectories
were not smooth. As they met each other, the predicted trajectories were more cluttered for interference.
The proposed method was not affected by them, and it could accurately lock onto the target position,
so tracking status remained continuous and steady.

Figure 27a shows that the real trajectory of the second target often suddenly changed, of which
the variable range is larger. As a result, tracking accuracy decreased, and the CLE curves of the second
target swung significantly and violently. Overall, however, the average CLE values of the first and
second targets were about 1 m. Figure 27b shows that some abrupt change points existed because of
the influence of target movement in leaps and bounds. In general, most target CLE remained lower
most of the time, which indicates that the method is effective for target tracking.
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6. Conclusions

In this paper, we proposed an AUV underwater-target-tracking framework based on acoustic
images. An acoustic image received from an imaging sonar is unstable due to ultrasonic waves. Hence,
it is difficult to continuously detect and track targets. To solve this problem, a GRNN was designed to
select target features, and the effectiveness of the feature candidates in a series of images was evaluated.
Furthermore, an adaptive fusion was used to establish the observation model, and the improved GPF
was adopted to track moving targets. The tank and sea tests illustrated that this method is flexible
in tracking moving targets in cluttered unknown environments, and it can solve the target-tracking
problem under the crossed-path condition. The next stage of this work is to use the method presented
in [41] and [42] to enhance the proposed fusion approach and classification results, and to apply this
algorithm in more complicated ocean environments, where time-variable ocean currents and dynamic
targets exist.
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