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Abstract
Purpose In recent years, selective retina laser treatment
(SRT), a sub-threshold therapy method, avoids widespread
damage to all retinal layers by targeting only a few. While
these methods facilitate faster healing, their lack of visual
feedback during treatment represents a considerable short-
coming as induced lesions remain invisiblewith conventional
imaging andmake clinical use challenging. Toovercome this,
we present a new strategy to provide location-specific and
contact-free automatic feedback of SRT laser applications.
Methods We leverage time-resolved optical coherence
tomography (OCT) to provide informative feedback to clin-
icians on outcomes of location-specific treatment. By cou-
pling an OCT system to SRT treatment laser, we visualize
structural changes in the retinal layers as they occur via time-
resolved depth images. We then propose a novel strategy for
automatic assessment of such time-resolved OCT images.
To achieve this, we introduce novel image features for this
task that when combined with standard machine learning
classifiers yield excellent treatment outcome classification
capabilities.
Results Our approach was evaluated on both ex vivo
porcine eyes and human patients in a clinical setting, yield-
ing performances above 95% accuracy for predicting patient
treatment outcomes. In addition, we show that accurate out-
comes for human patients can be estimated even when our
method is trained using only ex vivo porcine data.
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Conclusion The proposed technique presents a much
needed strategy toward noninvasive, safe, reliable, and
repeatable SRT applications. These results are encourag-
ing for the broader use of new treatment options for
neovascularization-based retinal pathologies.
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Introduction

Selective retina therapy (SRT) is an efficient laser treatment
for a variety of retinal pathologies. At its core, the laser
induces a photo-mechanic disruption by evaporating water
in targeted cells. In contrast to conventional laser photo-
coagulation which is prone to induce laser damage to all
retinal layers, SRT achieves therapeutic effects by solely
targeting the retinal pigment epithelium (RPE) which is
responsible for nourishing light absorption cells. By doing
so, SRT not only reduces negative side effects of traditional
photocaogulation but also facilitates healing of neighboring
tissue [3,5]. In particular, recent studies have shown promis-
ing long-term efficacy of SRT in both animal and patient
studies [2,5,6,11] when the treatment is executed with laser
energies that produce visible lesions in angiographybut invis-
ible to ophthalmoscopic imaging, as illustrated in Fig. 1.

While highly beneficial, SRT suffers from the main draw-
back of missing direct visual feedback regarding the success
of the therapy. Introduced lesions remain invisible in con-
ventional ophthalmoscopic imaging due to the absence of
coagulation in the inner retinal layers (see Fig. 1). For this
reason, the selection of an appropriate laser energy and a
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Fig. 1 SRT lesions in a color fundus image and b fundus fluorescein
angiography (FFA) for the same eye region. With appropriate laser
energies, lesions after selective retina therapy remain invisible in color

fundus image while being visible in FFA (state of the art for the identi-
fication of lesions introduced by SRT)

reliable monitoring of the therapy are both challenging and
critical. The patient-specific concentration of melanin in the
RPE [1] further aggravates the determination of the necessary
treatment energy level as it influences the rate of conver-
sion from laser energy to heat. For these reasons, real-time
and objective evaluation of the introduced tissue damage
as it occurs is paramount for safe, reliable, and repeatable
SRT.

Current approaches to SRTmonitoring are either based on
the invasive and time-consuming fundus fluorescein angiog-
raphy (FFA) [4] or the detection of ultrasonic pressure waves
of collapsed cells [14] or change analysis in the back-
reflection during the presence of laser-induced microbub-
bles [15]. While the latter methods have already been
implemented [12], these approaches suffer from the lack of
depth information. Recent research has shown however that
optical coherence tomography (OCT) [8], acquired simul-
taneously with the laser therapy may provide the missing
spatial and temporal information necessary for a compre-
hensive, repeatable, and reliable lesion assessment [16]. In
a pilot study, the application of single SRT laser pulses to
induce RPE lesionswas detectable inOCT data and appeared
to correlate well with the extent of tissue damage imaged
with FFA. This visible FFA leakage is a consequence of the
accumulation of contrast agent in sub-retinal tissue which
breached the blood–retina barrier. Yet, no method to date
has been able to automatically assess laser treatment out-
comeat specifically targeted locations.This inability severely
hinders the clinicians’ capacity to use SRT as a treatment
option.

To overcome this limitation, this paper introduces the first
automatic and observer-independent classification scheme
for time-resolved OCT data of SRT lesions. To this end,
we introduce novel image features for time-resolved OCT
that when combined with traditional classification schemes
provide excellent identification of positive and negative treat-
ment outcomes. The proposed approach was evaluated on
both ex vivo porcine eye samples and human patients under-

going SRT. In addition, we demonstrate here that our features
are reliable for classification, to the point that classification
models trained on ex vivo porcine data can effectively be
used for prediction in human patients. As such, we show here
that the use of time-resolved OCT during SRT can provide a
direct feedback to the ophthalmologist and allows SRT to be
executed using strongly reduced pulse energies without the
risk of undertreatment.

The remainder of the paper is organized as follows: We
begin by describing our laser and imaging system in “Sys-
tem overview” section. “Problem statement” section then
formalizes our classification problem. “M-Scan features”
section describes the proposed approach including the details
about the features we propose. “Experimental results” sec-
tion presents the implementation details and the experimental
results of the proposed method. Lastly, “Conclusion” section
discusses our findings and concludes the paper.

System overview

In this section, we describe our SRT-OCT system used for
patient treatment. The OCT system used for data acqui-
sition shown in Fig. 2a features a line scan frequency of
70kHz and a spectral bandwidth of 170nm centered at
830nm (EBS8C10, Exalos AG, Switzerland), leading to an
axial resolution of 1.78µm in air and is described in detail
elsewhere [17]. While a Fourier-domain OCT system was
used for the experiments in this paper, any type of OCT
system (e.g., time domain, swept source) could be used
instead, as long as the system parameters are properly set.
The OCT was combined with the treatment system using a
dichroic mirror to enable simultaneous data acquisition, and
M-Scans (i.e., repeated A-Scans at the same XY position
over time) were acquired during each SRT pulse application.
Prior to any further analysis and processing, the raw OCT
data undergo conventional preprocessing steps such as λ− k
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Fig. 2 Schematic setup of the combined SRT-OCT system a including
the SRT treatment system and the measurement and treatment beam
being combined using a dichroic mirror. Figures to the right show the

time sequence of the application of five laser pulses b and the corre-
sponding OCT M-Scan data c with visible temporal signal variations
marked with white arrows

mapping, numerical dispersion correction, background sub-
traction,mapping to a colormap, and axialmotion correction.

The SRT pulses are executed using a frequency-doubled
Nd:YLF laser [10] (SRT Vario, Medical Laser Center
Lübeck, Lübeck, Germany) with pulse width of 250ns and a
pulse repetition rate of 100Hz for 30pulse trains (seeFig. 2b).
Laser energywas guided onto the retina using a scanning dig-
ital ophthalmoscope (SDO,Wild medTec, Austria), and SRT
lesions were placed onto the retina by the ophthalmologist
using a built-in manual deflection mirror.

OCT M-Scans are acquired as a single depth profile at a
fixed position on the sample. As such, M-Scans provide a
time-resolved depth profile of light scattering and reflection
in the tissue under investigation (see Fig. 2c). The temporal
resolution thereby depends on themaximalA-Scan rate of the
OCT system, and the axial resolution is defined by the coher-
ence length of the employedOCTsystem.With this,M-Scans
are capable of mapping even sub-resolution changes in the
scattering structure by abstract variations in the phase of the
OCT signal. For SRT, where the laser pulse parameters cir-
cumvent thermal effects, the damage in theRPE cells is based
on photomechanical rather than photothermal effects [2,11].
Thus, detectable features in OCT M-Scans may primarily
be based on the presence of microbubbles in the RPE cells
due to the induced water evaporation. Extensive recent stud-
ies have confirmed the presence of a set of distinctive signal
variations in the recorded OCT data that correlate well with
lesion visibility in fundus fluorescein angiography [16]. It
is thus assumed that the presence of temporal OCT signal
variations as shown in Fig. 2c represents successful RPE cell
rupture.

Problem statement

In this paper, we consider the problem of automatically iden-
tifying the successful (i.e., the presence of RPE cell rupture)
and unsuccessful SRT laser application from the correspond-
ingM-Scan image data. Let Xk , k = 1, 2, . . . , K , be an L×T
M-Scan-OCT image of the kth observed SRT laser appli-
cation with L and T representing the spatial and temporal
dimensions, respectively. Then, let yk ∈ {0, 1} be the label
associated with the corresponding Xk , where

yk =
{
1 if therapy is successful,

0 otherwise.
(1)

We define a feature extractor function g : RL×T → Rd

which maps an L×T image Xk to a d-dimensional feature
vector.Our goal thenwas to learn a classifier f : Rd → {0, 1}
assigning a binary label to a given d-dimensional vector. In
our case, a random forest classifier [7] is used to represent
our function f . We now introduce a novel feature set g to
tackle this classification problem.

M-Scan features

In this section, we describe our approach to the classifi-
cation problem presented in “Problem statement” section.
Accordingly, we describe how representative features can be
extracted fromM-Scans (see “Systemoverview” section). As
shown in Fig. 2c, successful SRT application becomes visible
inM-Scans as high-frequency intensity variations in standard
OCT images during and following the single SRTpulse appli-
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Fig. 3 Overview of the proposed features. These include blockwise analysis of M-Scans, speckle variance features, and spectrogram features. See
text for details on how these are computed

cation. The physical principle of OCT imaging only allows
the detection of the reflectivity and the position of reflective
components in the sample tissue. As such, detectable fea-
tures are limited to variations in intensity, speckle pattern, and
the phase of the OCT signal. Features were thus computed
from pixel intensity-based speckle images, blockwise image
analysis aswell as from time–frequency analysis (TFA) using
a short-time Fourier transform (STFT). Figure 3 shows an
overview of the features we compute here and which we
now discuss in detail.

Blockwise M-Scan features

To represent variations in the temporal pixel intensity dis-
tribution of the OCT M-Scan, a blockwise speckle analysis
is performed by dividing the OCT M-Scan into equal-size
blocks of signal. The blocks are defined such that only one
of the two subsequent blocks will contain the temporal posi-
tion of laser application as shown in Fig. 3.

Let us denote the nth block as Bk
n∈RLb×Tb , n =

1, . . . , N − 1, and the reference block Bk
0∈RLb×Tb which

are taken from the kth M-Scan Xk . Here, Tb and Lb show
temporal and spatial dimensions of each block, respectively.
Note that Bk

0 corresponds to image data before any laser
application has been performed. Henceforth, we drop the
subscript/superscript k from the notation for the sake of sim-
plicity. As the signal variations inside a defined block can be
inferred from the variance of the pixel distributions, the fol-
lowing (N −1)-dimensional feature vector ubm1 is computed
as in the following:

ubm1 (n) =
√√√√ 1

(LbTb − 1)

Lb∑
l

Tb∑
t

(
B ′
n(l, t) − μ

′
n

)2
, (2)

where B
′
n = Bn − B0 is the reference-subtracted block and

μ
′
n = 1

LbTb

∑Lb,Tb
l,t B

′
n(l, t) is its mean. Moreover, the maxi-

mum gradient of the resulting vector ubm2 = max
(∇ubm1

)
is

also used as a feature. The blockwise M-Scan feature vec-
tor then contains the two extracted feature components, i.e.,
ubm

ᵀ = [ubm1 ᵀ
, ubm2 ] of size N .

Blockwise speckle features

While largemovements alter the spatial intensity distribution
in the OCT images, smaller effects may only be detectable in
the speckle patternwhich, in contrast to the common intensity
image representation, is sensitive to sub-wavelength vibra-
tions [13,18]. In order to provide a broad set of features
for classification, time-resolved variations in speckle pattern
were calculated from the OCT M-Scans.

To further emphasize signal blocks containing high signal
variations, the root mean square (rms) is first computed indi-
vidually for all temporal sampling points leading to a vector
with length T . Subsequently, the variance of the vector values
within each signal block is computed for all N blocks, i.e.,

vn = 1

(Tb − 1)

Tb∑
t=1

⎛
⎝Rn(t) − 1

Tb

Tb∑
t ′=1

Rn(t
′)

⎞
⎠

2

(3)

where Rn(t) =
√

1
Lb

∑Lb
l=1 |Bn(l, t)|2 is the rms of nth block

at temporal position t and vn corresponds to the variance of
such rms values within the nth block computed along time
axis. Then, an (N − 1)-dimensional blockwise speckle fea-
ture vector is extracted by normalizing the computed rms
variance vector as in the following:

ubs1 (n) = vn − v0, for n = 1, . . . , N − 1, (4)
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where v0 holds for the rms variance of the reference block. In
addition, we include themaximum value of the resulting vec-
tor, that is, ubs2 = max

(
ubs1

)
. Accordingly, one gets a block-

wise speckle feature vector ubs
ᵀ =

[
ubs1

ᵀ
, ubs2

]
of size N .

Speckle variance features

A second set of features based on OCT speckle information
is computed based on the temporal variation in the speckle
values in the OCT signal. For this, we identify the variations
along time by the following sum:

S(t) =
L∑

l=1

X (l, t), (5)

where S(t) represents the intensity sum for each time step
t for the OCT image X . In order to eliminate the bias due
to the varying background, the offset term Soff(t) for the
corresponding observation is subtracted in the following:

S(t)′ = S̄(t) − S̄off(t), (6)

in which S̄(t) and S̄off(t) represent zero-mean and unit vari-
ance correspondences of S(t) and Soff(t), respectively. The
offset term above is computed by the moving average oper-
ation. In the resulting vector S(t)′, time-resolved variations
can be quantified with the number of values surpassing an
empirical threshold sth as shown by:

usv =
T∑
t=1

1{s∈R|s>sth}
(
S(t)′

)
, (7)

where 1 is the indicator function and usv is the resulting
feature related to the speckle variance.

Spectrogram features

It is believed that the presence of microbubbles in the RPE
layer leads to rapid rearrangement of the scattering structure
of the retinal tissue which is represented as high-frequency
variations in the phase and intensity distribution of the OCT
signal. We therefore introduce a time–frequency analysis by
means of a short-time Fourier transform (STFT) to encode
such signal variations in the feature set.

Here, STFT is performed on the rms signal R(t) of an
OCT sample X as

Z(τ, ω) =
T∑
t=1

R(t)h(t − τ) exp (− jωt) (8)

with h(t) and Z(τ, ω) being the windowing function and the
STFT of rms signal, respectively. We then perform a median
filtering operation on the amplitude of the resulting STFT and
call it Zm(τ, ω). Subsequently, the sum of themedian filtered

spectrogram magnitudes is found for each time component,
i.e.,

Z̄(τ ) =
∑
ω

(Zm(τ, ω))dB , (9)

where (·)dB subscript represents the conversion to the dB
scale. With the normalization given by:

Ẑ(τ ) = Z̄(τ ) − min
(
Z̄(τ )

)
max

(
Z̄(τ ) − min

(
Z̄(τ )

)) , (10)

we compute the crest factor [9] in the following

usp1 =
max

(
Ẑ(τ )

)
√

1
T

∑T
τ=1

∣∣∣Ẑ(τ )

∣∣∣2
, (11)

where T is the number of the evaluated signal windows
by STFT and which constitutes the first component of the
spectrogram feature. Finally, the global description of the
spectrogram is encoded with the sum usp2 = ∑T

τ=1 Ẑ(τ )

which is also added to the feature vector. All spectrogram
features are then combined to create the two-dimensional
spectrogram feature vector uspᵀ = [usp1 , usp2 ].

As a final step, blockwise M-Scan, speckle variance, and
the spectrogram features are concatenated in one vector, i.e.,
uᵀ = [ubmᵀ

, ubs
ᵀ
, usv, uspᵀ], which constitutes our final

feature vector of length 2N + 3.

Experimental results

We now detail the experimental evaluation of our automatic
approach compared to manually evaluated M-Scans. We
show results on both ex vivo and human clinical data.

Experimental setup

Two different datasets, namely ex vivo and in vivo human
patient data, were collected for the purpose of validation.
Enucleated ex vivo porcine eyes were collected from a local
slaughterhouse and stored in DMEM solution. M-Scan OCT
images were recorded from 153 lesions from 22 enucleated
porcine eyes with SRT pulse energies ranging from 110 to
200µJ and a retinal treatment spot size of 170µm in order to
best represent effects from under- to over-treatment. Scans
were acquired at the full speed of 70kHz to provide the
highest possible temporal resolution with incident OCT laser
power of 0.7mW. In addition to the ex vivo data, 16 in vivo
human samples were recorded from four patients undergoing
clinical SRT. For the treatment, applied pulse energies varied
from 40 to 140 µJ.
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Before classification, all OCT M-Scans underwent stan-
dardOCTpost-processing as described in “Systemoverview”
section. To correct for axial motion, the lag of each A-Scan
with regard to a reference A-Scan was determined by the cal-
culation of the cross-correlation, and A-Scans were shifted
accordingly. The application of the SRT laser was detected
using a photodetector sampled at 1MHz which allowed the
determination of the temporal position of laser applications
within the M-Scan OCT data stream. Using the information
of the photodetector, M-Scans were cropped to the length of
the laser pulse train application of 300ms. This resulted in
M-Scans of 600 × 20000 pixels.

The ex vivo M-Scans were manually annotated (i.e.,
successful or unsuccessful treatment) by two independent
observers based on the presence of high-frequency signal
variations in the M-Scan OCT images as depicted in Fig. 4.
Unfortunately, in the case of full eye ex vivo samples, no
alternative evaluation method (e.g., histological evaluation)
is available, as they suffer from artifacts or require signifi-
cant preparation of the samples. M-Scans with inconsistent
labels (nine out of 162) were excluded from further consid-
eration. From this, the training set consisted of a total of 153
M-Scans from 22 ex vivo eye samples including 119 pos-
itive and 34 negative M-Scans. The human in vivo dataset
consisted of 16 clinical samples from four different patients.
Unlike ex vivo samples, in vivo samples were labeled by an
attending ophthalmologist using FFA, fromwhich an assess-
ment regarding each laser application was made and served
as groundtruth.

Classification performance

As described in “M-Scan features” section, blockwise,
speckle, and spectrogram features were first extracted from
M-Scans. The length of block was set to 353 pixels with a
pulse train of 100Hz and the data acquisition at 70kHz. The
height of the blocks was 300 pixels centered at the RPE.
With 30 pulses applied per treatment, this resulted in a total
of 60 blocks. For spectrogram features, a Hamming win-
dow of length 189 and a hop factor of 9 were experimentally
defined. Accordingly, a vector of 123 features was built, and
a random forest classifier of 200 trees was built and cross-
validated with 50 iterations. In the following, we present the
classification performance for ex vivo and in vivo samples.

Ex vivo performance

The training and testing of the classifier were performed first
on ex vivo samples. 102OCT images out of 153were used for
training, and the rest was used for testing. Fig. 5a depicts the
ROC curve of our approach, with an area under curve (AUC)
of 0.996. Our results show that a 0.05 false-positive rate (e.g.,
1 in 20) still yields over a 0.95 true-positive rate (e.g., 19 in
20) when detecting success treatment applications.

Feature contribution In order to assess the impact and impor-
tanceof the different features usedbyour classifier, classifiers
were retrained using either only spectrogram features or only
speckle variation features, as well as all features combined.
All other parameters such as numbers of trees, depth, and
number of iterations were kept constant. Figure 5b shows
the classification performance for these different settings.

As can be seen from these results, the speckle varia-
tion features contribute the most to the classification. The
spectrogram features alone would already enable reasonable
performance but it is only in combination with the others that
a high sensitivity and specificity can be attained. This per-
formance may thus be further increased by including phase
information and polarization sensitive features.

Temporal features distribution One of the ultimate goals of
an automatic classification treatment application is the pos-
sibility to cease the laser application once the desired effect
is attained. In this sense, the temporal distribution of the
features is relevant to stopping treatment early. To test the
relevance of each part of the M-Scan signal, the algorithm
was trained with the features computed identically but with
reduced signal length. The M-Scans of 300ms laser applica-
tion were divided into three sets of 100ms (“start,” “middle,”
and “end”), and algorithm performance was evaluated for
each single set.

As can be seen in Fig. 6, the described features are much
more prominent within the first two-thirds of the applied
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Fig. 5 a ROC curve of our
algorithm on ex vivo data. The
AUC is 0.996, and the arrow
indicates the threshold value for
95% specificity used for clinical
evaluation of the classification
performance. b ROC curves
showing the performance
comparison for different subsets
of used features (ex vivo data)
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pulse train. This may be caused by the breakup of melanin
clusters occurring only at the beginning of the pulse applica-
tion while later pulses merely lead to a rearrangement of the
melanin complexes. As the temporal distribution of the fea-
tures is highly interesting for the extension of the algorithm
to a point where it may predict therapy outcome allowing to
cease the laser once laser application was successful, future
research must focus on the link between the quantitative
amount of RPE damage and the extent of OCT signal varia-
tions.

Figure 6 shows the results of this analysis and presents
the ROC for the each single 100ms set as well as for the first
200ms, consisting of the “start” and “middle” set.

In vivo performance

In a final step, we trained our algorithm using all the ex
vivo M-Scans and keeping the same parameters as in the ex
vivo case and then tested our classifier on the in vivo sam-
ples which consisted of multiple OCT scans acquired from
four patients, two of them havingmacular edema, one having
branch vein occlusion, and a last one with chorioretinopathia
centralis serosa. Before laser application, patient pupils were
dilated using tropicamid 0.5% and phenylephrineHCl 2.5%,
and all lesions were applied with pulse energies below the
individual ophthalmoscopic visibility threshold. The clas-
sification results were compared to both FFA images and
manual OCT labeling. Table 1 shows the results on the 16
clinical SRT applications with FFA leakage evaluated by
the attending ophthalmologist. The algorithm performance
was evaluated at threshold values for 100% specificity, 95%
specificity, and 100% sensitivity. The best performance was
thereby achieved using threshold for 95% specificity leading
to a correct prediction of SRT outcome in 15 out of 16 cases
corresponding to a success rate of 93.8% when compared to
the FFA analysis.

With the classification tuned to prevent false-positive
results, the algorithm classified one lesion as positive where
no leakage was detected in the FFA. However, visual inspec-
tion of the OCT scan revealed the presence of the described
features; it thus remains unclear whether the result is really
a false-positive classification or not. For this corresponding
lesion, pathological features in the area of treatmentmayhave
coveredor omitted visible leakage in theFFA.There is, unfor-
tunately, no way to further determine the true outcome of the
treatment. The result was thus kept as a false classification.

Despite the fact that the algorithm in this paperwas trained
exclusively on ex vivo data, its performance on in vivo human
data is remarkably high. This can be somewhat explained by
the fact that SRT omits heat dissipation and convection at
too short timescales so that cooling effects due to blood per-
fusion do not play any role in the assessment. Nevertheless,
this is a significant outcome as further studies may be based
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Table 1 Performance analysis
of the classification algorithm
on clinical in vivo SRT data

Laser energy [µJ] FFA label OCT label Classification
100% specificity

Classification
95% specificity

Classification
100% sensitivity

120 1 1 1 1 1

120 1 1 1 1 1

60 0 0 0 0 1

80 0 0 0 0 1

80 0 1 1 1 1

80 – 1 1 1 1

80 1 1 1 1 1

80 1 0 0 1 1

80 1 1 0 1 1

120 1 1 1 1 1

60 1 1 1 1 1

80 1 1 1 1 1

100 1 1 1 1 1

100 1 1 1 1 1

100 1 1 1 1 1

100 1 1 1 1 1

Accuracy (%) 87.5 81.3 93.8 81.3

Classifications were evaluated for 100 and 95% specificity as well as for 100% sensitivity. Classification
results and the manual labeling were compared to the FFA visibility as assessed by the attending
ophthalmologist. Classification performance was best for 95% specificity, and false results are highlighted
in italics

on enucleated porcine eyes which include no ethical consid-
erations and are widely available. Moreover, we observed
that the algorithm correctly classified also one lesion as a
positive RPE rupture which was in agreement with the FFA
while the visual inspection of the OCT data revealed no fea-
tures. This findingmay be a sign of the fact that the algorithm
shows a higher specificity than visual inspection by human
annotators.

Conclusion

In this manuscript, we have introduced a novel strategy for
automatic classification of SRT lesions using M-Scan OCT
data. The presented features and algorithm showed encourag-
ing performance and provided classification results in good
agreement with clinical evaluation of lesions by FFA. In
particular, our approach provided correct prediction of RPE
leakage in 15 out of 16 cases in a preliminary human clin-
ical trial. The proposed OCT-SRT system associated with
a classification approach showed good performance for ex
vivo samples, and we demonstrated that our approach can be
trained using ex vivo data even when evaluating in vivo data.
In addition, the performance of the algorithm was found to
be independent of the lateral position of the measurement
spot within the treatment area as long as the measurement
and treatment area are fully overlapped.

Such OCT-based feedback and lesion classification may
be extended to a predictive classification which can be used
to cease the laser once the desired effect is achieved and may
serve as an additional safety net for sub-threshold therapies.
Moreover, with the inclusion of volumetric data, captured
before and after laser application, the algorithm performance
may further be improved, enabling a more detailed classifi-
cation. The use of OCT data has the potential of providing
treatment feedback which is crucial for a reliable and repeat-
able therapy and would eventually support the proliferation
of the reliable and cost-effective SRT as a treatment option.
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