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Abstract

Pyroptosis is a recently identified mechanism of programmed cell death related to Caspase-1
that triggers a series of inflammatory reactions by releasing several proinflammatory factors
such as IL-1β and IL-18. The process is characterised by the rupture of cell membranes
and the release of cell contents through the mediation of gasdermin (GSDM) proteins.
GSDMD is an important member of the GSDM family and plays a critical role in the two
pathways of pyroptosis. Diabetic nephropathy (DN) is a microvascular complication of
diabetes and a major cause of end-stage renal disease. Recently, it was revealed that
GSDMD-mediated pyroptosis plays an important role in the occurrence and development
of DN. In this review, we focus on two types of kidney cells, tubular epithelial cells and
renal podocytes, to illustrate the mechanism of pyroptosis in DN and provide new ideas
for the prevention, early diagnosis and molecular therapy of DN.

Introduction

Diabetic nephropathy (DN), one of the main complications of diabetes mellitus (DM), is also
the main cause of end-stage renal disease (ESRD) (Ref. 1).

So far, it has been found that cell death exists in the process of DN, such as apoptosis,
necrosis, autophagy, pyroptosis, ferroptosis and so on (Refs 2–6). Apoptosis and necrosis
were first discovered to be involved in the exploration of the mechanism of DN, whose occur-
rence is closely related to tumour necrosis factor-α (TNF-α) (Refs 7–13). TNF is a cytokine
from the proinflammatory cytokine family (Refs 10, 11). TNF-α, IL-1 and IL-6 are all inflam-
matory factors released during cell death (Ref. 14). TNF-α, the transmembrane protein, is not
only expressed by immune cells, such as monocytes/macrophages (including microglia in the
nervous system), B cells, activated T and NK cells, but also by a diverse array of non-immune
cells, such as fibroblasts, endothelial cells, epithelial cells and tumour cells (Ref. 15).
Transmembrane TNF-α assembles into homotrimers, which are cleaved by matrix metallopro-
teinase TNF-α converting enzyme (TACE/ADAM17), leading to the releasing of TNF-α
homotrimers, which is responsible for the endocrine function of TNF-α (Refs 16, 17). Both
forms bind to structurally related but functionally distinct receptors: TNF receptor 1
(TNFR1), which is ubiquitously expressed in almost any cell type at a low level (Refs 18,
19). From the mechanism perspective, TNFR1 is involved in mediating extrinsic apoptosis
(Ref. 20). After binding to the ligand TNF, the TNFR1 signalling complex separates from
the plasma membrane. In the cytoplasm, the FAS-associated death domain protein
(FADD)-bound initiator caspase-8 is recruited to the complex and interacts with receptor-
interacting protein kinase 1 (RIPK1) (Refs 21, 22). After caspase-8 is activated, RIPK1 activity
is blocked by proteolytic cleavage of RIPK1 by caspase-8 (Ref. 23). Caspase-8 with proteolytic
activity is involved in the activation of apoptosis and pyroptosis pathways (Ref. 9).

Pyroptosis, which is a newly discovered type of programmed cell death, has received
increasing attention in recent years. Upon the recognition of ‘danger signals’ when the
body is exposed to infection, the innate immune system initiates a response that may trigger
cell necrosis, apoptosis or pyroptosis to kill the invading microorganisms. As a lytic and
inflammatory death that depends on inflammasomes and caspases, pyroptosis is characterised
by the rupture of the plasma membrane, swelling and dissolution of cells, which is mediated by
the gasdermin (GSDM) protein family. Finally, it leads to the delivery of proinflammatory fac-
tors such as IL-1β and IL-18, and the release of cell contents. GSDMD plays a critical role in
pyroptosis; therefore, pyroptosis is also defined as GSDM-mediated programmed necrotic cell
death (Ref. 24).

Relevant studies have reported that pyroptosis is involved in the occurrence and develop-
ment of DN (Refs 25–27). To a certain extent, inhibiting the occurrence of pyroptosis equals to
alleviating the damage to the kidney in DN. Currently, the pyroptosis signalling pathways
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involved in the pathogenesis of DN constitute a hot topic. In this
review, we summarise the mechanisms of pyroptosis in two types
of intrinsic renal cells, tubular epithelial cells (TECs) and renal
podocytes, during DN.

The role of GSDMD in pyroptosis

GSDM family

The GSDM family, a protein family with sequence homology,
mainly includes GSDM A, B, C, D, E, DFNB59 (Refs 28–30).
Most of them can form oligomer and insert into the cellular or
mitochondrial membranes to form a hole, except DFNB59,
which does not have a domain within a pore-forming activity
(Ref. 31).

Both GSDMA and GSDMB are located at human chromosome
17q21.1, while GSDMC and GSDMD at chromosome 8q24. Mice
lack Gsdmb, but carry genes encoding three homologs of GSDMA
(Gsdma1–3) clustered on chromosome 11, and four homologs of
GASDMC (Gsdmc1–4) clustered on chromosome 15 (Ref. 32).

Gsdma3/GSDMA participates in the regulation of cellular
apoptosis, autophagy and oxidative stress (OS) (Ref. 32). Lei
et al (Ref. 33). found that TNF-α directly leads to the release of
Gsdma3, enhancing caspase-3 expression and causing apoptosis.
GSDMA, a downstream protein in transforming growth factor-β
(TGF-β)-dependent apoptosis, is a potential suppressor of gastric
cancer, indicating that GSDMA suppression is required for
tumorigenesis in gastric tissue (Ref. 34). LMO1 (LIM domain
only 1), a member of the LMO protein family, is a transcriptional
regulator. It has different expression patterns in embryonic and
adult tissues, indicating that it plays a vital role in expressing dif-
ferent cellular biological functions (Ref. 35). Without the ability of
DNA binding, it is believed to interact with other molecules
through its LIM domain when playing a role in transcriptional
regulation. LMO1 has been confirmed to regulate the expression
of GSDM family proteins (Ref. 36). LMO1 targets GSDMA
through Runt-related transcription factor 3 and participates in
the apoptosis induced by TGF-β, which is accompanied by the

release of caspase-3/7 (Ref. 36). In addition, autophagy can be
induced by mutations in the Gsdma3 C-terminal domain
(Ref. 37). The loss or mutation of the C-terminal domain results
in the release of the intrinsic pro-autophagic capability of the
N-terminal domain. The N-terminal domain associates with
Hsp90 and migrates to mitochondria through the mitochondrial
importer receptor Tom70, where it interacts with the mitochon-
drial chaperone Trap1 and causes an increase in the production
of reactive oxygen species (ROS) and in mitochondrial permeabil-
ity transition (Ref. 38). The specific regulation process of GSDMA
is shown in Figure 1.

GSDMB, which is known as gasdermin-like protein, is com-
posed of 411 amino acids and may cover genes that influence dis-
eases associated with aberrant immune responses (Refs 39, 40).
Human GSDMB has six splicing variants, each of which encodes
a protein with a molecular weight ranging from 35 to 50 kDa that
has different expression profiles and subcellular localization pat-
terns in different cell types. Compared with other gasdermins,
these isoforms are weaker and more unstable in terms of their
functions and structures (Refs 41, 42). A recent study found
that GSDMB can induce pyroptosis-like characteristics, but the
mechanism whereby GSDMB activity leads to pyroptosis and par-
ticipates in the regulation of inflammation needs to be further
explored (Ref. 43). Chao et al (Ref. 41). found that GSDMB is
not a substrate for inflammatory caspases 1 and 4/5/11 because
of its lack of a specific interdomain linker region site. In addition,
based on the phospholipid-binding activities of GSDMB and the
cleavage profile of caspases, they confirmed that GSDMB proteins
are substrates of the executioner caspases-3, -6 and -7, which
activate apoptosis, not inflammatory caspases. Panganiban et al
(Ref. 44) found that the expression of GSDMB alone does not
stimulate pyroptosis. Further experiments indicated that
GSDMB is cleaved by caspase-1 at site 236. One of the cleaved
forms is the N-terminus of the GSDMB protein, which induces
pyroptosis. Chen et al (Ref. 45) reported that the N-terminus of
GSDMB does not cause pyroptosis by itself. The binding of full-
length GSDMB to the CARD domain of caspase-4 may lead to
the oligomerization of caspase-4, which in turn causes

Fig. 1. GSDMA is involved in the process of regulating apoptosis and autophagy: TNF-α or TGF-β, LMO1 target to Gsdma3, accompanied by the release of Caspase3/
7, leading to the occurrence of apoptosis. The cleavage of Gsdma3 promotes the release of N-terminal and C-terminal. The deletion or mutation of C-terminal
makes N-terminal have the ability to participate in the regulation of autophagy. N-terminal interacts with HSP90 and translocates to mitochondria through
Tom70, and then associates with Trap1, which results in the massive release of ROS and mitochondrial permeability transition.
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conformational changes in caspase-4, thus increasing its enzym-
atic activity and promoting the cleavage of GSDMD. They also
proposed that in non-canonical pyroptosis, the effect of
GSDMB on caspase-4 can be halted through a negative feedback
mechanism, which may be an essential protective function during
immune overreaction to infectious pathogens. Therefore, they
believe that the N-terminus of GSDMB does not cause the forma-
tion of pores, and that GSDMB causes cell death by enhancing the
enzymatic activity of caspase-4. The mechanism whereby GSDMB
causes pyroptosis remains, however, to be elucidated. Different
studies have reached different conclusions regarding the role of
caspases in the cleavage of GSDMB in pyroptosis. Different cell
lines and conditions may affect the cleavage site of caspases.
However, only the cleavage of GSDMB by a specific caspase at
a particular site can produce a pore-forming N-terminus, which
may be the reason for the different conclusions. The specific pro-
cess is shown in Figure 2.

GSDMC, which is expressed in the epithelial cells of many tis-
sues, is involved in controlling various cellular processes, includ-
ing cell growth and death (Refs 37, 46–50). As illustrated in
Figure 3, Hou et al (Ref. 51) demonstrated that the N-terminal
domain of GSDMC can induce pyroptosis, and 362LELD365 is
the site where caspase-8 cleaves GSDMC. Due to the presence
of GSDMC and nuclear programmed death ligand 1 (nPD-L1),
TNF-α activates caspase-8 and switches from apoptosis to pyrop-
tosis, leading to tumour necrosis in hypoxic areas. Current
research on GSDMC mainly focuses on lumbar spinal stenosis,
melanoma, breast cancer, lumbar disc herniation, lung adenocar-
cinoma, chronic back pain and ultraviolet radiation (Refs 47–54).

GSDME, which is also known as DFNA5, has an
apoptosis-inducing activity that depends on the domain structure
(Refs 32, 55). A relevant study has illustrated that mutations in
DFNA5 significantly enhance ROS production and upregulate
several cytochrome c oxidase genes involved in OS (Ref. 56).
Moreover, endoplasmic reticulum stress, mitochondrial damage

and the MAPK pathway are involved in DFNA5-induced cell
death (Refs 57, 58). Further studies have revealed that the
DFNA5-NT domain is associated with apoptosis and pyroptosis,
which is shown in Figure 4. Caspase-3 is involved in cell apop-
tosis; however, Wang et al (Ref. 29) found that either TNF-α or
chemotherapeutic drugs facilitate the cleavage of DFNA5, leading
to the conversion of cell apoptosis to pyroptosis. DFNA5 can be
specifically cleaved at its junction by caspase-3 to generate a
DFNA5-NT fragment that penetrates the membrane and induces
pyroptosis, which suggests that excessive apoptosis with caspase-3
activity can further lead to pyroptosis. Rogers et al (Ref. 30) also
confirmed that DFNA5 mutation causes the mitochondria to
release cytochrome C, activate caspase-3, and form pores in the
plasma membrane. This means that regardless of whether
caspase-1 is absent or non-functional, cells will continue under-
going pyroptosis even without GSDMD activation (Ref. 59).

GSDMD is a key factor regulating pyroptosis (Refs 60–62).
GSDMD is composed of a 242-amino acid N-terminal domain
(GSDMD-NT) and a 199-amino acid C-terminal domain
(GSDMD-CT) connected via a 43-amino acid linker.
GSDMD-NT can bind to lipids, insert into the cellular mem-
brane, and form pores (Ref. 61), GSDMD-NT is also known as
the pore-forming domain. However, under non-stimulating con-
ditions, its pore-forming activity is inhibited by GSDMD-CT;
therefore, GSDMD-CT is also known as the repressing domain.
In resting cells, the two aromatic amino acids Phe and Trp on
the 1–2 loop of GSDMD-NT are bound to the same hydrophobic
pocket located on the surface of its C-terminal domain and form
autoinhibition structures. In such conditions, GSDMD is in a self-
inhibiting state (Ref. 63). When pathogen-associated molecular
pattern (PAMP) receptors, such as Toll-like receptors, recognise
their ligands, inflammasomes are activated and GSDMD is
cleaved by activated caspase-1. The N-terminal and C-terminal
regions of GSDMD are dissociated, and the self-inhibiting struc-
ture disappears. Consequently, the N-terminus of GSDMD binds

Fig. 2. GSDMB causes pyroptosis: GSDMB is a substrate of Caspase-3/6/7 and could be cleaved into N-terminal and C-terminal. GSDMB could be cleaved by
Caspase-1 at position 236. N-terminal of GSDMB may lead to pyroptosis. Relevent studies suggest that N-terminal of GSDMB cannot form pores, and that the
cell death associated with GSDMB is caused by Caspase-4. The combination of GSDMB and the CARD domain of Caspase-4 changes the conformation of
Caspase-4, which in turn promotes the lysis of GSDMD, resulting in the occurrence of pyroptosis.
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to membrane lipids and forms micropores with a diameter of 10–
14 nm, resulting in cell rupture and the occurrence of an inflam-
matory cascade (Ref. 64). GSDMA, GSDMC and GSDMD are all
capable of suppressing tumours, whereas GSDMB is considered
an oncogene associated with immune diseases, such as
childhood-onset asthma (Refs 65, 66). The molecular mechanism
of GSDMD regulating the process of pyroptosis is illustrated in
Figure 5.

Process and signal transduction of pyroptosis

Currently, two pathways are known to be involved in the regula-
tion of pyroptosis, including the conventional pathway mediated
by caspase-1 and a non-canonical pathway regulated by
caspase-4/5 (human) and caspase-11 (mouse), which senses intra-
cellular bacterial lipopolysaccharide (LPS) (Refs 67, 68). In
response to different types of stimulation, cells initiate pyroptosis
through different pathways.

The process of pyroptosis begins with the assembly and inte-
gration of inflammasomes. The canonical pathway, which relies
on caspase-1, is initiated by PAMP recognition and the activation
of inflammasome sensors such as NLRP1b, NLRP3, NLRC4,
AIM2 and pyrin (Ref. 69). Thus, inflammasome complexes are
generated in immune cells, including macrophages and dendritic
cells, under the stimulation of various signals. The complexes are
composed of NOD-like receptor proteins (NLRPs) and a frame-
work protein – apoptosis-associated speck-like protein containing
a CARD (ASC), precursory caspase-1 (pro-caspase-1) and other
related proteins. The framework protein ASC acts as a linker pro-
tein that can tightly connect NLRs and pro-caspase-1 via its
N-terminal PYD and C-terminal CARD domains, respectively.
Subsequently, pro-caspase-1 is activated and cleaved into two sub-
units, P20 and P10, forming the classic inflammasome containing
caspase-1 (Refs 70, 71). On the one hand, upon meeting the
inflammasomes, pro-caspase-1 self-cleaves into caspase-1, and
because of its catalytic activity, pro-interleukin-1β (Pro-IL-1β)
and pro-interleukin-18 (Pro-IL-18) are cleaved, resulting in the
inflammatory factors interleukin-1β (IL-1β) and interleukin-18
(IL-18). On the other hand, activated caspase-1 can directly cleave
GSDMD, causing the release of GSDMD-NT and consequently,
leading to cell membrane pore formation and pyroptosis.

In the non-canonical signalling pathway, caspases-4 and -5
(human) or caspase-11 (mouse) can directly recognise LPS in
the cytoplasm and cleave the GSDMD protein, resulting in pyrop-
tosis (Ref. 72). After LPS-induced activation, caspase-11 cleaves
pannexin-1, which controls the entry and exit of small molecules,
leading to the release of ATP and the opening of the membrane

channel P2X7, thereby mediating intracellular potassium efflux
and the activation of the NLRP3 inflammasome (Refs 73, 74).
In addition, pannesin-1 stimulates NLRP3 in apoptotic cells, pro-
moting the release of IL-1β and the activation of caspase-1
(Refs 75, 76).

Moreover, caspase-8 is involved in the regulation of some
infection-related immune pathways (Refs 77–80). A macrophage
model of Yersinia infection demonstrated that the induction of
pyroptosis by caspase-8 occurs via the hydrolysis and activation
of gasdermin (Refs 81, 82). Orning et al (Ref. 81) confirmed
that caspase-8 cleaves GSDMD at site D276, and suggested that
after Yersinia activates caspase-8, GSDMD may not be the only
downstream effector of caspase-8. These findings indicate that
there is no strict boundary between the regulation of caspases
and their downstream molecules, and that cross-pathway regula-
tion exists in the face of different types of stimuli.

GSDMD governed the pyroptosis involving in the
development of DN

DN is an abnormality in the structure and function of the kidneys
caused by diabetic chronic microvascular disease, which eventu-
ally leads to renal failure and ESRD. High glucose (HG) induces
mitochondrial dysfunction, such as mitochondrial dynamics dis-
order, abnormal biosynthesis and DNA mutations. Various
pathophysiological changes act on kidney cells, causing a series
of inflammatory reactions. Intrinsic renal cells mainly include
TECs and podocytes. The relationships between pyroptosis and
DN in these two types of renal cells are described below.

Tubular epithelial cell pyroptosis in DN

To maintain homeostasis, TECs are responsible for reabsorption
of the kidneys, transferring some or all the water and several
solutes from the tubules to the blood, retaining useful substances,
and effectively removing harmful and excess substances. Under
HG conditions, TECs are more susceptible to metabolic disorder,
inflammation and haemodynamic changes, leading to the release
of ROS and a variety of inflammatory factors, which results in
renal interstitial inflammation and fibrosis. Relevant studies
have reported that the pyroptosis of TECs occurs in the process
of acute kidney injury and renal function damage caused by a
contrast agent (Ref. 83), which suggests that pyroptosis partici-
pates in the occurrence and development of renal tubular damage
in kidney disease.

Long non-coding RNAs (lncRNAs) are more than 200 nucleo-
tides in length and only encode a small number of functional

Fig. 3. GSDMC is involved in the regulation of pyroptosis: In the presence of PD-L1, TNF-α induces Caspase-8 to cleave GSDMC at the site of 362LELD365 to generate
N-terminal and C-terminal, which further leads to pyroptosis.
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short peptides found in eukaryotes. They are important regulatory
factors in the development of various diseases, and have been
shown to be related to pyroptosis (Refs 84–86). MicroRNAs
(miRNAs) are small endogenous non-coding RNAs with a length
of approximately 22 nt, which are involved in cell proliferation
and differentiation, programmed death, OS and the regulation
of inflammation (Ref. 87). They are also recognised as important
molecular regulators (Refs 88, 89). LncRNA combine with
miRNA through the 3′-UTR region to form a ceRNA structure
and participate in the regulation of related pathways. Previous
studies have confirmed that lncRNA GAS5 expression is elevated
in the serum of DM patients (Ref. 90). Xie et al. investigated the
expression and relation of GAS5 and miR-452-5p in HG-induced
HK-2 cells, and their effect on inflammation, OS and the pyrop-
tosis of these cells (Ref. 91). They found that after HG treatment,
GAS5 expression is reduced in HK-2 cells, while that of
miR-452-5p is increased, and that GAS5 may directly target
miR-452-5p. In addition, GAS5 overexpression was found to
inhibit HG-induced inflammation, OS and pyroptosis through
miR-452-5p interference. In this process, GSDMD-NT expression

was shown to be upregulated in HG-induced HK-2 cells, which
promoted pyroptosis. Moreover, the expression of lncRNA
KCNQ1OT1 is increased in patients with diabetic cardiomyop-
athy, and its inhibition reduces the damage to cardiomyocytes
(Ref. 92). On the other hand, it was found that miR-506-3p par-
ticipates in the regulation of OS (Ref. 93). Zhu et al (Ref. 94)
found that the expression of KCNQ1OT1 is increased in
HG-induced HK-2 cells and in the plasma of DN patients. In
addition, they confirmed that KCNQ1OT1 directly targets
miR-506-3p using a luciferase assay. They showed that the expres-
sion of miR-506-3p is downregulated in HG-treated HK-2 cells
and in the plasma of patients with DN, and that KCNQ1OT1
interference could reduce the levels of caspase-1, NLRP3 and
GSDMD-NT by upregulating the expression of miR-506-3p,
thereby alleviating inflammation, OS and the pyroptosis of
HG-induced HK-2 cells. Therefore, KCNQ1OT1 may be a novel
target for the treatment of DN. Metastasis-associated lung adeno-
carcinoma transcript 1 (MALAT1) is a lncRNA that is widely
expressed in mammalian kidney tissues and increased in cancer
cells (Ref. 95), and it is related to DM-related pyroptosis. Li

Fig. 4. DFNA5 is involved in the regulation of apoptosis and pyroptosis: (1) Caspase-8 and Caspase-3 promote the cleavage of DFNA5 into N-terminal and
C-terminal, leading to increasing levels of ROS and COX, mitochondrial damages, further causing generation of Cyct and apoptosome, and ultimately leading
to apoptosis. (2) TNF or chemotherapeutic drugs induce Caspase-3 to cleave DFNA5 to generate N-terminal and C-terminal, resulting in the pore formation of
cell membrane and pyroptosis.
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et al (Ref. 96) found that MALAT1 expression is significantly
increased, while that of miR-23c is decreased, in STZ-induced
diabetic rats and HG-induced HK-2 cells. Downregulating the
expression of MALAT1 or upregulating that of miR-23c can
inhibit pyroptosis in HK-2 cells, and decrease the levels of
NLRP3, caspase-1 and the inflammatory factor IL-1β, suggesting

that the inhibition of MALAT1 can suppress HG-induced
pyroptosis.

In addition to ceRNA, relative research has begun on the regu-
latory pathway mediated by Toll-like receptor 4 (TLR4). TLR4, a
member of the TLR family, plays an important role in activating
immune responses. It typically activates the nuclear factor-κB

Fig. 5. Pyroptosis and GSDMD. (1) Canonical pathway: The formation of
classic inflammasome containing Caspase-1 on the one hand accelerates
the release of IL-18 and IL-1β; on the other hand, it also directly lyses
GSDMD, leading to cell membrane pore formation and pyroptosis. (2)
Non-canonical pathway: Caspase-4/5/11 cleaves GSDMD and causes pyrop-
tosis. The activation of Caspase-11 cleaves Pannexin-1, thereby destroying
the integrity of the cell membrane. In addition, Pannexin-1 activates NLRP3
and participates in the formation of Caspase-1. (3) Model of macrophages
infected by Yersina: After activated by Yersina, Caspase-8 cleaves GSDMD at
the site of D276, which leads to pyroptosis or apoptosis by activating
Caspase-3.
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(NF-κB) pathway through MyD88, leading to the release of ROS –
which causes OS – and cytokines. TLR4 induces the activation of
caspase-1 and the expression of caspase-11, resulting in pyroptosis
and the release of pro-inflammatory factors (Ref. 97). Wang et al
(Ref. 98) examined TLR4 expression in DN patients and renal
tubular cells, and found that increased TLR4 expression was related
to renal tubular damage. They found that HG induces increased
TLR4 expression, GSDMD cleavage and IL-1β release in vivo and
in vitro, and that these effects can be reversed with TLR4 and
NF-κB inhibitors. These results indicate that the TLR4/NF-κB sig-
nalling pathway is involved in regulating the pyroptosis of TECs in
DN. In addition, Pang et al (Ref. 99) confirmed that nuclear factor
erythroid-2 related factor 2 (Nrf2)/NLRP3 signalling is involved in
the regulation of caspase-1-GSDMD-mediated pyrolysis in HK-2
cells. In addition, Nrf2, a protective factor in DN, attenuates ROS
and regulates the redox balance under OS (Refs 100–102). It has
been considered as a potential therapeutic target to prevent and
reverse the progression of DN (Ref. 103).

Besides the above mechanisms, thioredoxin-interacting protein
(TXNIP) regulating the level of ROS to mediate the process of
pyroptosis is also an interesting direction. TXNIP is a negative
regulator of thioredoxin (TRX). TXNIP–TRX interaction acceler-
ates the generation of intracellular ROS and regulates redox reac-
tions, which are closely related to the OS of the glomeruli
(Refs 104, 105) and renal tubules (Ref. 106), and these processes
are involved in the progression of DN (Ref. 107). Ke et al
(Ref. 108) found that rat renal tubular epithelial NRK-52E cells
are activated by the HG-induced TXNIP/NLRP3 axis, thereby
inducing inflammation and pyroptosis. After inhibiting endoplas-
mic reticulum stress-related factors such as inositol-requiring
enzyme 1 (IRE1), the expression of miR-200a increased and the
expression of TXNIP decreased. Thus, IRE1 may mediate the pyr-
optosis and renal damage caused by the TXINP/NLRP3 pathway
through the degradation of miR-200a. TXNIP also regulates the
level of pyroptosis in DN by co-acting with ceRNA. Song et al
(Ref. 109) confirmed that elevated levels of lncRNA ANRIL
could induce vascular cell apoptosis, aggravate cell inflammation
and lead to endothelial cell dysfunction in atherosclerosis. ANRIL
and TXINP expression increases, and that of miR-497 decreases,
after the induction of HG (Ref. 110). MiR-497, which binds to
ANRIL and directly targets TXINP, was found to inhibit the
expression of ANRIL, thereby suppressing the activation of
TXNIP/NLRP3/caspase-1 and the release of IL-1β and IL-18.
By restraining miR-497 or overexpressing TXNIP, the effects
that ANRIL knockdown and inhibition of the pyroptosis were
reversed (Ref. 110).

Podocyte pyroptosis in DN

Podocytes – terminally differentiated cells located in the outer
layer of glomerular capillaries – are composed of a cytoskeleton
structure, joint connections and branched foot processes sur-
rounding the glomerular capillaries. Once damaged, they cannot
be regenerated. The basal, basolateral and parietal areas together
constitute the foot process that adheres to the glomerular filtration
barrier through the podoplanin protein. The reticular structure
formed by the slit diaphragm between the foot process and the
podocytes is involved in various signal transduction pathways in
podocytes, which are essential for maintaining the structure of
the glomerulus and the filtration function. Abnormal glomerular
filtration and damage to podocytes are the core reasons for the
development of proteinuria and glomerular sclerosis in DN
(Ref. 111). Cheng et al (Ref. 112) found that HG intervention
promoted caspase-11 and caspase-4 expression, and the decom-
position of GSDMD. The knockout of caspase-11 or GSDMD
could significantly improve the deterioration of renal function

and the morphological changes of glomeruli and podocytes and
alleviate the surging of inflammatory factors.

Mammalian target of rapamycin (mTOR), which is a highly
conserved serine/threonine kinase that has been shown to regulate
cell growth and proliferation in various in vivo and in vitro mod-
els, can combine with NLRP3 to regulate the level of inflamma-
tion (Refs 113–115). Studies have confirmed that the expression
of NF-κB is highly correlated with the mTOR signalling pathway
(Ref. 116), the inhibition of which could protect podocytes and
reverse DN by blocking the transdermal differentiation of glom-
erular mesangium (Ref. 117). Wang et al (Ref. 118) treated podo-
cytes with an mTOR activator/inhibitor and an NF-κB inhibitor,
confirming that the mTOR/NLRP3/IL-1β axis is able to suppress
podocyte damage in DN.

In addition to the mTOR/NLRP3 signalling pathway, mito-
chondrial function can also affect the level of inflammation and
pyroptosis. SIRT1, a member of the mammalian silent informa-
tion regulator (SIRT) protein family, is an important deacetylase
in the mitochondria and participates in a variety of metabolic pro-
cesses. Mitochondria can regulate the activation of the inflamma-
somes involved in pyroptosis (Refs 119, 120). Adenosine
5′-monophosphate (AMP)-activated protein kinase (AMPK) is
involved in the regulation of energy metabolism. Activation of
the AMPK/SIRT1 pathway can play a protective role in various
inflammation-related diseases by inhibiting OS and
apoptosis (Refs 121–123). AMPK has been reported to inhibit
the expression of NF-κB by increasing SIRT1 levels, thereby
reducing inflammation (Ref. 124). Relevant studies have con-
firmed that AMPK, p-AMPK and SIRT1 levels are significantly
reduced in HG-induced podocytes, and that the occurrence of
DN may be related to the APMK/SIRT1/NF-κB pathway
(Refs 125, 126).

TNF-α-induced protein 3, also known as A20, is a protein
encoded by the gene TNFAIP3 that participates in the regulation
of inflammatory signals by inhibiting NF-κB, thereby exerting
anti-inflammatory effects and protecting tissue cells (Ref. 127),
and suppressing the activation of NLRP3 (Ref. 128). Many
studies have shown that miR-21-5p promotes the development of
inflammation (Refs 129, 130). In addition, miRNA transferred
through extracellular vesicles can regulate mRNA levels after
entering the cell, thereby influencing a variety of diseases
(Refs 131, 132). Ding et al (Ref. 133) proved that miR-21-5p in
macrophage-derived extracellular vesicles can regulate podocyte
pyroptosis through A20.

The sponge structure formed by lncRNA and miRNA can also
be involved in the regulation of podocyte pyroptosis. The lncRNA
NEAT1 plays a vital role in the occurrence and development of
DN; lncRNA NEAT1 expression is upregulated in both in vivo
and in vitro models of DN (Ref. 134), and promotes
epithelial-to-mesenchymal transition and kidney fibrosis in DN
(Ref. 135). A meta-analysis of miRNA expression profiles in
DN showed that at least two studies revealed the downregulation
of miR-34c (Ref. 136). Recently, Liu et al (Ref. 137) found that
miR-34c inhibits cell death in HG-induced podocytes. Zhan
et al (Ref. 138) found that NEAT1 promotes podocyte pyroptosis
by regulating miR-34c, whose target was shown to be NLRP3,
thus regulating the expression of NLRP3, caspase-1 and IL-1β.
These findings highlight the role of the NLRP3/caspase-1/IL-1β
axis in DN. Zuo et al (Ref. 139) found that the level of
MALAT1 and miR-200c increased, while the level of NRF2
decreased in the mouse podocytes treated with HG. MALAT1,
as an upstream factor, affected the expression of miR-200c and
NRF2. In addition, the level of OS also changed respectively by
interfering with the expression of the three above. They confirmed
that MALAT1/miR-200c/NRF2 axis is relative to regulating the
pyroptosis and OS of podocyte treated with HG.
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Current clinical drugs and potential treatments for DN

The present treatment principles for DN are mainly to control
blood sugar and blood pressure, protect kidney function, increase
high-quality protein intake, reduce cardiovascular and cerebrovas-
cular and peripheral vascular complications, etc. When it
progresses to chronic renal failure, dialysis replacement therapy
is needed, whose purpose is to delay its progress. At present,
domestic and foreign studies on the clinical hypoglycaemic
drugs to reverse the process of DN by inhibiting renal pyroptosis
have not yet been fully established, which indicates that the
pathogenesis of DN and the exploration of the drug mechanism
are incomplete.

At the moment, it has been confirmed that dipeptidyl-peptidase-4
inhibitors saxagliptin inhibits the activation of NLRP3 inflamma-
somes, downregulates the expression of IL-18 and IL-1β, and avoids
inflammation and renal fibrosis (Refs 140, 141). Although it was
found that saxagliptin downregulates the level of pyroptotic factors
in the process of inhibiting inflammation, whether it protects renal
function by inhibiting pyroptosis still needs to be further explored.

Although the mechanism of clinical drugs in inhibiting pyropto-
sis has not yet been elucidated, potential therapeutic methods
regarding their important role in controlling the level of pyroptosis
have emerged. Necrosulfonamide (NSA), a pyroptosis inhibitor, has
been proved to reduce the level of inflammation through various
signalling pathways to inhibit the level of pyroptosis in many
diseases such as non-small-cell lung cancer, gastric cancer, pulmon-
ary fibrosis and coronary artery disease (Refs 142–145). It has great
prospects, but whether it inhibits the level of renal pyroptosis and
delays the deterioration of renal function has not yet been studied.
Relative studies might be established to explore whether it plays a
reversal role in renal pyroptosis caused by DN. It may become a
new hope for the treatment of DN.

Conclusion and outlook

Pyroptosis is one type of cell death that is associated with caspase-1
and accompanied by the releasing of inflammasomes. Under the
action of different external stimuli, the cell membrane is punctured
via the GSDMD protein through different channels, which leads to
cell rupture, necrosis and the flowing out of cell contents.
GSDMD-mediated pyroptosis is related to the occurrence and
development of DN. This review summarises the relationships
between the signalling pathways induced by HG in TECs and
renal podocytes, and the process of GSDMD-mediated pyroptosis.
However, the pathogenesis of DN is complicated, and many
mechanisms are involved in pyroptosis. The specific regulatory
network requires further investigation. Currently, the signalling
pathways involved in the pyroptosis of other kidney cells, such as
glomerular endothelial cells and glomerular mesangial cells, during
DN are still unknown. With the gradual improvement of genetic
research technology and the continuous expansion of our under-
standing of in vivo and in vitro functions, we may eventually
gain a comprehensive understanding of the pathogenesis of DN
caused by pyroptosis, which will result in a new breakthrough in
its clinical treatment.
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