Article

From Isocyanides to Iminonitriles via Silvermediated Sequential Insertion of $\mathrm{C}\left(\mathrm{sp}^{3}\right)-\mathrm{H}$ Bond

Huiwen Chi, Hao
Li, Bingxin Liu, ...,
Yin-Long Guo,
Qitao Tan, Bin Xu
qttan@shu.edu.cn (Q.T.)
xubin@shu.edu.cn (B.X.)
HIGHLIGHTS
Iminonitrile formation via sequential $\mathrm{C}\left(\mathrm{sp}^{3}\right)$-H bond isocyanide insertion

Construction of quaternary center

Isocyanide as both
"imine" and "CN" sources

Valuable synthetic building blocks and novel AlEgen

Article

From Isocyanides to Iminonitriles via Silver-mediated Sequential Insertion of $C\left(s p^{3}\right)-H$ Bond

Huiwen Chi, ${ }^{1,4}$ Hao Li, ${ }^{1,4}$ Bingxin Liu, ${ }^{1}$ Rongxuan Ye, ${ }^{1,3}$ Haoyang Wang, ${ }^{2}$ Yin-Long Guo, ${ }^{2}$ Qitao Tan, ${ }^{1, *}$ and $\operatorname{Bin} \mathrm{Xu}^{1}, 2,5$, *

Abstract

SUMMARY Heterocycles are prevalent constituents of many marketing drugs and biologically active molecules to meet modern medical challenges. Isocyanide insertion into $\mathbf{C}\left(s p^{3}\right)-\mathrm{H}$ bonds is challenging especially for the construction of quaternary carbon centers. Herein, we describe an efficient strategy for the synthesis of α-iminonitrile substituted isochromans and tetrahydroisoquinolines (THIQs) with quaternary carbon centers through silver-triflate-mediated sequential isocyanide insertion of $\mathrm{C}\left(\mathrm{sp}^{3}\right)-\mathrm{H}$ bonds, where isocyanide acts as the crucial "CN" and "imine" sources. The produced α-iminonitriles have extensive applications as valuable synthetic building blocks for pharmacologically interesting heterocycles. This protocol could be further applied for the synthesis of iminonitrile-decorated phenanthridines and azapyrene. Interestingly, a remarkable aggregation-induced emission (AIE) effect was first observed for an iminonitrile-decorated pyrene derivative, which may open a particular area for iminonitrile applications in materials science.

INTRODUCTION

Isochromans and tetrahydroisoquinolines (THIQs) are prevalent in many biologically active compounds including marketing drugs (Figure 1A) (Scott and Williams, 2002; Ennis et al., 1998). For example, penidicitrinin B is well known for its potent antioxidant activity (Clark et al., 2006; Lu et al., 2008). Solifenacin (VESIcare) is a muscarinic antagonist indicated for the treatment of overactive bladder with associated problems such as increased urination frequency and urge incontinence (Ohtake et al., 2004; Cardozo et al., 2004). In general, the functionalization of the C1 position of both scaffolds is important for their biologically activities. The site-selective C1 mono-functionalization of isochromans and THIQs has been extensively studied, which commonly involved the formation of oxonium/iminium ions or α-heteroatom carboncentered radicals initiated by irradiation or treatment with an oxidant (Yoo et al., 2009; Zhou et al., 2017; Bartling et al., 2016; Lin et al., 2017; Muramatsu and Nakano, 2014; Muramatsu et al., 2013; Zhang et al., 2013; Meng et al., 2014). Although isochromans and THIQs with quaternary C1 carbons are of high potentials in drug discovery, represented by CJ-17493 (Shishido et al., 2008) and trabectedin (Germano et al., 2013; Demetri et al., 2009; Grosso et al., 2007), they still provide significant synthetic challenges to chemists. The C1 difunctionalization of isochromans and THIQs is limited in scope and commonly requires multiple steps using active Grignard or organolithium reagents (Figure 1B) (Guo et al., 2017; Li and Coldham, 2014).

Isocyanides have proven to be versatile C1 building blocks in organic synthesis and invoked ever-growing synthetic efforts, owing to their unique electronic configuration capable of reacting with electrophiles, nucleophiles, and radicals easily (Boyarskiy et al., 2015; Qiu et al., 2013; Song and Xu, 2017; Giustiniano et al., 2017). Although many challenges still remain due to the high energy barrier of activating the chemically inert $\mathrm{C}-\mathrm{H}$ bonds regioselectively, the synergy from the combination of isocyanide insertion and $\mathrm{C}-\mathrm{H}$ bond activation offers an efficient and powerful tool to establish complicated reactions and construct useful substances (Song and $\mathrm{Xu}, 2017$). Numerous results have been reported on isocyanide insertions with $\mathrm{C}\left(\mathrm{sp}^{2}\right)-\mathrm{H}$ or $\mathrm{C}(\mathrm{sp})-\mathrm{H}$ bond. However, isocyanide insertion into $\mathrm{C}\left(\mathrm{sp}^{3}\right)-\mathrm{H}$ bonds is challenging especially for the construction of quaternary carbon centers, since the pioneering intramolecular isocyanide insertion into benzylic C(sp ${ }^{3}$)-H bonds by Jones in the late 1980s (Jones and Kosar, 1986). Recently, a photolytic mono-amidation reaction of isochroman was achieved by Maruoka group through nucleophilic attack of excess amounts of isocyanide into the in situ generated oxocarbocation intermediate with phenyliodine bis(trifluoroacetate) (Figure 1C) (Sakamoto et al., 2015). In 2007, Zhu and co-workers reported an oxidative
${ }^{1}$ Department of Chemistry, Innovative Drug Research Center, Shanghai University, Shanghai 200444, China
${ }^{2}$ State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
${ }^{3}$ Qianweichang College, Shanghai University, Shanghai 200444, China
${ }^{4}$ These authors contributed equally
${ }^{5}$ Lead Contact
*Correspondence:
qttan@shu.edu.cn (Q.T.),
xubin@shu.edu.cn (B.X.)
https://doi.org/10.1016/j.isci. 2019.10.057

A Important C1 functionalized isochromans and tetrahydroisoquinolines

CJ-17,493
anti-emetic
Penidicitrinin B antioxidant

Noscapine
an antitussive

U-101387 anti-schizophrenic

Trabectedin anti-tumor

B Traditional synthesis of quaternary C1-substituted isochromans and THIQs

C Reactions of isocyanides with isochromans and THIQs

This Work: Isocyanides to carbimidoyl cyanides via silver-mediated sequential insertion of $\mathrm{C}\left(\mathrm{sp}^{3}\right)$ - H Bonds

Figure 1. C1-Functionalization of Isochromans, THIQs, and Dihydrophenanthridines
(A) Prevalence of C1 functionalized isochromans and THIQs motifs in marketing drugs and biologically active molecules.
(B) Traditional methods for the construction of the quaternary C1 carbons are limited in scope and usually require multiple steps and active Grignard or organolithium reagents.
(C) Reported reactions of isochromans and THIQs with isocyanides usually lead to C 1 mono-functionalized amides.
(D) Silver-mediated sequential isocyanide insertion of $\mathrm{C}\left(\mathrm{sp}^{3}\right)-\mathrm{H}$ bond of isochromans, THIQs, and dihydrophenanthridines affords quaternary mono-/dual α-iminonitrile substituted products or phenanthridines, where the isocyanide acts as both "imine" and "CN" sources. The photograph was taken under ultraviolet (UV) lamp (365 nm) for an iminonitrile-decorated azapyrene with remarkable AIE effect.

Ugi-type multicomponent reaction for the C1 monofunctionalization of THIOs (Figure 1C) (Ngouansavanh and Zhu, 2007). In these reports, no C1 disubstitution, leading to quaternary products could be observed from isochromans and THIQs.
α-Iminonitriles were generally prepared using highly toxic metal cyanides with multi-steps (Gualtierotti et al., 2012; You et al., 2014; Fontaine et al., 2008, 2009; Amos et al., 2003; De Corte et al., 1987; Surmont et al., 2009; Verhé et al., 1980; Maruoka et al., 1983), whereas improved synthetic method could be achieved by isocyanide insertion into C-O bond (Tobisu et al., 2007) or C-Halo bond (Chen et al., 2016). In view of the high bioactivities of isochromans and THIQs as well as our recent development of isocyanide chemistry (Huang et al., 2014; Fang et al., 2014; Hong et al., 2017), we herein report an unprecedented

		$\xrightarrow[\substack{\text { Solvent, Atmos., } \\ \text { Temp., } 3 \mathrm{~h}}]{\text { Catalyst }}$	 2a	X-ray structure of 2a	
Entry	Catalyst (mol\%)	Isocyanide (equiv)	Solvent	Temp. $\left({ }^{\circ} \mathrm{C}\right)$	Yield (\%) ${ }^{\text {b }}$
1	1	5.0	PhCl	80	47
2	$\mathrm{CuCl}(10)$	5.0	PhCl	80	27
3	FeCl3 (10)	5.0	PhCl	80	36
4	$\mathrm{Ag}_{2} \mathrm{CO}_{3}(10)$	5.0	PhCl	80	44
5	$\mathrm{AgNO}_{3}(10)$	5.0	PhCl	80	38
6	AgTFA (10)	5.0	PhCl	80	39
7	$\mathrm{AgOAc}(10)$	5.0	PhCl	80	42
8	AgOTf (10)	5.0	PhCl	80	$61^{\text {c }}$
9	AgOTf (10)	5.0	DCE	80	35
10	AgOTf (10)	5.0	DMF	80	NP
11	AgOTf (10)	5.0	DMSO	80	NP
12	AgOTf (10)	5.0	$\mathrm{CH}_{3} \mathrm{CN}$	80	NP
13	AgOTf (10)	5.0	dioxane	80	trace
14	AgOTf (10)	5.0	toluene	80	52
15	AgOTf (10)	5.0	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	20	22
16	AgOTf (5)	5.0	PhCl	80	51
17	AgOTf (20)	5.0	PhCl	80	50
18	AgOTf (10)	5.0	PhCl	80	$54^{\text {d }}$
19	AgOTf (10)	5.0	PhCl	80	$22^{\text {e }}$
20	AgOTf (10)	6.0	PhCl	80	56
21	AgOTf (10)	4.0	PhCl	80	54
22	AgOTf (10)	3.0	PhCl	80	36
23	AgOTf (10)	5.0	PhCl	100	44
24	AgOTf (10)	5.0	PhCl	60	39
25	AgOTf (10)	5.0	PhCl	80	$52^{\text {f }}$
26	AgOTf (10)	5.0	PhCl	80	54^{9}

Table 1. Optimization of Reaction Conditions ${ }^{\text {a }}$
${ }^{\text {a }}$ Reaction conditions: 1 a (0.3 mmol), catalyst ($10 \mathrm{~mol} \%$), DDQ (2.0 equiv), solvent (3.0 mL), 3 h , under a nitrogen atmosphere. DDQ $=$ 2,3-dichloro-5,6-dicyanobenzoquinone. $N P=$ no product.
${ }^{\text {b }}$ Yields of isolated products are given.
${ }^{c}(E)$ - N-tert-butyl-1-cyanoisochroman-1-carbimidoyl cyanide ($2 a^{\prime}$) was also isolated in 17% yield.
${ }^{\text {d }}$ DDO (3.0 equiv) was used.
${ }^{e}$ DDQ (1.0 equiv) was used.
funder an oxygen atmosphere.
gUnder an air atmosphere. H atoms of the X -ray structure were omitted for clarity.

$1 a-1 u$

2a-2u

2a, 61\%

${ }^{t} \mathrm{Bu}{ }^{\prime}$
${ }^{t} \mathrm{Bu}$
2b, $\mathrm{R}^{1}=7-\mathrm{Me}, 73 \%$
2c, $\mathrm{R}^{1}=7-\mathrm{Ph}, 64 \%$
2d, $\mathrm{R}^{1}=7-\mathrm{OMe}, 63 \%$
2e, $R^{1}=7-B r, 34 \%$
2f, $\mathrm{R}^{1}=5-\mathrm{Me}, 65 \%$
$\mathbf{2 g}, \mathrm{R}^{1}=5-\mathrm{Ph}, 67 \%$
2h, $R^{1}=5$-(3-furan), 67%

2k, 58%

2q, 53%

2I, 42\%

2r, 62\%

2m, 39\%

2s, 55%

2i, 43\%

2t, 73\%

2j, 51\%

2n, $n=1,53 \%$
2o, $n=2,52 \%$
2p, $n=3,57 \%$

2u, 46\%

Figure 2. Substrate Scope of Isochroman
Reaction Conditions: $1 \mathrm{a}-1 \mathrm{u}(0.3 \mathrm{mmol}),{ }^{\mathrm{t}} \mathrm{BuNC}(5.0$ equiv), $\mathrm{AgOTf}(10 \mathrm{~mol} \%), \mathrm{DDQ}(2.0$ equiv), $\mathrm{PhCl}(3.0 \mathrm{~mL}), 3-6 \mathrm{~h}$, under a nitrogen atmosphere, at $80^{\circ} \mathrm{C}$. Yields of isolated products are given: 12 h for $2 \mathrm{~h}, \mathbf{2 i}$, and $2 \mathrm{u} ; 10 \mathrm{~h}$ for $21 ; 7.5 \mathrm{~h}$ for 2 m .
silver-mediated sequential isocyanide insertion of $\mathrm{C}\left(\mathrm{sp}^{3}\right)-\mathrm{H}$ bonds to afford mono- or dual α-iminonitrile substituted isochromans and THIQs, as well as aromatized phenanthridines and azapyrene (Figure 1D). The significance of the given chemistry is as follows: (1) the formation of α-iminonitriles was first realized by the synergistically cascade isocyanide insertion via $\mathrm{C}-\mathrm{H}$ bond activation, where the isocyanide was used as both the crucial "CN" and "imine" sources; (2) it is the first example to construct pharmacologically relevant α-iminonitrile substituted isochromans and THIQs with quaternary carbon centers through direct $\mathrm{C}\left(\mathrm{sp}^{3}\right)-\mathrm{H}$ bond isocyanide insertion; (3) a remarkable aggregation-induced emission (AIE) effect was first observed for as-prepared α-iminonitrile substituted pyrene derivative, which may open a particular area for iminonitrile applications in materials science; (4) the α-iminonitrile substituted products are valuable synthetic building blocks for facile access of pharmacologically interesting heterocycles.

RESULTS AND DISCUSSION

Reaction Optimization

We started our investigation by exploring the reaction of isochroman (1a) with tert-butyl isocyanide in chlorobenzene at $80^{\circ} \mathrm{C}$ in the presence of $D D Q$ under a nitrogen atmosphere. To our surprise, a dual α-iminonitrile substituted isochroman 2a was isolated in 47% yield, without observation of any direct cyanated products (Table 1, entry 1) (Xu et al., 2012; Hong et al., 2014; Peng et al., 2012). Various metal catalysts were next tested, including $\mathrm{CuCl}, \mathrm{FeCl}_{3}$ and silver salts (entries $2-8$), and the desired product 2 a was obtained in 61% yield when AgOTf was applied (entry 8). Screening of the other solvents indicated chlorobenzene to be the suitable choice (entries 8-15). An extensive screening of the amounts of AgOTf (entries 16 and 17), DDQ (entries 18 and 19) and tert-butyl isocyanide (entries 20-22), temperature (entries 23 and 24), and the atmosphere (entries 25 and 26) revealed that the use of $10 \mathrm{~mol} \%$ of AgOTf and two equivalents of DDQ in chlorobenzene at $80^{\circ} \mathrm{C}$ under a nitrogen atmosphere provided the most suitable conditions.

Figure 3. Substrate Scope of Isochroman
Reaction conditions: $3 \mathrm{a}-3 \mathrm{l}(0.3 \mathrm{mmol}),{ }^{t} \mathrm{BuNC}(5.0$ equiv), $\mathrm{AgOTf}(10 \mathrm{~mol} \%), \mathrm{DDQ}$ (2.0 equiv), $\mathrm{PhCl}(3.0 \mathrm{~mL}), 19-24 \mathrm{~h}$, under a nitrogen atmosphere, at $100^{\circ} \mathrm{C}$. Yields of isolated products are given. H atoms in the X -ray structure were omitted for clarity.

Substrate Scope of Isochromans

With the optimized reaction conditions in hand, a variety of isochromans were examined as shown in Figure 2. Substrates bearing different functional groups on the aryl ring, regardless of their substitution patterns, were compatible with this reaction and provided the corresponding products in moderate to good yields ($2 \mathrm{~b}-2 \mathrm{i}$). The reaction was not limited to simple isochromans, but naphthyl- or thienyl-fused substrates also gave the desired di- α-iminonitrile substituted products in moderate yields ($2 \mathrm{j}-2 \mathrm{~m}$). Isochromans with 3- or 4-substituent could afford the spiro- ($2 \mathrm{n}-2 \mathrm{p}$); 3,3-dialkyl (2q); 3-aryl (2r); 4-alkyl (2s); and 3,4-fused (2t) products in moderate to good yields. Notably, when symmetrical $1 \mathrm{H}, 3 \mathrm{H}$-benzo[de]isochromene (1u) bearing two potential benzyl $\mathrm{C}\left(\mathrm{sp}^{3}\right)-\mathrm{H}$ bond insertion positions was applied in this reaction, only one position was attacked and afforded the product 2 u predominately.

To further explore the scope and generality of this method, C1 mono-substituted isochromans were next explored for this insertion reaction with elevated temperature at $100^{\circ} \mathrm{C}$. As illustrated in Figure 3, substrates with aryl groups, regardless of the substituent position on the aryl rings, provided the corresponding products in good yields (4a-4f). Similarly, 1-naphthyl or 1-thienyl isochromans afforded the desired products 4 g and 4 h , respectively. The identity of 4 h was determined by spectral analysis and further confirmed by X-ray crystallographic analysis. Moreover, 4-methyl-1-phenyl-isochroman (3i) could be employed in this transformation and afforded the product $4 \mathbf{i}$ in 79% yield with a diastereomeric ratio of 3.3:1 as determined by proton NMR. Intriguingly, 6 H -benzo[c]-chromene derivative 4 j could be isolated almost quantitatively, which may be attributed to the perfect stabilization of generated oxocarbenium ion (Meng et al., 2014; Jung and Floreancig, 2009) by the electron delocalization of conjugated system. Owing to the similar reason, isocyanide insertion will occur selectively on the more sterically hindered C1-position, instead of C3-position, to form isochroman 4 k in 74% yield. Furthermore, the less reactive 1 -methyl-isochroman substrate also afforded the α-iminonitrile product 4 II in 60% yield at C 1 -position.

Substrate Scope of THIQs

The optimized conditions for isochromans could be further applicable to THIQs. Interestingly, in this case, only one α-iminonitrile group and a nitrile group were installed to the C 1 position in comparison to the introduction of two α-iminonitriles for isochromans. As shown in Figure 4, THIQs bearing various substituents or functional groups on the aryl ring were smoothly converted into the corresponding products in moderate to excellent yields (6a-6I). Similarly, the expected products were obtained for THIQs analogues with fused heterocycle (6 m) or extended π-systems (6 n). THIQs with modified piperidine rings also

5a-5t

6a-6t

6a, 79%

X-ray structure of $\mathbf{6 a}$

6k, 99%

$6 \mathbf{r}, 71 \%$, d.r. $=1: 1$
(determined by crude ${ }^{1} \mathrm{H}$ NMR)

$6 b-6 i$
$\mathbf{6 b}, \mathrm{R}=\mathrm{Me}, 76 \% \quad \mathbf{6 g}, \mathrm{R}=\mathrm{Br}, 40 \%$
6c, $R=P h, 77 \%$
6h, $\mathrm{R}=\cdot \boldsymbol{\xi}=\mathrm{TMS}, 57 \%$
6d, R = OMe, 99\%
6i, $R=B p i n, 50 \%$
6e, $R=F, 43 \%$
6f, $R=C l, 46 \%$

6I, 86%

6s, $R=O M e, 62 \%$
$6 \mathbf{t}, \mathrm{R}=\mathrm{NO}_{2}, 48 \%$

Figure 4. Substrate Scope of THIQs
Reaction Conditions: 5a-5t (0.3 mmol), ${ }^{\mathrm{t}} \mathrm{BuNC}(1.2 \mathrm{mmol})$, AgOTf (0.045 mmol$), \mathrm{DDQ}(0.9 \mathrm{mmol}), \mathrm{PhCl}(4.5 \mathrm{~mL}), 3-6 \mathrm{~h}$, under nitrogen atmosphere, at $80^{\circ} \mathrm{C}$. Yields of isolated products are given. H atoms in the X -ray structure were omitted for clarity.
afforded the desired spiro- or fused products (60-6r). The replacement of the tosyl group by benzoyl groups gave similar results ($6 \mathbf{s}-6 \mathrm{t}$), whereas the use of acetyl group led to an unidentified mixture. However, when the tosyl group was replaced by methanesulfonyl group, a separable mixture of $6 \mathbf{u}$ and $6 \mathbf{u}^{\prime}$ was obtained, which indicates that the existed more steric hindrance of tosyl group may prohibit the introduction of the second α-iminonitrile group. The different results of THIQs and isochromans may also attribute to the existence of the protecting group on THIQs , which sterically prohibits the introduction of the second α-iminonitrile group.

Substrate Scope of Dihydrophenanthridines

To our surprise, 5-tosyl-5,6-dihydro-phenanthridine (7a) under the same conditions gave aromatized phenanthridine 8a with the elimination of the tosyl group. Functional groups such as methyl, halogen, phenyl, and alkynyl could be tolerated ($8 \mathrm{~b}-8 \mathrm{e}$) (Figure 5). The structure of the product 8 b was confirmed by X-ray crystallographic analysis. Interestingly, the dihedral angle of the phenanthridine plane and the α-iminonitrile plane is 41°, which suggests an effective conjugation between the α-iminonitrile and the phenanthridine. Attributed to the strong tendency toward aromatization of dihydrophenathridine substrates, phenanthridines without substituents at the C6 position were observed in the reaction as a main byproduct, which lead to the formation of 8 in moderate yields. It should be noted that phenanthridines and their derivatives are of great interest in medicinal chemistry and materials science due to their potent biological activities and optoelectronic properties (Ishikawa, 2001; Dubost et al., 2012; Stevens et al., 2008).

Synthetic Applications of the Products

To demonstrate the synthetic utility of the given approach, we next turned our attention to the application of the current protocols, as depicted in Figure 6. Products (2a and 4I) derived from isochromans were

Figure 5. Substrate Scope of Dihydrophenanthridine
Condition A: $7(0.3 \mathrm{mmol}),{ }^{t} \mathrm{BuNC}(1.2 \mathrm{mmol})$, $\mathrm{AgOTf}(0.045 \mathrm{mmol})$, DDQ (0.9 mmol$), \mathrm{PhCl}(4.5 \mathrm{~mL}), 3 \mathrm{~h}$, under a nitrogen atmosphere, at $80^{\circ} \mathrm{C}$.
Condition B: $7(0.3 \mathrm{mmol}),{ }^{t} \mathrm{BuNC}(1.5 \mathrm{mmol})$, AgOTf $(0.045 \mathrm{mmol})$, DDQ (1.2 mmol$), \mathrm{PhCl}(3.0 \mathrm{~mL}), 3 \mathrm{~h}$, under a nitrogen atmosphere, at $80^{\circ} \mathrm{C}$. Yields of isolated products are given. H atoms in the X -ray structure were omitted for clarity.
selected as examples. The corresponding isochroman carboxylate derivatives (9a-9c) could be easily obtained from α-iminonitrile 41 in the presence of alumina or by treatment with hydrochloride solution, respectively. Exposure of 41 to hydroxylamine in ethanol leads to the formation of α-cyanooxime 9 d in good yield. Notably, isochromans with aminoquinoxaline (9e), benzothiazole (9f), or benzoxazole (9g) substitutions at C1 position could be synthesized smoothly from α-iminonitrile 4I, which provides a shortcut for pharmacologically interesting isochromanyl heterocycles. Iminonitrile substituted isochromans (2a and 4I) are also proven to be excellent cyanating reagents, for example, direct $\mathrm{C}-\mathrm{H}$ bond cyanation of 2-phenylpyridine or 2-phenylpyrimidine could be achieved to afford cyano products 9i (Xu et al., 2012; Hong et al., 2014) or 9 j (Xu et al., 2012; Peng et al., 2012) efficiently, together with the formation of quaternary carbon centered amide (9a) or diamide (9h) in high yields, which is very difficult to obtain with general methods. Similarly, 1-(pyrimidin-2-yl)-1H-indole could be cyanated with 2 a to give the corresponding nitrile product 9k in 50\% yield (Xu et al., 2012).

Application in Materials

Luminescent materials are the basis of many high-tech innovations such as organic light-emitting diodes (OLEDs), biological probes, dyes, and chemical sensors. Pyrene, a flat aromatic molecule, exhibits excellent fluorescent properties and has found numerous applications in many fields (Duarte and Müllen, 2011). Therefore, we plan to prepare a α-iminonitrile-decorated pyrene derivative 11 by this newly developed method in order to investigate the effect of the introduced α-iminonitrile functional group on the optical properties. To our delight, compound 11 was successfully obtained through a two-fold isocyanide insertion to the $\mathrm{C}\left(\mathrm{sp}^{3}\right)-\mathrm{H}$ bonds of 10 (Figure 7A). The optical properties of 11 were next investigated. It is wellknown that most of pyrene derivatives are highly emissive in solution, whereas the emission is weak in the solid state due to the detrimental aggregation-caused quenching (ACQ). To our surprise, compound 11 was non-emissive when dissolved in organic solvents such as THF, but the solid showed bright green luminescence ($\lambda_{e m}=528 \mathrm{~nm}$, Figure 7B and Video S1). It underwent a further dramatic change from a non-emissive state in THF to highly emissive aggregated states in THF/water mixtures when the water content exceeded 60 vol\% (Figures 7C, 7D, and S4); this phenomenon is a hallmark of the aggregation-induced emission (AIE) effect (Mei et al., 2015; Hong et al., 2011; Luo et al., 2001). In comparison, parent 4,9-diazapyrnene (Mosby, 1957), without α-iminonitrile substituent, is emissive in pure organic solvent (Figure S2), and no apparent AIE effect was observed. These results indicate that α-iminonitrile substituent might be an interesting AlEgen when appended to π-extended aromatic compounds. Furthermore, compound 11 showed a considerable bathochromic shift (63 nm) vs. parent 4,9-diazapyrnene both in the solid state (Figure S3), which disclosed that iminonitrile substituted isochromans would be an excellent chromophore for tuning the color of emissive materials.

9c, 89%

9d, 73\%

9f, $X=S, 3 h, 41 \%$
9g, $X=0,4 h, 55 \%$
$9 \mathrm{a}+$

9i, 75%

9h, 84%
X = CH, 9i, 73\%
$X=N, \quad 9 j, 67 \%$
9h, 94\%

Figure 6. Synthetic applications
Reaction conditions: (A) $\mathrm{Al}_{2} \mathrm{O}_{3}$, toluene, $150^{\circ} \mathrm{C}, 25 \mathrm{~h}$; (B) $\mathrm{HCl}, \mathrm{MeOH}$, room temperature, 10 h ; (C) $\mathrm{HCl}, \mathrm{CH}_{3} \mathrm{CN}$, room temperature, $2.5 \mathrm{~h} ;(\mathrm{D}) \mathrm{NH}_{2} \mathrm{OH} \cdot \mathrm{HCl}, \mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{EtOH}$, reflux, 4 h ; (E) o-Phenylenediamine, $\mathrm{AcOH}, 120^{\circ} \mathrm{C}, 7.5 \mathrm{~h} ;(\mathrm{F})$ 2-Aminobenzenethiol or 2-aminophenol, $\mathrm{AcOH}, 120^{\circ} \mathrm{C}$; (G) 2-Phenylpyridine, $\mathrm{Pd}(\mathrm{OAc})_{2}, \mathrm{Cu}(\mathrm{TFA})_{2}, \mathrm{THF}, 120^{\circ} \mathrm{C}, 23 \mathrm{~h}$; (H) 2Phenylpyridine or 2-phenylpyrimidine, $\mathrm{Pd}(\mathrm{OAc})_{2}, \mathrm{Cu}(\mathrm{TFA})_{2}, \mathrm{THF}, 120^{\circ} \mathrm{C}, 23 \mathrm{~h}$; (I) 1-(Pyrimidin-2-yl)-1H-indole, $\mathrm{Pd}(\mathrm{OAc})_{2}$, $\mathrm{Cu}(\mathrm{TFA})_{2}, \mathrm{THF}, 120^{\circ} \mathrm{C}, 23 \mathrm{~h}$

Mechanistic Studies

To gain insight into the mechanism of this transformation, several control experiments were carried out as shown in Figure 8. Both isocyanide (Xu et al., 2012; Hong et al., 2014; Peng et al., 2012) and DDQ (Zhang et al., 2012) have been reported as effective cyanide sources in the literatures. To address the possible "CN" source in the reaction, the o- or p-chloranil, which has the similar character to DDQ except for the absence of cyanide groups, was used to replace DDQ under the optimized conditions. In the presence of o-chloranil, the desired products (2a, 4a and 4I) could also be afforded (Figure 8, Reactions A and B), albeit in relatively lower yields, which may be due to the different oxidative capacity between o-chloranil and DDQ. It was reported that DDQ has a higher reduction potential (0.6 V vs SCE) than o- and p-chloranil (0.14 and 0.02 V vs SCE, respectively) (Rathore and Kochi, 1998; Fukuzumi et al., 1993), which indicates that DDQ is a more powerful oxidant. When p-chloranil was used for the reaction of $3 \mathbf{j}$, iminonitrile $4 \mathbf{j}$ could be afforded in 71% yield (Figure 8, Reaction C). When cyclohexyl- or 2,6-dimethylphenyl isocyanide was used instead, which are rarely used as "CN" source, no iminonitrile substituted isochromans could be isolated in the presence of DDQ. These results may rule out the possibility of DDQ as the main source of "CN." Furthermore, the distribution of the cyanated products ($2 a, 2 a^{\prime}$ and 12) was sensitive to the amount of the isocyanide with the same amount of DDQ as an oxidant (Figure 8, Reaction D), which suggested the isocyanide as the "CN" source rather than DDQ. Interestingly, mono α-iminonitrile substituted isochroman was not obtained under these conditions.

The electrospray ionization mass spectroscopy (ESI-MS) has been used as an effective method for the characterization of reaction intermediates, which provides direct evidence for the reaction mechanism

A

B

Figure 7. Aggregation-induced Emission (AIE) Behavior of Iminonitrile-decorated 4,9-diazapyrene
(A) Synthesis through two-fold silver-mediated isocyanide insertion of $\mathrm{C}\left(\mathrm{sp}^{3}\right)$-H Bond of 10 .
(B) Photos of 11 in the solid state under UV lamp illumination.
(C) PL spectra of 11 in THF/water mixtures with different fractions of water $\left(f_{w}\right)$.
(D) Plot of $I / I_{0} 1$ versus f_{w}, where I_{0} is the PL intensity in pure THF solution ([11] = $20 \mu \mathrm{M}$). Inset: Photos of 11 in THF/water mixtures ($f_{w}=0,90$ vol\%).
(lacobucci et al., 2016; Guo et al., 2005; Hinderling et al., 1998). To further probe the progress of this cascade transformation, we monitored the reaction mixture of isochroman 1a, ${ }^{t} \mathrm{BuNC}, \mathrm{DDQ}$, and AgOTf in dichloromethane at room temperature by ESI-MS and electrospray ionization tandem mass spectrometry (ESI-MS/MS) techniques (for details, see Transparent Methods and Figures S9-S12). At the early stage of the reaction (30 min), the corresponding signal of some important ionic reactive species, such as intermediate \mathbf{B} at $m / z 133, \mathrm{D}$ at $\mathrm{m} / \mathrm{z} 299$, $[\mathrm{E}+\mathrm{H}]^{+}$at $\mathrm{m} / \mathrm{z} 243, \mathrm{G}$ at $\mathrm{m} / \mathrm{z} 324$, and H at $\mathrm{m} / \mathrm{z} 407$, were observed in the positive ion ESI-MS spectrum of the reaction mixture (Figure $9 B$ and S9-S12 and Schemes S1-S4). These results and the corresponding proposed dissociation pathways provide strong evidence for the reaction key intermediates.

Although a detailed reaction pathway remains to be clarified, a plausible mechanism for this reaction was proposed on the basis of above preliminary results (Figure 9A). A radical pathway might be ruled out as the reaction could not be inhibited by a typical radical scavenger 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO). Initially, isochroman A was oxidized by DDQ in a reversible process to form the highly reactive benzoxy cation intermediate B (Jung and Floreancig, 2009), followed by the isocyanide addition to give the nitrilium ion intermediate C. The role of silver triflate may be accounted for the formation of coordinated silver-isocyanide complex to improve the nucleophilic reactivity of isocyanide (Gao et al., 2013; Liu et al., 2015; Álvarez-Corral et al., 2008). The attack by a second molecule of isocyanide on cation C afforded intermediate D (Tobisu et al., 2007; Saegusa et al., 1969), which would furnish the double isocyanide insertion product E via the leaving of tert-butyl cation by means of β-scission of the imidoyl cation (Saegusa

(Reaction A)

$\mathrm{R}=\mathrm{Ph}, \mathbf{4 a}, 24 \%, 80^{\circ} \mathrm{C}$
$\mathrm{R}=\mathrm{Me}, 4 \mathrm{I}, 34 \%, 80^{\circ} \mathrm{C}$
(Reaction B)

Figure 8. Preliminary Mechanistic Studies
et al., 1969; Xia and Ganem, 2002). The compound $E(R=H)$ may generate the cation F rapidly as it has never been isolated during the reaction. Following the above procedure again, finally, the bis-iminonitrile product 2 a could be obtained smoothly from intermediate H .

Conclusion

We have developed a direct synthesis of iminonitrile substituted isochromans and THIQs with quaternary carbon centers through silver-mediated sequential isocyanide insertion of $\mathrm{C}\left(\mathrm{sp}^{3}\right)-\mathrm{H}$ bonds. The isocyanide is the typical precursor of α-iminonitrile and is conceived to play a two-fold role as both the crucial "CN" and "imine" sources. Mechanistic studies by ESI-MS and ESI-MS/MS techniques revealed that the reaction probably proceeded through nitrilium ion as the key intermediate. The given approach provided a convenient and practical method for the construction of synthetic meaningful α-iminonitrile skeleton in moderate to good yields with preferred substrate adaptability. The α-iminonitriles are not only valuable building blocks for the synthesis of pharmacologically interesting heterocycles but also potential chromophores for tuning the optical behavior of emissive materials, leading to an interesting AIEgen when appended to π-extended aromatics.

Limitations of the Study

The substrates with strong electron-withdrawing groups such as CF_{3} and CN on the aryl rings are not suitable under standard conditions. Substrates with moderate electron-withdrawing halogens gave relatively lower yields. THIQs with free $\mathrm{N}-\mathrm{H}$ bond or other protecting groups such as Boc and Ac gave trace amount of the desired products or complex mixtures. 1,3-Dihydroisobenzofuran and isoindoline also gave complicated mixture.

Figure 9. Plausible Mechanism and the Detection of the Key Intermediates by ESI-MS
(A) Proposed mechanism for iminonitrile substituted isochromans.
(B) The ESI-MS spectra of the intermediates in the reaction at the early stage of the reaction. Most of the proposed intermediates were detected.

METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.

DATA AND CODE AVAILABILITY

The structures of $2 \mathrm{a}, 4 \mathrm{~h}, 6 \mathrm{a}$, and 8 b reported in this article have been deposited in the Cambridge Crystallographic Data Center under accession numbers CCDC: 1533930, 1534967, 1829908, and 1829633

SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.isci.2019.10.057

ACKNOWLEDGMENTS

We thank the National Natural Science Foundation of China $(21672136,21871174,21672140)$ and Innovation Program of Shanghai Municipal Education Commission (2019-01-07-00-09-E00008) for financial support. The authors thank Prof. Chang-Hua Ding and Dr. Mingchun Gao for their helpful discussion. We also thank Prof. Hongmei Deng (Laboratory for Microstructures, SHU) and Mr. Hui Wang (Department of Chemistry, SHU) for spectroscopic measurements.

AUTHOR CONTRIBUTIONS

B.X. directed the research, conceived and developed the concepts, and provided overall supervision. B.X and Q.T. wrote the manuscript and prepared the Supplemental Information. H.C., H.L., and R.Y. performed the experiments. B.L. performed the analysis of X-ray single crystal diffraction. H.W. and Y.G. investigated the intermediates by ESI-MS. Q.T. and H.L. investigated the AIE effect. All authors contributed to write the manuscript. H.C. and H.L. contributed equally to this work.

DECLARATION OF INTERESTS

The authors declare no competing interests.

Received: August 6, 2019
Revised: October 25, 2019
Accepted: October 27, 2019
Published: November 22, 2019

REFERENCES

Álvarez-Corral, M., Muñoz-Dorado, M., and Rodríguez-García, I. (2008). Silver-mediated synthesis of heterocycles. Chem. Rev. 108, 3174 3198.

Amos, D.T., Renslo, A.R., and Danheiser, R.L. (2003). Intramolecular [4 + 2] cycloadditions of iminoacetonitriles: a new class of azadienophiles for hetero Diels-Alder reactions. J. Am. Chem. Soc. 125, 4970-4971.

Bartling, H., Eisenhofer, A., König, B., and Gshwind, R.M. (2016). The photocatalyzed azaHenry reaction of N -aryltetrahydroisoquinolines: comprehensive mechanism, H^{\bullet} - versus H^{+}. abstraction, and background reactions. J. Am. Chem. Soc. 138, 11860-11871.

Boyarskiy, V.P., Bokach, N.A., Luzyanin, K.V., and Kukushikin, V.Y. (2015). Metal-mediated and metal-catalyzed reactions of isocyanides. Chem. Rev. 115, 2698-2779.

Cardozo, L., Lisec, M., Millard, R., Trip, O.V. Kuzmin, I., Drogendijk, T.E., Huang, M., and Ridder, A.M. (2004). Randomized, double-blind placebo controlled trial of the once daily antimuscarinic agent solifenacin succinate in patients with overactive bladder. J. Urol. 172, 1919-1924.

Chen, Z., Zhang, Y., Yuan, Q., Zhang, F., Zhu, Y., and Shen, J. (2016). Palladium-catalyzed synthesis of α-iminonitriles from aryl halides via isocyanide double insertion reaction. J. Org. Chem. 81 1610-1616.

Clark, B.R., Capon, R.J., Lacey, E., Tennant, S. and Gill, J.H. (2006). Citrinin revisited: from monomers to dimers and beyond. Org. Biomol. Chem. 4, 1520-1528.

De Corte, B., Denis, J.M., and De Kimpe, N
(1987). A convenient synthesis of C-unsubstituted and C-monoalkylated ketene imines by dehydrocyanation of imidoyl cyanides using

vacuum gas-solid reactions. J. Org. Chem. 52,

 1147-1149.Demetri, G.D., Chawla, S.P., Mehren, M., Ritch, P., Baker, L.H., Blay, J.Y., Hande, K.R., Keohan, M.L., Samuels, B.L., Schuetze, S., et al. (2009). Efficacy and safety of Trabectedin in patients with advanced or metastatic liposarcoma or leiomyosarcoma after failure of prior anthracyclines and ifosfamide: results of a randomized phase II study of two different schedules. J. Clin. Oncol. 27, 4188-4196.

Duarte, T., and Müllen, K. (2011). Pyrene-based materials for organic electronics. Chem. Rev. 111, 7260-7314.

Dubost, E., Dumas, N., Fossey, C., Magnelli, R., Butt-Gueulle, S., Ballandonne, C., Caignard, D.H., Dulin, F., Santos, J.S., Millet, P., et al. (2012). Synthesis and structure-affinity relationships of selective high-affinity $5-\mathrm{HT}_{4}$ receptor antagonists: application to the design of new potential single
photon emission computed tomography tracers. J. Med. Chem. 55, 9693-9707.

Ennis, M.D., Ghazal, N.B., Hoffman, R.L., Smith, M.W., Schlachter, S.K., Lawson, C.F., Im, W.B., Pregenzer, J.F., Svensson, K.A., Lewis, R.A., et al. (1998). Isochroman-6-carboxamides as highly selective $5-\mathrm{HT}_{1 \mathrm{D}}$ agonists: potential new treatment for migraine without cardiovascular side effects. J. Med. Chem. 41, 2180-2183.

Fang, T., Tan, Q., Ding, Z., Liu, B., and Xu, B. (2014). Pd-catalyzed oxidative annulation of hydrazides with isocyanides: synthesis of 2-amino-1,3,4-oxadiazoles. Org. Lett. 16, 23422345.

Fontaine, P., Chiaroni, A., Masson, G., and Zhu, J. (2008). One-pot three-component synthesis of α-iminonitriles by IBX/TBAB-mediated oxidative Strecker reaction. Org. Lett. 10, 1509-1512.

Fontaine, P., Masson, G., and Zhu, J. (2009). Synthesis of pyrroles by consecutive multicomponent reaction/[4 + 1] cycloaddition of α-iminonitriles with isocyanides. Org. Lett. 11, 1555-1558.

Fukuzumi, S., Fujita, M., Matsubayashi, G., and Otera, J. (1993). Electron transfer vs nucleophilic addition of ketene silyl acetals with halogenated p-benzoquinone derivatives. Chem. Lett. 22, 1451-1454.

Gao, M., He, C., Chen, H., Bai, R., Cheng, B., and Lei, A. (2013). Synthesis of pyrroles by click reaction: silver-catalyzed cycloaddition of terminal alkynes with isocyanides. Angew. Chem. Int. Ed. 52, 6958-6961.

Germano, G., Frapolli, R., Belgiovine, C., Anselmo, A., Pesce, S., Liguori, M., Erba, E., Uboldi, S., Zucchetti, M., Pasqualini, F., et al. (2013). Role of Macrophage targeting in the antitumor activity of Trabectedin. Cancer Cell 23, 249-262.

Giustiniano, M., Basso, A., Mercalli, V., Massarotti, A., Novellino, E., Tron, G.C., and Zhu, J. (2017). To each his own: isonitriles for all flavors. Functionalized isocyanides as valuable tools in organic synthesis. Chem. Soc. Rev. 46, 12951357.

Grosso, F., Jones, R.L., Demetri, G.D., Judson, I., Blay, J., Cesne, A., Sanfilippo, R., Casieri, P., Collini, P., Dileo, P., et al. (2007). Efficacy of trabectedin (ecteinascidin-743) in advanced pretreated myxoid liposarcomas: a retrospective study. Lancet Oncol. 8, 595-602.

Gualtierotti, J., Schumacher, X., Fontaine, P., Masson, G., Wang, Q., and Zhu, J. (2012). Amidation of aldehydes and alcohols through α-iminonitriles and a sequential oxidative threecomponent Strecker reaction/thio-Michael addition/alumina-promoted hydrolysis process to access β-mercaptoamides from aldehydes, amines, and thiols. Chem. Eur. J. 18, 1481214819.

Guo, D., Li, B., Wang, D., Gao, Y., Guo, S., Pan, G., and Wang, Y. (2017). Synthesis of 6H-benzo[c] chromenes via palladium-catalyzed
intramolecular dehydrogenative coupling of two aryl C-H bonds. Org. Lett. 19, 798-801.

Guo, H., Qian, R., Liao, Y., Ma, S., and Guo, Y. (2005). ESI-MS studies on the mechanism of Pd(0)-
catalyzed three-component tandem double addition-cyclization reaction. J. Am. Chem. Soc. 127, 13060-13064.

Hinderling, C., Adlhart, C., and Chen, P. (1998). Olefin metathesis of a ruthenium carbene complex by electrospray ionization in the gas phase. Angew. Chem. Int. Ed. 37, 2685-2689.

Hong, X., Tan, Q., Liu, B., and Xu, B. (2017). Isocyanide-induced activation of copper sulfate: direct access to functionalized heteroarene sulfonic esters. Angew. Chem. Int. Ed. 56, 39613965.

Hong, X., Wang, H., Qian, G., Tan, Q., and Xu, B. (2014). Rhodium-catalyzed direct C-H bond cyanation of arenes with isocyanide. J. Org. Chem. 79, 3228-3237.

Hong, Y., Lam, J.W.Y., and Tang, B. (2011). Aggregation-induced emission. Chem. Soc. Rev. 40, 5361-5388.

Huang, X., Xu, S., Tan, Q., Gao, M., Li, M., and Xu, B. (2014). A copper-mediated tandem reaction through isocyanide insertion into $\mathrm{N}-\mathrm{H}$ bonds: efficient access to unsymmetrical tetrasubstituted ureas. Chem. Commun. 50, 1465-1468.

Iacobucci, C., Reale, S., and De Angelis, F. (2016). Elusive reaction intermediates in solution explored by ESI-MS: reverse periscope for mechanistic investigations. Angew. Chem. Int. Ed. 55, 2980-2993.

Ishikawa, T. (2001). Benzo[c]phenanthridine bases and their antituberculosis activity. Med. Res. Rev. 21, 61-72.

Jones, W.D., and Kosar, W.P. (1986). Carbonhydrogen bond activation by ruthenium for the catalytic synthesis of indoles. J. Am. Chem. Soc. 108, 5640-5641.

Jung, H.H., and Floreancig, P.E. (2009).
Mechanistic analysis of oxidative C-H cleavages using inter- and intramolecular kinetic isotope effects. Tetrahedron 65, 10830-10836.

Li, X., and Coldham, I. (2014). Synthesis of 1,1disubstituted tetrahydroisoquinolines by lithiation and substitution, with in situ IR spectroscopy and configurational stability studies. J. Am. Chem. Soc. 136, 5551-5554.

Lin, S., Sun, G., and Kang, Q. (2017). A visible-light-activated rhodium complex in enantioselective conjugate addition of α-amino radicals with Michael acceptors. Chem. Commun. 53,7665-7668.

Liu, J., Liu, Z., Liao, P., Zhang, L., Tu, T., and Bi, X. (2015). Silver-catalyzed cross-coupling of isocyanides and active methylene compounds by a radical process. Angew. Chem. Int. Ed. 54, 10618-10622.

Lu, Z., Lin, Z., Wang, W., Du, L., Zhu, T., Fang, Y., Gu, Q., and Zhu, W. (2008). Citrinin dimers from the halotolerant fungus Penicillium citrinum B-57. J. Nat. Prod. 71, 543-546.

Luo, J., Xie, Z., Lam, J.W.Y., Cheng, L., Chen, H., Qiu, C., Kwok, H.S., Zhan, X., Liu, Y., Zhu, D., and Tang, B.Z. (2001). Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole. Chem. Commun. 1740-1741.

Maruoka, K., Miyazaki, T., Ando, M., Matsumura, Y., Sakane, S., Hattori, K., and Yamamoto, H. (1983). Organoaluminum-promoted Beckmann rearrangement of oxime sulfonates. J. Am. Chem. Soc. 105, 2831-2843.

Mei, J., Leung, N.C., Kwok, R.T.K., Lam, J.W.Y., and Tang, B.Z. (2015). Aggregation-induced emission: together we shine, united we soar! Chem. Rev. 115, 11718-11940.

Meng, Z., Sun, S., Yuan, H., Lou, H., and Liu, L. (2014). Catalytic enantioselective oxidative crosscoupling of benzylic ethers with aldehydes. Angew. Chem. Int. Ed. 53, 543-547.

Mosby, W.L. (1957). Pyrido[2,3,4,5-Imn] phenanthridine. J. Org. Chem. 22, 671-673.

Muramatsu, W., and Nakano, K. (2014). Organocatalytic approach for $\mathrm{C}\left(\mathrm{sp}^{3}\right)-\mathrm{H}$ Bond arylation, alkylation, and amidation of isochromans under facile conditions. Org. Lett. 16, 2042-2045.

Muramatsu, W., Nakano, K., and Li, C. (2013). Simple and direct $\mathrm{sp}^{3} \mathrm{C}-\mathrm{H}$ bond arylation of tetrahydroisoquinolines and isochromans via 2,3-dichloro-5,6-dicyano-1,4-benzoquinone oxidation under mild conditions. Org. Lett. 15, 3650-3653.

Ngouansavanh, T., and Zhu, J. (2007). IBXMediated oxidative Ugi-type multicomponent reactions: application to the N and C 1 functionalization of tetrahydroisoquinoline. Angew. Chem. Int. Ed. 46, 5775-5778.

Ohtake, A., Ukai, M., Hatanaka, T., Kobayashi, S., Ikeda, K., Sato, S., Miyata, K., and Sasamata, M. (2004). In vitro and in vivo tissue selectivity profile of solifenacin succinate (YM905) for urinary bladder over salivary gland in rates. Eur. J. Pharmacol. 492, 243-250.

Peng, J., Zhao, J., Hu, Z., Liang, D., Huang, J., and Zhu, Q. (2012). Palladium-catalyzed C(sp2)-H cyanation using tertiary amine derived isocyanide as a cyano source. Org. Lett. 14, 4966-4969.

Qiu, G., Ding, Q., and Wu, J. (2013). Recent advances in isocyanide insertion chemistry. Chem. Soc. Rev. 42, 5257-5269.

Rathore, R., and Kochi, J.K. (1998). Acid catalysis vs electron-transfer catalysis via organic cations or cation-radicals as the reactive intermediates. Are these distinctive mechanisms? Acta Chem. Scand. 52, 114-130.

Saegusa, T., Takaishi, N., and Ito, Y. (1969). Cationic isomerization and oligomerization of isocyanide. J. Org. Chem. 34, 4040-4046.

Sakamoto, R., Inada, T., Selvakumar, S., Moteki, S.A., and Maruoka, K. (2015). Efficient photolytic C-H bond functionalization of alkylbenzene with hypervalent iodine(III) reagent. Chem. Commun. 52, 3758-3761.

Scott, J.D., and Williams, R.M. (2002). Chemistry and biology of the tetrahydroisoquinoline antitumor antibiotics. Chem. Rev. 102, 16691730.

Shishido, Y., Wakabayashi, H., Koike, H., Ueno, N., Nukui, S., Yamagishi, T., Murata, Y., Naganeo, F., Mizutani, M., Shimada, K., et al. (2008). Discovery and stereoselective synthesis of the
novel isochroman neurokinin-1 receptor antagonist 'CJ-17,493'. Bioorg. Med. Chem. 16 7193-7205

Song, B., and Xu, B. (2017). Metal-catalyzed C-H functionalization involving isocyanides. Chem. Soc. Rev. 46, 1103-1123.

Stevens, N., O'Connor, N., Vishwasrao, H., Samaroo, D., Kandel, E.R., Akins, D., Drain, C.M., and Turro, N.J. (2008). Two color RNA intercalating probe for cell imaging applications. J. Am. Chem. Soc. 130, 7182-7183.

Surmont, R., De Corte, B., and De Kimpe, N. (2009). Regiospecific synthesis of α-chloro- and α-fluoro-1,2-diones. Tetrahedron Lett. 50, 38773880.

Tobisu, M., Kitajima, A., Yoshioka, S., Hyodo, I., Oshita, M., and Chatani, N. (2007). Brønsted acid catalyzed formal insertion of isocyanides into a CO bond of acetals. J. Am. Chem. Soc. 129, 1143111437.

Verhé, R., De Kimpe, N., De Buyck, L., Tilley, M., and Schamp, N. (1980). Reactions of N-1 (2,2dichloroalkylidene)amines with potassium cyanide: synthesis of β-chloro- α-cyanoenamines, α-chloroimidates and 2-amino-5-cyan.
Tetrahedron 36, 131-142.
Xia, Q., and Ganem, B. (2002). Metal-mediated variants of the Passerini reaction: a new synthesis of 4-cyanooxazoles. Synthesis, 1969-1972.

Xu, S., Huang, X., Hong, X., and Xu, B. (2012).
Palladium-assisted regioselective $\mathrm{C}-\mathrm{H}$ cyanation of heteroarenes using isonitrile as cyanide source. Org. Lett. 14, 4614-4617.

Yoo, W., Correia, C.A., Zhang, Y., and Li, C.J.
(2009). Oxidative alkylation of cyclic benzyl ethers with malonates and ketones. Synlett 2009, 138-142.

You, X., Xie, X., Sun, R., Chen, H., Li, S., and Liu, Y (2014). Titanium-mediated cross-coupling reactions of 1,3-butadiynes with α-iminonitriles to

3-aminopyrroles: observation of an imino azaNazarov cyclization. Org. Chem. Front. 1 940-946.

Zhang, G., Chen, S., Fei, H., Cheng, J., and Chen, F. (2012). Copper-catalyzed cyanation of arylboronic acids using DDO as cyanide source. Synlett 23, 2247-2250.

Zhang, G., Ma, Y., Wang, S., Kong, W., and Wang, R. (2013). Chiral organic contact ion pairs in metal-free catalytic enantioselective oxidative cross-dehydrogenative coupling of tertiary amines to ketones. Chem. Sci. 4, 26452651.

Zhou, W., Cao, G., Shen, G., Zhu, X., Gui, Y., Ye, J., Sun, L., Liao, L., Li, J., and Yu, D. (2017). Visible-light-driven palladium-catalyzed radical alkylation of $\mathrm{C}-\mathrm{H}$ bonds with unactivated alkyl bromides. Angew. Chem. Int. Ed. 56, 1568315687.

Supplemental Information

From Isocyanides to Iminonitriles

via Silver-mediated Sequential
Insertion of C(sp ${ }^{3}$)-H Bond
Huiwen Chi, Hao Li, Bingxin Liu, Rongxuan Ye, Haoyang Wang, Yin-Long Guo, Qitao Tan, and Bin Xu

Transparent Methods

General Information

All reagents and metal catalysts were obtained from commercial sources without further purification, and commercially available solvents were purified before use. All new compounds were fully characterized. All melting points were taken on a WRS-1A or a WRS-1B Digital Melting Point Apparatus without correction. Infrared spectra were obtained using an AVATAR 370 FT-IR spectrometer. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, and ${ }^{19} \mathrm{~F}$ NMR spectra were recorded with a Bruker AV-500 spectrometer operating at $500 \mathrm{MHz}, 125 \mathrm{MHz}$ and 470 MHz , respectively, with chemical shift values being reported in ppm relative to chloroform ($\delta=7.26 \mathrm{ppm}$), dimethyl sulfoxide ($\delta=$ $2.50 \mathrm{ppm})$, acetone $(\delta=2.09 \mathrm{ppm})$ or TMS $(\delta=0.00 \mathrm{ppm})$ for ${ }^{1} \mathrm{H}$ NMR, with chloroform $(\delta=$ 77.16 ppm), dimethyl sulfoxide ($\delta=39.52 \mathrm{ppm}$) or acetone ($\delta=29.84 \mathrm{ppm}$) for ${ }^{13} \mathrm{C}$ NMR; and $\mathrm{C}_{6} \mathrm{~F}_{6}(\delta=-164.9 \mathrm{ppm})$ for ${ }^{19} \mathrm{~F}$ NMR. Mass spectra and high resolution mass spectra (HRMS) were recorded with an Agilent 5975N using an Electron impact (EI) or Electrospray ionization (ESI) techniques. For mechanistic study, the electrospray ionization mass spectrometry (ESI-MS) and the subsequent tandem mass spectrometry (ESI-MS/MS) experiments were performed in Thermo TSQ Quantum Access ${ }^{\text {TM }}$ triple-quadrupole mass spectrometer. Ultraviolet spectra were measured on a PEGeneral spectrometer. Fluorescence spectra were recorded on a LS-55 spectrometer. Silica gel plate GF254 were used for thin layer chromatography (TLC) and silica gel H or 300-400 mesh were used for flash column chromatography. Yields refer to chromatographically and spectroscopically pure compounds, unless otherwise indicated.

Experimental Procedures

Synthesis and Characterization of Isochroman Substrates, Related to Figure 2 and Figure 3.

Isochroman 1a is commercial available, and $\mathbf{1 b}, \mathbf{1 d - 1 f}, \mathbf{1 j}$ and $\mathbf{1 s - 1 u}$ were prepared according to the known methods (Zhou et al., 2013). Substrate 3a-3b, 3d-3e, 3i and $\mathbf{3 k}$ - $\mathbf{3 l}$ were prepared according to the reported procedures (Muramatsu and Nakano, 2014). The spectra of the prepared substrates are consistent with the reported data. Other isochroman substrates are prepared as shown below.

7-Phenylisochroman (1c): To a flask containing $\mathrm{K}_{2} \mathrm{CO}_{3}$ (138.2 mg, 1.0 mmol), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ ($14.4 \mathrm{mg}, 1.25 \mathrm{~mol} \%$) and phenylboronic acid ($67.1 \mathrm{mg}, 0.55 \mathrm{mmol}$) in the aqueous solution of dioxane (5.0 mL) was added 7 -bromoisochroman ($\mathbf{1 e}$) ($106.0 \mathrm{mg}, 0.5 \mathrm{mmol}$). The mixture was heated to $90{ }^{\circ} \mathrm{C}$ under N_{2} for 8.5 h . Upon completion, the reaction mixture was cooled down to room temperature, diluted with ethyl acetate (10 mL) and washed with brine $(2 \times 30 \mathrm{~mL})$. The combined organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and purified by column chromatography on silica gel to give product $\mathbf{1 c}$ as white solid (101.3 mg, 96%). M.p. $60-62{ }^{\circ} \mathrm{C}$; $\mathrm{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right)$:

3042, 2923, 2842, 1896, 1767, 1563, 1471, 1450, 1411, 1334, 1094, 988, 885, 816, 761, 699, 647; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.59-7.57(\mathrm{~m}, 2 \mathrm{H}), 7.46-7.41(\mathrm{~m}, 3 \mathrm{H}), 7.37-7.33(\mathrm{~m}, 1 \mathrm{H})$, 7.23-7.20 (m, 2H), $4.86(\mathrm{~s}, 2 \mathrm{H}), 4.03(\mathrm{t}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.92(\mathrm{t}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): 140.9,139.1,135.3,132.4,129.3,128.7,127.2,127.0,125.2,123.0,68.1$, 65.4, 28.1; El-MS m/z (\%): 210 (70) [M] ${ }^{+}$, 180 (100), 181 (25), 165 (26); HRMS (EI) m/z calcd for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}[\mathrm{M}]^{+} 210.1045$, found 210.1042 .

5-Phenylisochroman (1g): Following the general procedure as for $\mathbf{1 c}$, the reaction mixture of 5-bromoisochroman ($254.4 \mathrm{mg}, 1.2 \mathrm{mmol}$), phenylboronic acid ($161.0 \mathrm{mg}, 1.3 \mathrm{mmol}$), $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($331.7 \mathrm{mg}, 2.4 \mathrm{mmol}$) and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(34.7 \mathrm{mg}, 3.0 \mathrm{~mol} \%)$ in the aqueous solution of dioxane $(8.0 \mathrm{~mL})$ was stirred at $90^{\circ} \mathrm{C}$ for 14 h to afford product $\mathbf{1 g}(204.0 \mathrm{mg}, 81 \%)$ as white solid. M.p. $46-48{ }^{\circ} \mathrm{C}$; IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 2934,2854,1955,1569,1432,1237,1108,1060,999,799,757,699 ;$ ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.41(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.36-7.31(\mathrm{~m}, 3 \mathrm{H}), 7.24(\mathrm{t}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.13(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.86(\mathrm{~s}, 2 \mathrm{H}), 3.89(\mathrm{t}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H})$, 2.72 (t, $J=5.7 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 125 \mathrm{MHz}$): 142.0, 140.8, 135.1, 131.0, 129.1, 128.1, 127.7, 127.0, 125.8, 123.5, 68.1, 65.5, 27.5; El-MS m/z (\%): 210 (100) [M] ${ }^{+}, 181$ (48), 180 (55), 166 (27), 165 (88); HRMS (EI) m/z calcd for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}[\mathrm{M}]^{+} 210.1045$, found 210.1039.

5-(Furan-3-yl)isochroman (1h): Following the general procedure as for 1c, the reaction mixture of 5-bromoisochroman ($196.1 \mathrm{mg}, 0.9 \mathrm{mmol}$), furan-3-ylboronic acid ($110.9 \mathrm{mg}, 1.0$ $\mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(229.4 \mathrm{mg}, 1.8 \mathrm{mmol})$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(24.0 \mathrm{mg}, 2.6 \mathrm{~mol} \%)$ in the aqueous solution of dioxane was stirred at $90{ }^{\circ} \mathrm{C}$ for 8.5 h to afford product $\mathbf{1 h}(86.5 \mathrm{mg}, 54 \%)$ as white solid. M.p. 37-39 ${ }^{\circ} \mathrm{C}$; IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 2933, 2850, 1602, 1255, 1237, 1157, 1105, 1061, 1019, 873, 753, 725; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.50(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.23-7.19(\mathrm{~m}, 2 \mathrm{H}), 6.96$ (d, $J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.57(\mathrm{~s}, 1 \mathrm{H}), 4.83(\mathrm{~s}, 2 \mathrm{H}), 3.95(\mathrm{t}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.85(\mathrm{t}, J=5.5 \mathrm{~Hz}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): 142.6,140.0,135.3,132.3,131.3,127.3,126.0,124.5,123.5$, 111.4, 68.1, 65.4, 27.8; LC-MS (ESI) m/z $217\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$; HRMS (ESI) m/z calcd for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{O}_{2}$ [M] ${ }^{+}$201.0910, found 201.0909.

Butyl-3-(isochroman-5-yl)acrylate (1i): To a test tube containing 5-bromoisochroman (63.6 $\mathrm{mg}, 0.3 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(6.8 \mathrm{mg}, 0.03 \mathrm{mmol})$ and $\mathrm{Ph}_{3} \mathrm{P}(15.8 \mathrm{mg}, 0.06 \mathrm{mmol})$ in DMF (3.0 mL), butyl acrylate ($46.2 \mathrm{mg}, 0.36 \mathrm{mmol}$) and TMEDA ($69.7 \mathrm{mg}, 0.6 \mathrm{mmol}$) were added. The mixture was heated to $125{ }^{\circ} \mathrm{C}$ under N_{2} and stirred for 19 h . Upon completion, the reaction
mixture was cooled down to room temperature, diluted with ethyl acetate $(10 \mathrm{~mL})$ and washed with water ($3 \times 15 \mathrm{~mL}$). The combined organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and purified by column chromatography on silica gel to give product $\mathbf{1 i}(86.8 \mathrm{mg}, 100 \%)$ as colorless liquid. IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 2959,2864,1712,1634,1459,1308,1263,1222,1172,1114,984,786 ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$): $\delta 7.89(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H})$, $6.99(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.36(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.76(\mathrm{~s}, 2 \mathrm{H}), 4.20(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.00(\mathrm{t}$, $J=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.91(\mathrm{t}, \mathrm{J}=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.71-1.65(\mathrm{~m}, 2 \mathrm{H}), 1.46-1.39(\mathrm{~m}, 2 \mathrm{H}), 0.96(\mathrm{t}, J=7.5$ $\mathrm{Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 125 \mathrm{MHz}$): 167.0, 141.0, 135.6, 133.4, 132.7, 126.2, 126.1, 124.7, 120.0, 68.0, 65.1, 64.5, 30.7, 25.9, 19.2, 13.7; LC-MS (ESI) m/z 261 [M+H] ${ }^{+}$; HRMS (ESI) m/z calcd for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{O}_{3}\left[M^{+} \mathrm{H}\right]$ 261.1485, found 261.1483.

1,4-Dihydro-2H-benzo[f fisochromene (1k): To a flask containing lithium aluminum hydride ($683.1 \mathrm{mg}, 18.0 \mathrm{mmol}$) in dry THF (30 mL) was slowly added 2 -(naphthalen-1-yl)acetic acid $(2.79 \mathrm{~g}, 15.0 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$ over a period of 10 min . Then the reaction mixture was warmed to room temperature and refluxed for 30 min . The excess lithium aluminum hydride was hydrolyzed by slow addition of 20% aqueous sodium hydroxide solution $(20 \mathrm{~mL})$. After filtration through a thin pad of celite, the filtrate was extracted with ethyl acetate $(3 \times 30 \mathrm{~mL})$ and washed with brine $(2 \times 20 \mathrm{~mL})$. The combined organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and purified by column chromatography on silica gel to give 2-(naphthalen-1-yl)ethan-1-ol (2.25 g , 87%) as colorless liquid. A mixture of the 2 -(naphthalen- 1 -yl)ethan-1-ol ($1.37 \mathrm{~g}, 8 \mathrm{mmol}$), (chloromethoxy)ethane ($1.13 \mathrm{~g}, 12 \mathrm{mmol}$) and N, N-diisopropylethylamine ($2.07 \mathrm{~g}, 16 \mathrm{mmol}$) in dry dichloromethane (24 mL) was stirred for 6.5 h under N_{2} at room temperature. The reaction mixture was then washed with brine ($2 \times 50 \mathrm{~mL}$), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed in vacuo. The given crude acetal ($0.69 \mathrm{~g}, 3.0 \mathrm{mmol}$) was dissolved in dry $\mathrm{CH}_{3} \mathrm{CN}(9$ $\mathrm{mL})$ and trimethylsilyl trifluoromethanesulfonate (TMSOTf) $(0.8 \mathrm{~g}, 3.6 \mathrm{mmol})$ was added at 0 ${ }^{\circ} \mathrm{C}$. The reaction was carried out under N_{2} for 14 h and quenched by the addition of NaHCO_{3} ($1.0 \mathrm{M}, 10 \mathrm{~mL}$). The organic phase was washed with brine $(2 \times 20 \mathrm{~mL})$, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and purified by column chromatography on silica gel to give product $\mathbf{1 k}(421.8 \mathrm{mg}, 66 \%$ yield for three steps) as white solid. M.p. $66-67^{\circ} \mathrm{C}$; $\mathrm{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right)$: $3053,2923,2845,2812,1590,1507$, $1388,1305,1106,1069,990,807,737$; ${ }^{1} \mathrm{H}$ NMR (CDCl $3,500 \mathrm{MHz}$): $\delta 7.92(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.83(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.56-7.53(\mathrm{~m}, 1 \mathrm{H}), 7.50-7.47(\mathrm{~m}, 1 \mathrm{H}), 7.11(\mathrm{~d}$, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.92(\mathrm{~s}, 2 \mathrm{H}), 4.15(\mathrm{t}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.17(\mathrm{t}, J=5.5 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, 125 MHz): 132.3, 132.1, 132.0, 128.6, 128.3, 126.3, 126.2, 125.3, 122.9, 122.5, 68.3, 65.2, 25.1; EI-MS m/z (\%): 184 (100) [M], 183 (20), 154 (55), 153 (35), 152 (32); HRMS (EI) m/z calcd for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{O}[\mathrm{M}]^{+} 184.0888$, found 184.0884.

4,7-Dihydro-5H-thieno[2,3-c]pyran (11) (Gonzalez-de-Castro et al., 2014): The product 11 was prepared following the general procedure as for $\mathbf{1 k}$. The reaction mixture of 2-(thiophen-3-yl)acetic acid ($710.0 \mathrm{mg}, 5.0 \mathrm{mmol}$) and lithium aluminum hydride (474.4 mg ,
$12.5 \mathrm{mmol})$ in dry THF (15 mL) was stirred at $0^{\circ} \mathrm{C}$ for 8 h to afford 2-(thiophen-3-yl)ethan-1-ol as a crude. Then the mixture of the 2-(thiophen-3-yl)- ethan-1-ol ($640.2 \mathrm{mg}, 5.0 \mathrm{mmol}$), (chloromethoxy)ethane ($695 \mu \mathrm{~L}, 7.5 \mathrm{mmol}$) and N, N-diiso- propylethylamine ($1.6 \mathrm{~mL}, 10.0$ mmol) in dry dichloromethane (15 mL) was stirred for 23 h under N_{2} at room temperature to afford crude acetal product. Finally, the reaction mixture of acetal ($258.1 \mathrm{mg}, 1.5 \mathrm{mmol}$) and TMSOTf ($50 \mu \mathrm{~L}, 0.26 \mathrm{mmol}$) in dry $\mathrm{CH}_{3} \mathrm{CN}(9.0 \mathrm{~mL})$ was stirred at $0{ }^{\circ} \mathrm{C}$ for 15 h to afford product 11 ($46.4 \mathrm{mg}, 22 \%$ yield for three steps) as pale yellow liquid. IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right)$: 2919, 2844, 1446, 1385, 1154, 1091, 1020, 974, 704; $\left.{ }^{1} \mathrm{H} \mathrm{NMR} \mathrm{(CDCl}{ }_{3}, 500 \mathrm{MHz}\right): \delta 7.15(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H})$, $6.83(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.83(\mathrm{~s}, 2 \mathrm{H}), 3.95(\mathrm{t}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.77-2.74(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): 132.7,127.0,122.5,65.6,65.0,26.1$; EI-MS m/z (\%): 140 (100) [M $\left.{ }^{+}\right], 110$ (72).

6,7-Dihydro-4H-thieno[3,2-c]pyran (1m): The product 1 m was prepared following the general procedure as for $\mathbf{1 k}$. The reaction mixture of 2-(thiophen-2-yl)acetic acid ($1.1 \mathrm{~g}, 8.0$ mmol) and lithium aluminum hydride $(542.0 \mathrm{mg}, 14.3 \mathrm{mmol})$ in $\mathrm{dry}_{\mathrm{Et}}^{2} \mathrm{O}(30 \mathrm{~mL})$ was stirred at $0^{\circ} \mathrm{C}$ for 40 min , then refluxed for 6.5 h to afford 2-(thiophen-2-yl)ethan-1-ol as a crude. Then the mixture of the 2-(thiophen-2-yl)ethan-1-ol ($947.4 \mathrm{mg}, 7.4 \mathrm{mmol}$), (chloromethoxy)ethane $(1.0 \mathrm{~mL}, 11.1 \mathrm{mmol})$ and N, N-diisopropylethylamine ($2.5 \mathrm{~mL}, 14.8 \mathrm{mmol}$) in dry dichloromethane (30 mL) was stirred for 16 h under N_{2} at room temperature to afford crude acetal product. Finally, the reaction mixture of acetal ($279.1 \mathrm{mg}, 1.5 \mathrm{mmol}$) and TMSOTf (130 $\mu \mathrm{L}, 0.68 \mathrm{mmol})$ in dry $\mathrm{CH}_{3} \mathrm{CN}(9.0 \mathrm{~mL})$ was stirred at $0{ }^{\circ} \mathrm{C}$ for 13.5 h to afford product $\mathbf{1 m}(71.7$ $\mathrm{mg}, 32 \%$ yield for three steps) as pale yellow liquid. IR (KBr, $\left.\mathrm{cm}^{-1}\right): 3102,2924,2848,1446$, 1397, 1325, 1228, 1095, 1072, 966, 851, 705; ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.14(\mathrm{~d}, \mathrm{~J}=5.5 \mathrm{~Hz}$, $1 \mathrm{H}), 6.76(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.76(\mathrm{t}, J=1.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.00(\mathrm{t}, J=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.91(\mathrm{t}, J=5.5$ $\mathrm{Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): 133.7,132.2,123.6,122.7,66.5,64.9,25.5$; El-MS m/z (\%): 140 (52) $\left[\mathrm{M}^{+}\right], 110$ (100); HRMS (EI) m/z calcd for $\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{OS}[\mathrm{M}]^{+}$140.0296, found 140.0294.

Spiro[cyclobutane-1,3'-isochroman] (1n): To a two-neck round bottom flask equipped with a reflux condenser under N_{2} containing magnesium turnings ($1.5 \mathrm{~g}, 60.0 \mathrm{mmol}^{2}$) in $\mathrm{Et}_{2} \mathrm{O}(15 \mathrm{~mL})$ and a particle of iodine was added dropwise (bromomethyl)benzene ($5.1 \mathrm{~g}, 30.0 \mathrm{mmol}$) in $\mathrm{Et}_{2} \mathrm{O}$ $(15 \mathrm{~mL})$ over 1 h . The mixture was stirred for 5 h under reflux. It was then allowed to cool to room temperature and transferred by syringe into a vial sealed with rubber stopper under a positive pressure of N_{2}. To a stirring solution of cyclobutanone ($560.7 \mathrm{mg}, 8.0 \mathrm{mmol}$) in dry $\mathrm{Et}_{2} \mathrm{O}(24.0 \mathrm{~mL})$, benzylmagnesium bromide (1.0 M in $\mathrm{Et}_{2} \mathrm{O}, 12 \mathrm{~mL}$) was added at $0^{\circ} \mathrm{C}$ under N_{2}. Upon completion, water was added and the solution was extracted with ethyl acetate. The combined organic phase was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated in vacuum to give the crude product 1-benzylcyclobutan-1-ol for further use. Following the general procedure as for $\mathbf{1 k}$, the mixture of crude 1-benzylcyclobutan-1-ol (1.13 g), (chloromethoxy)ethane ($973 \mu \mathrm{~L}, 10.5 \mathrm{mmol}$) and N, N-diisopropylethylamine ($2.3 \mathrm{~mL}, 14.0$
mmol) in dry dichloromethane (24 mL) was stirred for 5 h under N_{2} at room temperature. After reaction, the purified acetal ($586.4 \mathrm{mg}, 33 \%$ yield for two steps) was obtained by silica gel column chromatography. The reaction mixture of acetal ($550.4 \mathrm{mg}, 2.5 \mathrm{mmol}$) and TMSOTf ($526 \mu \mathrm{~L}, 2.75 \mathrm{mmol}$) in dry $\mathrm{CH}_{3} \mathrm{CN}\left(9.0 \mathrm{~mL}\right.$) was stirred at $0{ }^{\circ} \mathrm{C}$, then warmed to room temperature and stirred for 10.5 h to afford product $\mathbf{1 n}(284.4 \mathrm{mg}, 61 \%)$ as colorless liquid. IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 2976,2933,2835,1692,1550,1532,1505,1266,1091,1047,744 ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.17-7.11(\mathrm{~m}, 3 \mathrm{H}), 6.98(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.79(\mathrm{~s}, 2 \mathrm{H}), 2.92(\mathrm{~s}, 2 \mathrm{H})$, 2.25-2.18 (m, 2H), 1.96-1.85 (m, 3H), 1.75-1.69 (m, 1H); $\left.{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(CDCl}{ }_{3}, 125 \mathrm{MHz}\right): 134.3$, 132.7, 129.4, 126.3, 125.9, 123.9, 75.4, 63.3, 37.2, 32.4, 12.4; LC-MS (ESI) m/z 175 [M $\left.{ }^{+} \mathrm{H}\right]$; HRMS (ESI) m/z calcd for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+} 175.1117$, found 175.1117.

Spiro[cyclopentane-1,3'-isochroman] (10): The product 10 was prepared following the general procedure as for $\mathbf{1 n}$. The reaction mixture of cyclopentanone ($672.0 \mathrm{mg}, 8.0 \mathrm{mmol}$) and benzylmagnesium bromide (1.0 M in $\mathrm{Et}_{2} \mathrm{O}, 12 \mathrm{~mL}$) in dry $\mathrm{Et}_{2} \mathrm{O}(24 \mathrm{~mL})$ was stirred at $0^{\circ} \mathrm{C}$, then warmed to room temperature and stirred for 16 h to afford 1 -benzylcyclopentan-1-ol as a crude. Then a mixture of the crude 1-benzylcyclopentan-1-ol (1.41 g), (chloromethoxy)ethane ($1.1 \mathrm{~mL}, 12 \mathrm{mmol}$) and N, N-diisopropylethylamine ($2.6 \mathrm{~mL}, 16 \mathrm{mmol}$) in dry dichloromethane $(24 \mathrm{~mL})$ was stirred for 5 h under N_{2} at room temperature. After reaction, the purified acetal ($580.2 \mathrm{mg}, 29 \%$ yield for two steps) was obtained by silica gel column chromatography. Finally, the reaction mixture of acetal ($749.3 \mathrm{mg}, 3.2 \mathrm{mmol}$) and TMSOTf ($0.68 \mathrm{~mL}, 3.52 \mathrm{mmol}$) in dry $\mathrm{CH}_{3} \mathrm{CN}(11 \mathrm{~mL})$ was stirred at $0{ }^{\circ} \mathrm{C}$, then warmed to room temperature and stirred for 14 h to afford product 10 ($232.2 \mathrm{mg}, 39 \%$) as colorless liquid. IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 2954, 1494, 1448, 1208, 1081, 744; ${ }^{1} \mathrm{H}$ NMR (CDCl ${ }_{3}, 500 \mathrm{MHz}$): $\delta 7.17-7.13(\mathrm{~m}, 2 \mathrm{H}), 7.09-7.07(\mathrm{~m}, 1 \mathrm{H}), 7.00-6.99(\mathrm{~m}$, $1 \mathrm{H}), 4.80(\mathrm{~s}, 2 \mathrm{H}), 2.81(\mathrm{~s}, 2 \mathrm{H}), 1.91-1.87(\mathrm{~m}, 2 \mathrm{H})$, 1.83-1.79 (m, 2H), 1.69-1.63 (m, 2H), 1.54-1.48 (m, 2H); ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 125 \mathrm{MHz}$): 134.2, 133.6, 129.0, 126.1, 125.8, 123.9, 82.4, 63.3, 37.9, 36.4, 23.8; EI-MS m/z (\%): 188 (12) [M ${ }^{+}$], 104 (100); HRMS (EI) m/z calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}[\mathrm{M}]^{+}$188.1201, found 188.1197.

Spiro[cyclohexane-1,3'-isochroman] (1p): The product 1 p was prepared following the general procedure as for $\mathbf{1 n}$. The reaction mixture of cyclohexanone ($783.0 \mathrm{mg}, 8.0 \mathrm{mmol}$) and benzylmagnesium bromide (1.0 M in $\mathrm{Et}_{2} \mathrm{O}, 12 \mathrm{~mL}$) in dry $\mathrm{Et}_{2} \mathrm{O}(24 \mathrm{~mL})$ was stirred at $0^{\circ} \mathrm{C}$, then warmed to room temperature and stirred for 16 h to afford 1 -benzylcyclohexan-1-ol as a crude. Then a mixture of the crude 1-benzylcyclohexan-1-ol (1.32 g), (chloromethoxy)ethane (973.0 $\mu \mathrm{L}, 10.5 \mathrm{mmol}$) and N, N-diisopropylethylamine ($2.3 \mathrm{~mL}, 14.0 \mathrm{mmol}$) in dry dichloromethane (24 mL) was stirred for 5 h under N_{2} at room temperature. After reaction, the purified acetal ($761.6 \mathrm{mg}, 40 \%$ yield for two steps) was obtained by silica gel column chromatography. Finally, the reaction mixture of acetal ($570.8 \mathrm{mg}, 2.3 \mathrm{mmol}$) and TMSOTf ($444 \mu \mathrm{~L}, 2.53 \mathrm{mmol}$) in dry $\mathrm{CH}_{3} \mathrm{CN}(9.0 \mathrm{~mL})$ was stirred at $0^{\circ} \mathrm{C}$, then warmed to room temperature and stirred for 10.5 h to afford product 1 p ($343.2 \mathrm{mg}, 79 \%$) as white solid. M.p. $50-52^{\circ} \mathrm{C}$; IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3032, 2850, 1444, 1075, 1026, 951, 748; ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$): $\delta 7.16-7.13(\mathrm{~m}, 2 \mathrm{H}), 7.08-7.06(\mathrm{~m}$,
$1 \mathrm{H}), 7.00-6.98(\mathrm{~m}, 1 \mathrm{H}), 4.76(\mathrm{~s}, 2 \mathrm{H}), 2.68(\mathrm{~s}, 2 \mathrm{H}), 1.76-1.73(\mathrm{~m}, 2 \mathrm{H}), 1.67-1.58(\mathrm{~m}, 3 \mathrm{H})$, $1.51-1.33(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): 134.3,132.7,129.2,126.2,125.7,123.9,71.6$, 62.1, 38.8, 34.8, 26.0, 21.9; LC-MS (ESI) m/z $203[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) m/z calcd for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{O}$ $[\mathrm{M}+\mathrm{H}]^{+}$203.1430, found 203.1430

3,3-Dimethylisochroman (1q): The product 1q was prepared following the general procedure as for $\mathbf{1 n}$. The reaction mixture of acetone ($0.44 \mathrm{~mL}, 6.0 \mathrm{mmol}$) and benzylmagnesium bromide (1.0 M in $\mathrm{Et}_{2} \mathrm{O}, 9 \mathrm{~mL}$) in dry $\mathrm{Et}_{2} \mathrm{O}(18 \mathrm{~mL})$ was stirred at $0{ }^{\circ} \mathrm{C}$, then warmed to room temperature and stirred for 5 h to afford product 2-methyl-1-phenylpropan-2-ol (636.0 mg , 71%). Then a mixture of the 2 -methyl-1-phenylpropan-2-ol ($630.4 \mathrm{mg}, 4.2 \mathrm{mmol}$), (chloromethoxy)ethane ($589 \mu \mathrm{~L}, 6.3 \mathrm{mmol}$) and N, N-diisopropylethylamine ($1.4 \mathrm{~mL}, 8.4 \mathrm{mmol}$) in dry dichloromethane (12 mL) was stirred for 13 h under N_{2} at room temperature to afford crude product acetal. Finally, the reaction mixture of acetal ($624.4 \mathrm{mg}, 3.0 \mathrm{mmol}$) and TMSOTf $(638 \mu \mathrm{~L}, 3.3 \mathrm{mmol})$ in dry $\mathrm{CH}_{3} \mathrm{CN}(9.0 \mathrm{~mL})$ was stirred at $0{ }^{\circ} \mathrm{C}$, then warmed to room temperature and stirred for 20 h to afford product $1 \mathrm{q}(248.4 \mathrm{mg}, 51 \%$ yield for two steps) as pale yellow oil. IR (KBr, cm^{-1}): 2968, 2925, 2847, 1549, 1500, 1456, 1368, 1212, 1080, 742; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.18-7.14(\mathrm{~m}, 2 \mathrm{H}), 7.09-7.07(\mathrm{~m}, 1 \mathrm{H}), 7.03-6.99(\mathrm{~m}, 1 \mathrm{H}), 4.80(\mathrm{~s}$, 2H), 2.72 (s, 2H), $1.29(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): 133.9,133.0,129.1,126.3,125.8$, 123.9, 70.8, 63.0, 39.6, 26.4; EI-MS m/z (\%): 162 (5) [M ${ }^{+}$], 147 (5), 105 (12), 104 (100); HRMS (EI) m / z calcd for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}[\mathrm{M}]^{+}$162.1045, found 162.1048.

3-Phenylisochroman (1r): The product $1 \mathbf{r}$ was prepared following the general procedure as for $\mathbf{1 n}$. The reaction mixture of benzaldehyde ($530.6 \mathrm{mg}, 5.0 \mathrm{mmol}$) and benzylmagnesium bromide (0.5 M in $\mathrm{Et}_{2} \mathrm{O}, 15 \mathrm{~mL}$) in dry $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$ was stirred at $0{ }^{\circ} \mathrm{C}$, then warmed to room temperature and stirred for 5.5 h to afford product 1,2-diphenylethan-1-ol ($359.4 \mathrm{mg}, 36 \%$). Then a mixture of the 1,2-diphenylethan-1-ol ($356.6 \mathrm{mg}, 1.8 \mathrm{mmol}$), (chloromethoxy)ethane ($0.25 \mathrm{~mL}, 2.7 \mathrm{mmol}$) and N, N-diisopropylethylamine ($595 \mu \mathrm{~L}, 3.6 \mathrm{mmol}$) in dry dichloromethane (6 mL) was stirred for 19 h under N_{2} at room temperature to afford acetal product ($402.5 \mathrm{mg}, 87 \%$). Finally, the reaction mixture of acetal ($402.2 \mathrm{mg}, 1.57 \mathrm{mmol}$) and TMSOTf $(334 \mu \mathrm{~L}, 1.7 \mathrm{mmol})$ in dry $\mathrm{CH}_{3} \mathrm{CN}(6.0 \mathrm{~mL})$ was stirred at $0{ }^{\circ} \mathrm{C}$, then warmed to room temperature and stirred for 17 h to afford product $1 \mathrm{r}(213.8 \mathrm{mg}, 65 \%)$ as white solid. M.p. $75-76{ }^{\circ} \mathrm{C}$; IR (KBr, cm ${ }^{-1}$): 3024, 2910, 2851, 1487, 1444, 1367, 1084, 1027, 984, 735, 695; ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.49-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.42(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.36-7.33(\mathrm{~m}, 1 \mathrm{H})$, 7.24-7.22 (m, 2H), 7.17-7.16 (m, 1H), 7.09-7.07 (m, 1H), 5.04 (s, 2H), 4.76 (dd, J=11.0, 3.5 $\mathrm{Hz}, 1 \mathrm{H}), 3.14-3.08(\mathrm{~m}, 1 \mathrm{H}), 3.00(\mathrm{dd}, J=16.5,3.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): 142.1$, $134.5,133.5,128.8,128.5,127.7,126.5,126.2,125.9,124.2,76.9,68.7,36.1$; EI-MS m/z (\%): 210 (5) [M $\left.{ }^{+}\right], 105$ (12), 104 (100); HRMS (EI) m/z calcd for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}[\mathrm{M}]^{+} 210.1045$, found 210.1044.

7-Methyl-1-phenylisochroman (3c): Following the procedure as for 3 f (see below), the reaction mixture of 7-methylisochroman ($59.2 \mathrm{mg}, 0.4 \mathrm{mmol}$), 2,3-dichloro-5,6-dicyanobenzoquinone (DDQ) ($18.2 \mathrm{mg}, 0.08 \mathrm{mmol}$), [bis(trifluoroacetoxy)iodo]benzene (PIFA) (172.0 $\mathrm{mg}, 0.4 \mathrm{mmol})$ in dry 1,2 -dichloroethane $(4.0 \mathrm{~mL})$ was stirred at $80^{\circ} \mathrm{C}$ under N_{2} for 3.5 h , then phenyl- magnesium iodide was added at $-15{ }^{\circ} \mathrm{C}$ and kept stirring for another 4.5 h to afford product $3 \mathrm{c}\left(44.6 \mathrm{mg}, 50 \%\right.$) as pale yellow oil. IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3027, 2961, 2919, 2852, 2723, 1606, 1499, 1453, 1274, 1090, 1020, 806, 748, $701 ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.46-7.41$ $(\mathrm{m}, 5 \mathrm{H}), 7.16(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{~s}, 1 \mathrm{H}), 5.80(\mathrm{~s}, 1 \mathrm{H}), 4.30-4.26$ $(\mathrm{m}, 1 \mathrm{H}), 4.02-3.97(\mathrm{~m}, 1 \mathrm{H}), 3.20-3.18(\mathrm{~m}, 1 \mathrm{H}), 2.88-2.84(\mathrm{~m}, 1 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): 142.4,137.1,135.5,130.9,129.0,128.7,128.5,128.1,127.6,127.3,79.7$, 64.0, 28.6, 21.1; El-MS m/z (\%): 224 (100) [M ${ }^{+}$], 223 (45), 209 (45), 178 (42), 147 (80), 119 (42); HRMS (EI) m/z calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}[\mathrm{M}]^{+}$224.1201, found 224.1205.

5-Methyl-1-(p-tolyl)isochroman (3f): To a two-neck round bottom flask equipped with a reflux condenser under N_{2} containing magnesium turnings ($466.6 \mathrm{mg}, 19.2 \mathrm{mmol}$) in $\mathrm{Et}_{2} \mathrm{O}(4.0 \mathrm{~mL})$ was added 1-iodo-4-methylbenzene ($3.5 \mathrm{~g}, 16.0 \mathrm{mmol}$) in $\mathrm{Et}_{2} \mathrm{O}(4.0 \mathrm{~mL})$ dropwise over 0.5 h . The mixture was stirred for 5.5 h under reflux. After cooling to room temperature, the produced p-tolylmagnesium iodide was then transferred by syringe into a vial sealed with rubber stopper under a positive pressure of N_{2}. The mixture of 5 -methylisochroman ($59.2 \mathrm{mg}, 0.4 \mathrm{mmol}$), DDQ ($18.2 \mathrm{mg}, 0.08 \mathrm{mmol}$) and PIFA ($172.0 \mathrm{mg}, 0.4 \mathrm{mmol}$) in dry 1,2-dichloroethane (4.0 mL) in a test tube was stirred at $80^{\circ} \mathrm{C}$ for 4 h under N_{2}, then p-tolylmagnesium iodide $(2.0 \mathrm{M}$ in $\mathrm{Et}_{2} \mathrm{O}, 0.4 \mathrm{~mL}, 0.8 \mathrm{mmol}$) was added to the suspension at $-15^{\circ} \mathrm{C}$. After stirring vigorously for 4 h at $-15{ }^{\circ} \mathrm{C}$, the reaction mixture was quenched with saturated aqueous NaHCO_{3} and extracted with ethyl acetate. The organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and purified by column chromatography on silica gel to give product $3 \mathrm{f}(42.5 \mathrm{mg}, 45 \%)$ as white solid. M.p. $70-71^{\circ} \mathrm{C}$; IR (KBr, cm ${ }^{-1}$): 2929, 2872, 2812, 1909, 1462, 1266, 1106, 1061, 1011, 825, 796, $755 ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.18(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.14(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.05(\mathrm{~d}, J$ $=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.61(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.71(\mathrm{~s}, 1 \mathrm{H}), 4.22-4.18(\mathrm{~m}, 1 \mathrm{H})$, 3.96-3.91 (m, 1H), 2.92-2.89 (m, 1H), 2.73-2.69 (m, 1H), $2.34(\mathrm{~s}, 3 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): 139.4,137.7,137.3,136.1,132.4,129.0,128.8,127.8,125.3,124.6,79.5$, 63.4, 26.4, 21.2, 19.0; LC-MS (ESI) m/z $239[M+H]^{+}$; HRMS (ESI) m/z calcd for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{O}$ $[\mathrm{M}+\mathrm{H}]^{+}$239.1430, found 239.1429 .

1-(Naphthalen-1-yl)isochroman (3g): Following the general procedure as for $\mathbf{3 f}$, the reaction mixture of isochroman ($53.7 \mathrm{mg}, 0.4 \mathrm{mmol}$), DDQ ($18.2 \mathrm{mg}, 0.08 \mathrm{mmol}$), PIFA ($172.0 \mathrm{mg}, 0.4$ mmol) in dry 1,2-dichloroethane (4.0 mL) was stirred at $80{ }^{\circ} \mathrm{C}$ under N_{2} for 4 h , then naphthalen- 1-ylmagnesium bromide was added at $-15^{\circ} \mathrm{C}$ and kept stirring for another 4 h to afford product $\mathbf{3 g}(40.2 \mathrm{mg}, 39 \%)$ as pale yellow solid. M.p. $122-123^{\circ} \mathrm{C}$; $\mathrm{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 3019$, 2972, 2923, 2874, 1589, 1495, 1450, 1363, 1263, 1080, 1040, 783, 740; ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 500$ $\mathrm{MHz}): \delta$ 8.22-8.20 (m, 1H), 7.89-7.87 (m, 1H), $7.84(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.49-7.47(\mathrm{~m}, 2 \mathrm{H})$, $7.43-7.40(\mathrm{~m}, 1 \mathrm{H}), 7.31(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.19(\mathrm{~m}, 2 \mathrm{H}), 7.04(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{~d}$, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.42(\mathrm{~s}, 1 \mathrm{H}), 4.24-4.20(\mathrm{~m}, 1 \mathrm{H}), 4.05-4.00(\mathrm{~m}, 1 \mathrm{H}), 3.22-3.20(\mathrm{~m}, 1 \mathrm{H})$, 2.99-2.94 (m, 1H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): 137.4,137.2,134.3,133.8,131.7,129.0$, 128.8, 128.6, 128.1, 126.7, 126.5, 126.2, 126.0, 125.6, 124.9 (2), 77.7, 63.7, 28.8; El-MS m/z (\%): 261 (20), 260 (100) [M $\left.{ }^{+}\right], 259$ (42), 133 (21); HRMS (EI) m/z calcd for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{O}[\mathrm{M}]^{+}$ 260.1201, found 260.1199 .

1-(3-Bromothiophen-2-yl)isochroman (3h): After stirring the mixture of 5-methylisochroman ($59.2 \mathrm{mg}, 0.4 \mathrm{mmol}$), DDQ ($18.2 \mathrm{mg}, 0.08 \mathrm{mmol}$) and PIFA ($172.0 \mathrm{mg}, 0.4 \mathrm{mmol}$) in dry 1,2-dichloroethane (4.0 mL) in a test tube at $80^{\circ} \mathrm{C}$ for 4 h under N_{2}, 3-bromothiophene (78.3 $\mathrm{mg}, 0.48 \mathrm{mmol}$) was added to the suspension at room temperature. After stirring vigorously for 14 h at room temperature, the reaction mixture was purified by column chromatography on silica gel to give product $3 \mathrm{~h}\left(34.0 \mathrm{mg}, 28 \%\right.$) as white solid. M.p. $86-87^{\circ} \mathrm{C}$; $\mathrm{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 2967$, 2921, 2851, 1731, 1458, 1262, 1094, 1016, 869, 804, 742, 701; ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta$ $7.27(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{~d}, J=5.0 \mathrm{~Hz}$, $1 \mathrm{H}), 6.75(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.18(\mathrm{~s}, 1 \mathrm{H}), 4.31-4.27(\mathrm{~m}, 1 \mathrm{H}), 4.02-3.97(\mathrm{~m}, 1 \mathrm{H}), 2.96-2.90(\mathrm{~m}$, $1 \mathrm{H}), 2.71(\mathrm{dt}, J=16.7 \mathrm{~Hz}, 3.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): 140.7,136.2$, 136.1, 132.0, 129.5, 128.5, 126.2, 125.7, 124.2, 110.8, 73.6, 63.9, 26.2, 19.0; El-MS m/z (\%): 310 (39) [M ($\left.\left.{ }^{81} \mathrm{Br}\right)\right]^{+}, 308$ (40) [M ($\left.\left.{ }^{79} \mathrm{Br}\right)\right]^{+}, 229$ (100), 201 (65), 184 (45); HRMS (El) m/z calcd for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{OSBr}[\mathrm{M}]^{+}$307.9870, found 307.9871.

6-Phenyl-6H-benzo[c]chromene (3j): Following the general procedure as for $\mathbf{3 f}$, the reaction mixture of 6 H -benzo[c]chromene ($182.1 \mathrm{mg}, 0.4 \mathrm{mmol}$), DDQ ($18.2 \mathrm{mg}, 0.08 \mathrm{mmol}$), PIFA
($172.0 \mathrm{mg}, 0.4 \mathrm{mmol}$) in dry 1,2-dichloroethane (4.0 mL) was stirred at $80^{\circ} \mathrm{C}$ under N_{2} for 3 h , then phenylmagnesium iodide was added at $-15{ }^{\circ} \mathrm{C}$ and kept stirring for another 9 h to afford product $3 \mathbf{j}$ ($79.0 \mathrm{mg}, 77 \%$) as white solid. M.p. $74-75^{\circ} \mathrm{C}$; $\mathrm{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 3065,3026,2923$, $1594,1487,1439,1235,1000,743,693,607 ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.81-7.78(\mathrm{~m}, 2 \mathrm{H})$, 7.44-7.36 (m, 6H), 7.29-7.24 (m, 2H), 7.08 (td, $J=7.6,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.06-7.04(\mathrm{~m}, 1 \mathrm{H}), 6.89(\mathrm{~d}$, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.20(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): 153.7,139.6,134.0,130.1,129.6$, 128.5 (2), 128.4, 128.1, 127.6, 126.3, 123.1, 122.8, 122.1, 117.9, 79.7; EI-MS m/z (\%): 258 (55) [M^{+}], 257 (28), 181 (100); HRMS (EI) m/z calcd for $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{O}[\mathrm{M}]^{+}$258.1045, found 258.1035.

C1 Functionalization of Isochromans, Related to Figure 2 and Figure 3.

(1E,1E)-N,N'-Di-tert-butylisochroman-1,1-bis(carbimidoyl) cyanide (2a):
To a test tube, 1a ($39 \mu \mathrm{~L}, 0.3 \mathrm{mmol}$), ${ }^{\mathrm{t}} \mathrm{BuNC}(170 \mu \mathrm{~L}, 1.5 \mathrm{mmol})$, AgOTf ($7.8 \mathrm{mg}, 0.03 \mathrm{mmol}$), DDQ ($139.0 \mathrm{mg}, 0.6 \mathrm{mmol}$), and dry $\mathrm{PhCl}(3.0 \mathrm{~mL})$ were added in the glove box. The reaction mixture was stirred at $80^{\circ} \mathrm{C}$ under N_{2} for 3 h as monitored by TLC. Upon completion, the reaction mixture was cooled down to room temperature. After removed the solvent, the residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate $=100: 1$) to give product $\mathbf{2 a}(64.1 \mathrm{mg}, 61 \%)$ as white solid. M.p. $113-115^{\circ} \mathrm{C}$; $\mathrm{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 2979,2216$, 1643, 1476, 1464, 1208, 914, 754; ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$): $\delta 7.29-7.27(\mathrm{~m}, 1 \mathrm{H}), 7.19-7.15$ $(\mathrm{m}, 2 \mathrm{H}), 6.90(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.05(\mathrm{t}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.97(\mathrm{t}, J=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.39(\mathrm{~s}, 18 \mathrm{H})$; ${ }^{13} \mathrm{C}^{\mathrm{NMR}}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): 139.7,134.8,130.0,129.2,128.4,127.8,125.5,111.2,85.0,62.0$, 59.1, 29.1, 28.2; LC-MS (ESI) m/z $351[M+H]^{+}$; HRMS (ESI) m/z calcd for $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{ON}_{4}[\mathrm{M}+\mathrm{H}]^{+}$ 351.2179 , found 351.2186 .

(1E,1E)-N,N'-Di-tert-butyl-7-methylisochroman-1,1-bis(carbimidoyl) cyanide (2b):
Following the general procedure as for $\mathbf{2 a}$, the reaction mixture of $\mathbf{1 b}$ ($44.5 \mathrm{mg}, 0.3 \mathrm{mmol}$), ${ }^{t}$ BuNC ($\left.170 \mu \mathrm{~L}, 1.5 \mathrm{mmol}\right)$, AgOTf ($7.8 \mathrm{mg}, 0.03 \mathrm{mmol}$), and DDQ ($139.0 \mathrm{mg}, 0.6 \mathrm{mmol}$) in dry $\mathrm{PhCl}(3.0 \mathrm{~mL})$ was stirred at $80^{\circ} \mathrm{C}$ under N_{2} for 4.5 h to afford product $\mathbf{2 b}(79.3 \mathrm{mg}, 73 \%)$ as white solid. M.p. $123-125^{\circ} \mathrm{C}$; $\operatorname{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right)$: 2977, 2216, 1647, 1509, 1467, 1367, 1234, 1213, $1110,1029,948,810 ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.07(\mathrm{~s}, 2 \mathrm{H}), 6.69(\mathrm{~s}, 1 \mathrm{H}), 4.02(\mathrm{t}, J=5.5$ $\mathrm{Hz}, 2 \mathrm{H}), 2.92(\mathrm{t}, \mathrm{J}=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}), 1.39(\mathrm{~s}, 18 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): 139.6$, 134.8, 131.6, 130.3, 129.2, 128.9, 127.4, 111.1, 84.9, 62.0, 58.9, 28.9, 27.7, 21.2; LC-MS (ESI) $\mathrm{m} / \mathrm{z} 365[\mathrm{M}+\mathrm{H}]^{+} ;$HRMS (ESI) m/z calcd for $\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{ON}_{4}[\mathrm{M}+\mathrm{H}]^{+} 365.2336$, found 365.2332.

($1 E, 1 E$)-N,N'Di-tert-butyl-7-phenylisochroman-1,1-bis(carbimidoyl) cyanide (2c): Following the general procedure as for $\mathbf{2 a}$, the reaction mixture of $\mathbf{1 c}(63.0 \mathrm{mg}, 0.3 \mathrm{mmol})$, ${ }^{t}$ BuNC ($170 \mu \mathrm{~L}, 1.5 \mathrm{mmol}$), AgOTf ($7.8 \mathrm{mg}, 0.03 \mathrm{mmol}$), and DDQ ($139.0 \mathrm{mg}, 0.6 \mathrm{mmol}$) in dry $\mathrm{PhCl}(3.0 \mathrm{~mL})$ was stirred at $80^{\circ} \mathrm{C}$ under N_{2} for 4.5 h to afford product $\mathbf{2 c}(81.7 \mathrm{mg}, 64 \%)$ as white solid. M.p. $124-125^{\circ} \mathrm{C}$; IR (KBr, $\left.\mathrm{cm}^{-1}\right)$: 2977, 2216, 1638, 1475, 1364, 1202, 1108, 762, $693 ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.53-7.51(\mathrm{~m}, 3 \mathrm{H}), 7.45(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.36(\mathrm{t}, J=7.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.28(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{~s}, 1 \mathrm{H}), 4.11(\mathrm{t}, J=5.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.03(\mathrm{t}, J=5.2 \mathrm{~Hz}, 2 \mathrm{H})$, 1.43 (s, 18H); ${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): 140.7,139.6,138.4,133.8,129.5,128.8,128.5$, 128.1, 127.3, 126.8, 111.1, 85.1, 62.0, 59.1, 29.0, 27.8; LC-MS (ESI) m/z 427 [M+H] ; HRMS (ESI) m / z calcd for $\mathrm{C}_{27} \mathrm{H}_{31} \mathrm{ON}_{4}[\mathrm{M}+\mathrm{H}]^{+} 427.2492$, found 427.2489.

(1E,1E)-N,N'-Di-tert-butyl-7-methoxyisochroman-1,1-bis(carbimidoyl) cyanide (2d):
Following the general procedure as for $\mathbf{2 a}$, the reaction mixture of $\mathbf{1 d}(50.7 \mathrm{mg}, 0.3 \mathrm{mmol})$, ${ }^{t}$ BuNC ($\left.170 \mu \mathrm{~L}, 1.5 \mathrm{mmol}\right)$, AgOTf ($7.8 \mathrm{mg}, 0.03 \mathrm{mmol}$), and DDQ ($139.0 \mathrm{mg}, 0.6 \mathrm{mmol}$) in dry $\mathrm{PhCl}(3.0 \mathrm{~mL})$ was stirred at $80^{\circ} \mathrm{C}$ under N_{2} for 4.5 h to afford product $\mathbf{2 d}(71.9 \mathrm{mg}, 63 \%)$ as white solid. M.p. $124-125^{\circ} \mathrm{C}$; $\operatorname{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right)$: 2977, 2216, 1646, 1508, 1467, 1322, 1240, 1211, 1104, 1029, 959, 820; ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.10(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{dd}, J=8.0$, $2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.46(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.03(\mathrm{t}, J=5.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 2.90(\mathrm{t}, J=5.4 \mathrm{~Hz}$, 2H), 1.40 (s, 18H); ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 125 \mathrm{MHz}$): 157.0, 139.6, 129.9, 128.6, 126.9, 115.3, 114.5, 111.0, 85.0, 62.1, 59.0, 55.2, 29.0, 27.2; LC-MS (ESI) m/z $381[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) m/z calcd for $\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{O}_{2} \mathrm{~N}_{4}[\mathrm{M}+\mathrm{H}]^{+} 381.2285$, found 381.2293 .

(1E,1E)-7-Bromo-N,N'-di-tert-butylisochroman-1,1-bis(carbimidoyl) cyanide (2e):
Following the general procedure as for $\mathbf{2 a}$, the reaction mixture of $\mathbf{1 e}(65.6 \mathrm{mg}, 0.3 \mathrm{mmol})$, ${ }^{t}$ BuNC ($170 \mu \mathrm{~L}, 1.5 \mathrm{mmol}$), AgOTf ($7.8 \mathrm{mg}, 0.03 \mathrm{mmol}$), and DDQ ($139.0 \mathrm{mg}, 0.6 \mathrm{mmol}$) in dry $\mathrm{PhCl}(3.0 \mathrm{~mL})$ was stirred at $80^{\circ} \mathrm{C}$ under N_{2} for 4.5 h to afford product $\mathbf{2 e}(44.1 \mathrm{mg}, 34 \%)$ as white solid. M.p. $108-110^{\circ} \mathrm{C}$; $\operatorname{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right)$: 2975, 1727, 1645, 1483, 1454, 1366, 1212, 1089, 756,$697 ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.39(\mathrm{dd}, J=8.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.01(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{t}, J=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.92(\mathrm{t}, J=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.40(\mathrm{~s}, 18 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): 139.1,133.6,132.8,131.4,130.6,129.8,118.8,110.8,84.5,61.7$, 59.2, 28.9, 27.6; LC-MS (ESI) m/z (\%): 431 (100) $\left[\mathrm{M}\left({ }^{81} \mathrm{Br}\right)+\mathrm{H}\right]^{+}, 429(96)\left[\mathrm{M}\left({ }^{79} \mathrm{Br}\right)+\mathrm{H}\right]^{+} ; \mathrm{HRMS}$
(ESI) m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{ON}_{4} \mathrm{Br}[\mathrm{M}+\mathrm{H}]^{+}$429.1285, found 429.1281.

(1E,1E)-N,N'-Di-tert-butyl-5-methylisochroman-1,1-bis(carbimidoyl) cyanide (2f):
Following the general procedure as for $\mathbf{2 a}$, the reaction mixture of $\mathbf{1 f}(44.4 \mathrm{mg}, 0.3 \mathrm{mmol})$, ${ }^{t}$ BuNC ($170 \mu \mathrm{~L}, 1.5 \mathrm{mmol}$), AgOTf ($7.8 \mathrm{mg}, 0.03 \mathrm{mmol}$), and DDQ ($139.0 \mathrm{mg}, 0.6 \mathrm{mmol}$) in dry $\mathrm{PhCl}(3.0 \mathrm{~mL})$ was stirred at $80^{\circ} \mathrm{C}$ under N_{2} for 3.5 h to afford product $\mathbf{2 f}(71.3 \mathrm{mg}, 65 \%)$ as white solid. M.p. $103-105^{\circ} \mathrm{C}$; IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 2976, 2220, 1643, 1467, 1367, 1211, 1096, 1028, $782 ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.14(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{t}, J=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.82(\mathrm{t}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}), 1.39(\mathrm{~s}, 18 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): 139.8,136.4,133.3,129.7,127.7,127.4,124.8,111.1,85.1,61.6$, 58.9, 28.9, 25.6, 19.1; LC-MS (ESI) m/z $365[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) m/z calcd for $\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{ON}_{4}$ $[\mathrm{M}+\mathrm{H}]^{+} 365.2336$, found 365.2333 .

($1 E, 1 E$)-N,N'Di-tert-butyl-5-phenylisochroman-1,1-bis(carbimidoyl) cyanide (2 g):
Following the general procedure as for $\mathbf{2 a}$, the reaction mixture of $\mathbf{1 g}(63.0 \mathrm{mg}, 0.3 \mathrm{mmol})$, ${ }^{t}$ BuNC ($\left.170 \mu \mathrm{~L}, 1.5 \mathrm{mmol}\right)$, AgOTf ($7.8 \mathrm{mg}, 0.03 \mathrm{mmol}$), and DDQ ($139.0 \mathrm{mg}, 0.6 \mathrm{mmol}$) in dry $\mathrm{PhCl}(3.0 \mathrm{~mL})$ was stirred at $80^{\circ} \mathrm{C}$ under N_{2} for 5 h to afford product $\mathbf{2 g}(85.1 \mathrm{mg}, 67 \%)$ as white solid. M.p. $112-113^{\circ} \mathrm{C}$; $\mathrm{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 2973,2217,1645,1462,1366,1211,1106,1059$, 755,$701 ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.44-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.34(\mathrm{~m}, 3 \mathrm{H}), 7.26-7.23(\mathrm{~m}$, 2H), 6.95-6.93 (m, 1H), $3.94(\mathrm{t}, J=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.83(\mathrm{t}, \mathrm{J}=5.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.42(\mathrm{~s}, 18 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): 141.9,140.3,139.7,132.7,129.7,129.3,129.2,128.2,127.7,127.2$, 125.0, 111.2, 85.2, 62.0, 59.0, 29.0, 27.3; LC-MS (ESI) m/z 427 [M+H] ; HRMS (ESI) m/z calcd for $\mathrm{C}_{27} \mathrm{H}_{31} \mathrm{ON}_{4}[\mathrm{M}+\mathrm{H}]^{+}$427.2492, found 427.2485.

($1 E, 1 E$)-N,N'-Di-tert-butyl-5-(furan-3-yl)isochroman-1,1-bis(carbimidoyl) cyanide (2h):
Following the general procedure as for $\mathbf{2 a}$, the reaction mixture of $\mathbf{1 h}(60.1 \mathrm{mg}, 0.3 \mathrm{mmol})$, ${ }^{t}$ BuNC ($170 \mu \mathrm{~L}, 1.5 \mathrm{mmol}$), AgOTf ($7.8 \mathrm{mg}, 0.03 \mathrm{mmol}$), and DDQ ($139.0 \mathrm{mg}, 0.6 \mathrm{mmol}$) in dry $\mathrm{PhCl}(3.0 \mathrm{~mL})$ was stirred at $80^{\circ} \mathrm{C}$ under N_{2} for 12 h to afford product $\mathbf{2 h}(83.2 \mathrm{mg}, 67 \%)$ as
white solid. M.p. $114-115^{\circ} \mathrm{C}$; $\operatorname{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 3130,2977,2216,1641,1506,1466,1364,1234$, 1210, 1108, 1055, 951, 791, 749; ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.53(\mathrm{~s}, 1 \mathrm{H}), 7.49(\mathrm{~s}, 1 \mathrm{H}), 7.31$ (d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.57(\mathrm{~s}, 1 \mathrm{H}), 4.00(\mathrm{t}, J=$ $5.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.96(\mathrm{t}, J=5.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.40(\mathrm{~s}, 18 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): 142.8,140.2$, 139.7, 132.9, 132.5, 129.4, 129.3, 127.9, 125.1, 124.2, 111.4, 111.1, 85.2, 61.9, 59.0, 29.0, 27.3; LC-MS (ESI) m/z $417[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) m/z calcd for $\mathrm{C}_{25} \mathrm{H}_{29} \mathrm{O}_{2} \mathrm{~N}_{4}[\mathrm{M}+\mathrm{H}]^{+}$417.2285, found 417.2298.

(E)-Butyl 3-(1,1-bis((E)-(tert-butylimino)(cyano)methyl)isochroman-5-yl)acrylate (2i):

Following the general procedure as for $\mathbf{2 a}$, the reaction mixture of $\mathbf{1 i}(78.1 \mathrm{mg}, 0.3 \mathrm{mmol})$, ${ }^{t}$ BuNC ($170 \mu \mathrm{~L}, 1.5 \mathrm{mmol}$), AgOTf ($7.7 \mathrm{mg}, 0.03 \mathrm{mmol}$), and DDQ ($139.0 \mathrm{mg}, 0.6 \mathrm{mmol}$) in dry $\mathrm{PhCl}(3.0 \mathrm{~mL})$ was stirred at $80^{\circ} \mathrm{C}$ under N_{2} for 12 h to afford product $\mathbf{2 i}(62.0 \mathrm{mg}, 43 \%)$ as white solid. M.p. $88-90^{\circ} \mathrm{C}$; IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 2970, 1723, 1640, 1483, 1461, 1367, 1311, 1232, 1173, 1096, 1027, 977, 791; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.90(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J$ $=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.38(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.21$ (t, $J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.06(\mathrm{t}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.04(\mathrm{t}, J=5.5 \mathrm{~Hz}, 2 \mathrm{H})$, 1.71-1.66 (m, 2H), 1.45-1.42 (m, 2H), $1.39(\mathrm{~s}, 18 \mathrm{H}), 0.96(\mathrm{t}, \mathrm{J}=7.2,3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): 166.7$, 140.6, 139.5, 134.1, 133.6, 131.7, 128.4, 126.7, 125.4, 120.8, 110.9, 85.1, 64.5, 61.3, 59.1, 30.7, 28.9, 25.5, 19.2, 13.7; LC-MS (ESI) m/z 477 [M+H] ${ }^{+}$; HRMS (ESI) m/z calcd for $\mathrm{C}_{28} \mathrm{H}_{37} \mathrm{O}_{3} \mathrm{~N}_{4}[\mathrm{M}+\mathrm{H}]^{+} 477.2860$, found 477.2854.

(1E,1E)-N,N'-Di-tert-butyl-3,4-dihydro-1 H-benzo[g]isochromene-1,1-bis(carbimidoyl) cyanide (2j):
Following the general procedure as for $\mathbf{2 a}$, the reaction mixture of $\mathbf{1 j}(55.2 \mathrm{mg}, 0.3 \mathrm{mmol})$, ${ }^{t}$ BuNC ($170 \mu \mathrm{~L}, 1.5 \mathrm{mmol}$), AgOTf ($7.8 \mathrm{mg}, 0.03 \mathrm{mmol}$), and DDQ ($139.0 \mathrm{mg}, 0.6 \mathrm{mmol}$) in dry $\mathrm{PhCl}(3.0 \mathrm{~mL})$ was stirred at $80^{\circ} \mathrm{C}$ under N_{2} for 4.5 h to afford product $\mathbf{2 j}(60.8 \mathrm{mg}, 51 \%)$ as white solid. M.p. $175-177^{\circ} \mathrm{C}$; $\mathrm{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right)$: 2978, 2215, 1645, 1467, 1364, 1206, 1096, 1061, 914, 814, $751 ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.79(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, 7.67 (d, $J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.26(\mathrm{~m}, 2 \mathrm{H}), 4.09(\mathrm{t}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H})$, $3.17(\mathrm{t}, J=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.36(\mathrm{~s}, 18 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): 138.2,134.7,132.9,131.0$, 130.1, 128.5, 127.5 (2), 124.8 (2), 124.2, 111.1, 85.7, 60.6, 59.4, 29.4, 29.0; LC-MS (ESI) m/z $401[\mathrm{M}+\mathrm{H}]^{+} ;$HRMS (ESI) m/z calcd for $\mathrm{C}_{25} \mathrm{H}_{29} \mathrm{ON}_{4}[\mathrm{M}+\mathrm{H}]^{+} 401.2336$, found 401.2335 .

(1E,1E)-N,N'-Di-tert-butyl-1,2-dihydro-4H-benzo[f]isochromene-4,4-bis(carbimidoyl) cyanide (2k):
Following the general procedure as for $\mathbf{2 a}$, the reaction mixture of $\mathbf{1 k}(55.2 \mathrm{mg}, 0.3 \mathrm{mmol})$, ${ }^{t}$ BuNC ($170 \mu \mathrm{~L}, 1.5 \mathrm{mmol}$), AgOTf ($7.7 \mathrm{mg}, 0.03 \mathrm{mmol}$), and DDQ ($139.0 \mathrm{mg}, 0.6 \mathrm{mmol}$) in dry $\mathrm{PhCl}(3.0 \mathrm{~mL})$ was stirred at $80^{\circ} \mathrm{C}$ under N_{2} for 4.5 h to afford product $\mathbf{2 k}(69.5 \mathrm{mg}, 58 \%)$ as white solid. M.p. $140-142^{\circ} \mathrm{C}$; $\operatorname{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right)$: 2978, 2220, 1643, 1464, 1367, 1209, 1099, 1062, 810; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.99(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.85-7.83(\mathrm{~m}, 1 \mathrm{H}), 7.64(\mathrm{~d}, J=9.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.59-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.00(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{t}, J=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.33(\mathrm{t}, J=5.5 \mathrm{~Hz}$, 2H), 1.40 (s, 18H); ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 125 \mathrm{MHz}$): 139.7, 132.8, 131.6, 128.5, 126.6, 126.4, 126.3, 125.3 (2), 123.1, 111.0, 85.3, 61.4, 59.2, 29.0, 24.7; LC-MS (ESI) m/z $401[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) m/z calcd for $\mathrm{C}_{25} \mathrm{H}_{29} \mathrm{ON}_{4}[\mathrm{M}+\mathrm{H}]^{+} 401.2336$, found 401.2335 .

(1E,1E)-N,N'-Di-tert-butyl-4,5-dihydro-7H-thieno[2,3-c]pyran-7,7-bis(carbimidoyl) cyanide (2I):
Following the general procedure as for $\mathbf{2 a}$, the reaction mixture of $\mathbf{1 I}(42.0 \mathrm{mg}, 0.3 \mathrm{mmol})$, ${ }^{t}$ BuNC ($170 \mu \mathrm{~L}, 1.5 \mathrm{mmol}$), AgOTf ($7.7 \mathrm{mg}, 0.03 \mathrm{mmol}$), and DDQ ($139.0 \mathrm{mg}, 0.6 \mathrm{mmol}$) in dry $\mathrm{PhCl}(3.0 \mathrm{~mL})$ was stirred at $80^{\circ} \mathrm{C}$ under N_{2} for 10 h to afford product $2 \mathrm{l}(44.5 \mathrm{mg}, 42 \%)$ as white solid. M.p. $110-112^{\circ} \mathrm{C}$; $\operatorname{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 3101,2976,2215,1642,1468,1367,1236,1208$, 1064, 1020, 956, 891, $738 ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.39(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{~d}, J=$ $5.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{t}, J=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.88(\mathrm{t}, J=5.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.40(\mathrm{~s}, 18 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (CDCl ${ }_{3}$, 125 MHz): 139.4, 137.1, 128.6, 127.4, 126.4, 110.6, 84.7, 62.4, 59.1, 28.9, 25.7; LC-MS (ESI) $\mathrm{m} / \mathrm{z} 357[\mathrm{M}+\mathrm{H}]^{+} ;$HRMS (ESI) m/z calcd for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{ON}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 357.1744$, found 357.1739.

(1E,1E)-N,N'-Di-tert-butyl-6,7-dihydro-4H-thieno[3,2-c]pyran-4,4-bis(carbimidoyl) cyanide (2 m):
Following the general procedure as for $\mathbf{2 a}$, the reaction mixture of $\mathbf{1 m}(42.0 \mathrm{mg}, 0.3 \mathrm{mmol})$, ${ }^{t}$ BuNC ($170 \mu \mathrm{~L}, 1.5 \mathrm{mmol}$), AgOTf ($7.7 \mathrm{mg}, 0.03 \mathrm{mmol}$), and DDQ ($139.0 \mathrm{mg}, 0.6 \mathrm{mmol}$) in dry $\mathrm{PhCl}(3.0 \mathrm{~mL})$ was stirred at $80^{\circ} \mathrm{C}$ under N_{2} for 7.5 h to afford product $2 \mathrm{~m}(41.2 \mathrm{mg}, 39 \%)$ as white solid. M.p. $103-105^{\circ} \mathrm{C}$; $\operatorname{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 3116,2972,2212,1642,1466,1366,1236,1209$, 1087, 1017, 948, 867, 724; ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$): $\delta 7.09(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{~d}, J=$
$5.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{t}, J=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.01(\mathrm{t}, J=5.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.39(\mathrm{~s}, 18 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right.$, 125 MHz): 139.1, 137.0, 127.7, 126.7, 122.2, 110.8, 84.6, 62.1, 59.1, 29.0, 24.9; LC-MS (ESI) $\mathrm{m} / \mathrm{z} 357[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) m/z calcd for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{ON} \mathrm{N}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 357.1744$, found 357.1741.

(1'E,1'E)-N',N"-Di-tert-butylspiro[cyclobutane-1,3'-isochroman]-1',1'-bis(carbimidoyl) cyanide (2 n):
Following the general procedure as for $\mathbf{2 a}$, the reaction mixture of $\mathbf{1 n}(52.3 \mathrm{mg}, 0.3 \mathrm{mmol})$, ${ }^{t}$ BuNC ($170 \mu \mathrm{~L}, 1.5 \mathrm{mmol}$), AgOTf ($7.7 \mathrm{mg}, 0.03 \mathrm{mmol}$), and DDQ ($139.0 \mathrm{mg}, 0.6 \mathrm{mmol}$) in dry $\mathrm{PhCl}(3.0 \mathrm{~mL})$ was stirred at $80^{\circ} \mathrm{C}$ under N_{2} for 5.5 h to afford product $\mathbf{2 n}(62.0 \mathrm{mg}, 53 \%)$ as white solid. M.p. $82-83{ }^{\circ} \mathrm{C}$; $\mathrm{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 2976,2217,1645,1462,1364,1211,1108,1072$, $754 ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$): $\delta 7.30-7.27(\mathrm{~m}, 1 \mathrm{H}), 7.21-7.16(\mathrm{~m}, 2 \mathrm{H}), 6.90(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}$, 1 H), $3.06(\mathrm{~s}, 2 \mathrm{H}), 2.32-2.25(\mathrm{~m}, 2 \mathrm{H}), 1.92-1.84(\mathrm{~m}, 3 \mathrm{H}), 1.66-1.60(\mathrm{~m}, 1 \mathrm{H}), 1.37(\mathrm{~s}, 18 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 125 \mathrm{MHz}$): 140.2, 133.9, 130.2, 129.4, 128.4, 127.4, 125.3, 111.3, 84.4, 76.2, 58.6, 37.0, 34.9, 28.8, 13.4; LC-MS (ESI) m/z $391[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) m/z calcd for $\mathrm{C}_{24} \mathrm{H}_{31} \mathrm{ON} \mathrm{N}_{4}[\mathrm{M}+\mathrm{H}]^{+} 391.2492$, found 391.2491 .

(1'E,1'E)-N',N"-Di-tert-butylspiro[cyclopentane-1,3'-isochroman]-1',1'-bis(carbimidoyl) cyanide (20):
Following the general procedure as for 2a, the reaction mixture of $\mathbf{1 0}(56.4 \mathrm{mg}, 0.3 \mathrm{mmol})$, ${ }^{t}$ BuNC ($170 \mu \mathrm{~L}, 1.5 \mathrm{mmol}$), AgOTf ($7.7 \mathrm{mg}, 0.03 \mathrm{mmol}$), and DDQ ($139.0 \mathrm{mg}, 0.6 \mathrm{mmol}$) in dry $\mathrm{PhCl}(3.0 \mathrm{~mL})$ was stirred at $80^{\circ} \mathrm{C}$ under N_{2} for 4.5 h to afford product $20(62.5 \mathrm{mg}, 52 \%)$ as white solid. M.p. $75-77{ }^{\circ} \mathrm{C}$; $\mathrm{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 2970,2224,1649,1462,1363,1211,1106,1075$, 921, 758; 'H NMR ($\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$): $\delta 7.28-7.26(\mathrm{~m}, 1 \mathrm{H}), 7.19-7.16(\mathrm{~m}, 2 \mathrm{H}), 6.99(\mathrm{~d}, \mathrm{~J}=8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 2.99(\mathrm{~s}, 2 \mathrm{H}), 1.94-1.92(\mathrm{~m}, 4 \mathrm{H}), 1.66-1.64(\mathrm{~m}, 2 \mathrm{H}), 1.54-1.50(\mathrm{~m}, 2 \mathrm{H}), 1.37(\mathrm{~s}, 18 \mathrm{H})$; ${ }^{13} \mathrm{C}^{\mathrm{NMR}}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): 140.6,135.2,130.5,128.9,128.3,127.2,125.2,111.5,85.5,84.2$, 58.6, 38.0 (2), 28.8, 23.2; LC-MS (ESI) m/z $405\left[M+\mathrm{H}^{+}\right.$; HRMS (ESI) m/z calcd for $\mathrm{C}_{25} \mathrm{H}_{33} \mathrm{ON}_{4}$ $[\mathrm{M}+\mathrm{H}]^{+} 405.2649$, found 405.2649.

(1'E,1'E)-N',N"-Di-tert-butylspiro[cyclohexane-1,3'-isochroman]-1',1'-bis(carbimidoyl) cyanide (2p):

Following the general procedure as for $\mathbf{2 a}$, the reaction mixture of $\mathbf{1 p}(60.7 \mathrm{mg}, 0.3 \mathrm{mmol})$, ${ }^{t}$ BuNC ($\left.170 \mu \mathrm{~L}, 1.5 \mathrm{mmol}\right)$, AgOTf ($7.7 \mathrm{mg}, 0.03 \mathrm{mmol}$), and DDQ ($139.0 \mathrm{mg}, 0.6 \mathrm{mmol}$) in dry $\mathrm{PhCl}(3.0 \mathrm{~mL})$ was stirred at $80^{\circ} \mathrm{C}$ under N_{2} for 5.5 h to afford product $2 \mathrm{p}(72.5 \mathrm{mg}, 57 \%)$ as white solid. M.p. 119-120 ${ }^{\circ} \mathrm{C}$; IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 2936, 2212, 1644, 1455, 1366, 1236, 1209, 1070, $752 ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.27(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.19-7.14(\mathrm{~m}, 2 \mathrm{H}), 6.96(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}$), $2.90(\mathrm{~s}, 2 \mathrm{H}), 1.77-1.71(\mathrm{~m}, 4 \mathrm{H}), 1.52-1.42(\mathrm{~m}, 6 \mathrm{H}), 1.37(\mathrm{~s}, 18 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (CDCl_{3}, 125 MHz): 140.5, 134.0, 130.2, 129.1, 128.4, 127.3, 125.2, 111.7, 83.7, 75.8, 58.6, 38.6, 36.8, 28.8, 25.7, 22.4; LC-MS (ESI) m/z $419\left[\mathrm{M}+\mathrm{H}^{+}\right.$; HRMS (ESI) m/z calcd for $\mathrm{C}_{26} \mathrm{H}_{35} \mathrm{ON}_{4}[\mathrm{M}+\mathrm{H}]^{+}$ 419.2805, found 419.2799.

(1E,1E)-N,N'Di-tert-butyl-3,3-dimethylisochroman-1,1-bis(carbimidoyl) cyanide (2q): Following the general procedure as for $\mathbf{2 a}$, the reaction mixture of $\mathbf{1 q}(48.6 \mathrm{mg}, 0.3 \mathrm{mmol})$, ${ }^{t}$ BuNC ($170 \mu \mathrm{~L}, 1.5 \mathrm{mmol}$), AgOTf ($7.7 \mathrm{mg}, 0.03 \mathrm{mmol}$), and DDQ ($139.0 \mathrm{mg}, 0.6 \mathrm{mmol}$) in dry $\mathrm{PhCl}(3.0 \mathrm{~mL})$ was stirred at $80^{\circ} \mathrm{C}$ under N_{2} for 5 h to afford product $2 \mathrm{q}(60.1 \mathrm{mg}, 53 \%)$ as white solid. M.p. $101-103{ }^{\circ} \mathrm{C}$; IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 2979, 2212, 1646, 1465, 1371, 1208, 1076, 921, $758 ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$): $\delta 7.27-7.23(\mathrm{~m}, 1 \mathrm{H}), 7.16(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{~d}, J=7.5$ $\mathrm{Hz}, 1 \mathrm{H}$), 6.97 (d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}$), $2.86(\mathrm{~s}, 2 \mathrm{H}), 1.34(\mathrm{~s}, 18 \mathrm{H}), 1.31(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right.$, 125 MHz): 140.6, 134.2, 130.3, 129.1, 128.5, 126.8, 125.2, 111.4, 83.8, 74.3, 58.5, 40.1, 28.8, 28.3; LC-MS (ESI) m/z $379\left[\mathrm{M}+\mathrm{H}^{+}\right.$; HRMS (ESI) m/z calcd for $\mathrm{C}_{23} \mathrm{H}_{31} \mathrm{ON}_{4}[\mathrm{M}+\mathrm{H}]^{+} 379.2492$, found 379.2491 .

(1E,1E)-N,N'Di-tert-butyl-3-phenylisochroman-1,1-bis(carbimidoyl) cyanide (2r):
Following the general procedure as for $\mathbf{2 a}$, the reaction mixture of $\mathbf{1 r}(63.0 \mathrm{mg}, 0.3 \mathrm{mmol})$, ${ }^{t}$ BuNC ($170 \mu \mathrm{~L}, 1.5 \mathrm{mmol}$), AgOTf ($7.7 \mathrm{mg}, 0.03 \mathrm{mmol}$), and DDQ ($139.0 \mathrm{mg}, 0.6 \mathrm{mmol}$) in dry $\mathrm{PhCl}(3.0 \mathrm{~mL})$ was stirred at $80^{\circ} \mathrm{C}$ under N_{2} for 5.5 h to afford product $2 \mathrm{r}(79.9 \mathrm{mg}, 62 \%)$ as white solid. M.p. $145-146{ }^{\circ} \mathrm{C}$; IR (KBr, cm^{-1}): 2975, 2216, 1646, 1457, 1367, 1233, 1210, 1069, 916, 748, 692; $\left.{ }^{1} \mathrm{H} \mathrm{NMR} \mathrm{(CDCl}{ }_{3}, 500 \mathrm{MHz}\right): \delta 7.55(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.42(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H})$, $7.36-7.33(\mathrm{~m}, 1 \mathrm{H}), 7.33-7.30(\mathrm{~m}, 1 \mathrm{H}), 7.23(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.99(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.78$ (dd, $J=11.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.34-3.28(\mathrm{~m}, 1 \mathrm{H}), 3.03(\mathrm{dd}, J=16.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}), 1.37(\mathrm{~s}$, $9 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 125 \mathrm{MHz}$): 140.1, 139.7, 139.5, 135.1, 129.8, 129.1, 128.6, 128.5, 128.3, 128.2, 127.5, 126.3, 125.9, 125.7, 111.6, 110.6, 86.2, 73.5, 59.3, 58.8, 35.6, 29.0 (2); LC-MS (ESI) m/z $427\left[\mathrm{M}+\mathrm{H}^{+}\right.$; HRMS (ESI) m/z calcd for $\mathrm{C}_{27} \mathrm{H}_{31} \mathrm{ON}_{4}[\mathrm{M}+\mathrm{H}]^{+} 427.2492$, found 427.2493.

($1 E, 1 E$)-N,N'-Di-tert-butyl-4-methylisochroman-1,1-bis(carbimidoyl) cyanide (2s):
Following the general procedure as for $\mathbf{2 a}$, the reaction mixture of $\mathbf{1 s}(44.4 \mathrm{mg}, 0.3 \mathrm{mmol})$, ${ }^{t}$ BuNC ($170 \mu \mathrm{~L}, 1.5 \mathrm{mmol}$), AgOTf ($7.7 \mathrm{mg}, 0.03 \mathrm{mmol}$), and DDQ ($139.0 \mathrm{mg}, 0.6 \mathrm{mmol}$) in dry $\mathrm{PhCl}(3.0 \mathrm{~mL})$ was stirred at $80^{\circ} \mathrm{C}$ under N_{2} for 5 h to afford product $\mathbf{2 s}(59.7 \mathrm{mg}, 55 \%)$ as white solid. M.p. $126-127^{\circ} \mathrm{C}$; $\mathrm{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right)$: 2974, 2212, 1644, 1474, 1368, 1234, 1211, 1113, 981, 959, 755; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.32-7.29(\mathrm{~m}, 1 \mathrm{H}), 7.26(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.18-7.15(\mathrm{~m}, 1 \mathrm{H}), 6.88(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{dd}, J=11.0,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{dd}, J=11.5$, $4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.98-2.92(\mathrm{~m}, 1 \mathrm{H}), 1.45(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.42(\mathrm{~s}, 9 \mathrm{H}), 1.36(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): 140.1,139.6,139.5,129.7,128.5,128.3,127.0,125.2,111.4,110.9,85.4$, 67.4, 59.1, 58.8, 32.0, 28.9, 20.1; LC-MS (ESI) m/z 365 [M+H] ${ }^{+}$; HRMS (ESI) m/z calcd for $\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{ON}_{4}[\mathrm{M}+\mathrm{H}]^{+}$365.2336, found 365.2332 .

($6 E, 6 E$)-N,N'-Di-tert-butyl-6H-benzo[c]chromene-6,6-bis(carbimidoyl) cyanide (2t):
Following the general procedure as for $\mathbf{2 a}$, the reaction mixture of $\mathbf{1 t}(54.7 \mathrm{mg}, 0.3 \mathrm{mmol})$, ${ }^{t} B u N C(170 \mu \mathrm{~L}, 1.5 \mathrm{mmol})$, AgOTf ($7.7 \mathrm{mg}, 0.03 \mathrm{mmol}$), and DDQ ($139.0 \mathrm{mg}, 0.6 \mathrm{mmol}$) in dry $\mathrm{PhCl}(3.0 \mathrm{~mL})$ was stirred at $80^{\circ} \mathrm{C}$ under N_{2} for 5.5 h to afford product $2 \mathrm{t}(87.1 \mathrm{mg}, 73 \%)$ as white solid. M.p. $158-159^{\circ} \mathrm{C}$; $\operatorname{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right)$: 2978, 2216, 1645, 1471, 1446, 1364, 1236, 1204, 1059, 1035, 752 ; ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.81$ (d, $\left.J=8.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.70(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.50(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.27(\mathrm{~m}, 1 \mathrm{H}), 7.21(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.10(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.33(\mathrm{~s}, 18 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}^{\left(\mathrm{CDCl}_{3}, 125\right.}$ MHz) $150.3,137.2,130.0,129.9,129.8,127.7,127.2,126.8,123.3,122.9,122.7,121.8$, 118.7, 110.7, 86.6, 59.3, 28.9; LC-MS (ESI) m/z $399[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) m/z calcd for $\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{ON}_{4}[\mathrm{M}+\mathrm{H}]^{+}$399.2179, found 399.2178.

(1E,1E)-N,N'-Di-tert-butyl-1H,3H-benzo[de]isochromene-1,1-bis(carbimidoyl) cyanide
(2u):
Following the general procedure as for $\mathbf{2 a}$, the reaction mixture of $\mathbf{1 u}(51.1 \mathrm{mg}, 0.3 \mathrm{mmol})$, ${ }^{t}$ BuNC ($170 \mu \mathrm{~L}, 1.5 \mathrm{mmol}$), AgOTf ($7.7 \mathrm{mg}, 0.03 \mathrm{mmol}$), and DDQ ($139.0 \mathrm{mg}, 0.6 \mathrm{mmol}$) in dry
$\mathrm{PhCl}(3.0 \mathrm{~mL})$ was stirred at $80^{\circ} \mathrm{C}$ under N_{2} for 12 h to afford product $\mathbf{2 u}(53.7 \mathrm{mg}, 46 \%)$ as white solid. M.p. $146-148^{\circ} \mathrm{C}$; $\mathrm{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right)$: 2975, 2216, 1641, 1464, 1365, 1207, 1068, 1037, 821, $766 ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.89(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, 7.53-7.47 (m, 2H), 7.26-7.25 (m, 1H), $7.12(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.20(\mathrm{~s}, 2 \mathrm{H}), 1.42(\mathrm{~s}, 18 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): 139.2,132.9,129.6,128.8,127.2,126.1,125.7,125.6,125.4,125.1$, 120.8, 111.0, 85.7, 64.7, 59.3, 29.0; LC-MS (ESI) m/z 387 [M+H] ${ }^{+}$; HRMS (ESI) m/z calcd for $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{ON}_{4}[\mathrm{M}+\mathrm{H}]^{+}$387.2179, found 387.2176.

(E)- N -(tert-Butyl)-1-phenylisochroman-1-carbimidoyl cyanide (4a):
To a sealed tube, $\mathbf{3 a}(63.1 \mathrm{mg}, 0.3 \mathrm{mmol})$, ${ }^{t} \mathrm{BuNC}(170 \mu \mathrm{~L}, 1.5 \mathrm{mmol})$, AgOTf ($7.7 \mathrm{mg}, 0.03$ $\mathrm{mmol})$, and DDQ ($139.0 \mathrm{mg}, 0.6 \mathrm{mmol}$) in dry $\mathrm{PhCl}(3.0 \mathrm{~mL})$ were added in the glove box. The mixture was stirred at $100^{\circ} \mathrm{C}$ for 19 h under N_{2}. The reaction mixture was cooled down to room temperature and purified by column chromatography on silica gel to give product $\mathbf{4 a}(64.5 \mathrm{mg}$, 68%) as white solid. M.p. $121-123^{\circ} \mathrm{C}$; IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 2973, 2208, 1643, 1482, 1449, 1361, 1213, 1092, 1048, 919, 758, 695; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.31-7.27(\mathrm{~m}, 4 \mathrm{H}), 7.23-7.18$ $(\mathrm{m}, 4 \mathrm{H}), 7.05(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.04-4.00(\mathrm{~m}, 1 \mathrm{H}), 3.90-3.85(\mathrm{~m}, 1 \mathrm{H}), 3.18-3.12(\mathrm{~m}, 1 \mathrm{H})$, 2.88-2.84 (m, 1H), $1.40(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): 143.1,141.7,134.7,132.8,129.3$, 129.2, 128.9, 127.9, 127.7, 127.6, 125.5, 111.9, 84.9, 60.6, 58.5, 29.0, 28.3; LC-MS (ESI) m/z $319[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) m/z calcd for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{ON}_{2}[\mathrm{M}+\mathrm{H}]^{+} 319.1805$, found 319.1802.

(E)-N-(tert-Butyl)-5-methyl-1-phenylisochroman-1-carbimidoyl cyanide (4b):
Following the general procedure as for $\mathbf{4 a}$, the reaction mixture of $\mathbf{3 b}(67.3 \mathrm{mg}, 0.3 \mathrm{mmol})$, ${ }^{t}$ BuNC ($170 \mu \mathrm{~L}, 1.5 \mathrm{mmol}$), AgOTf ($7.7 \mathrm{mg}, 0.03 \mathrm{mmol}$), and DDQ ($139.0 \mathrm{mg}, 0.6 \mathrm{mmol}$) in dry $\mathrm{PhCl}(3.0 \mathrm{~mL})$ was stirred at $100^{\circ} \mathrm{C}$ for 24 h to afford product $\mathbf{4 b}(67.1 \mathrm{mg}, 67 \%)$ as white solid. M.p. 127-128 ${ }^{\circ} \mathrm{C}$; $\operatorname{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 2977,2216,1636,1482,1461,1365,1233,1208,1093,1053$, 920, 784, 697; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.31-7.28(\mathrm{~m}, 3 \mathrm{H}), 7.23-7.21(\mathrm{~m}, 2 \mathrm{H}), 7.16(\mathrm{~d}, J=$ $7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.06-4.02(\mathrm{~m}, 1 \mathrm{H}), 3.84-3.79(\mathrm{~m}$, $1 \mathrm{H}), 2.98-2.96(\mathrm{~m}, 1 \mathrm{H}), 2.70-2.65(\mathrm{~m}, 1 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}), 1.39(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}^{\mathrm{NMR}}\left(\mathrm{CDCl}_{3}, 125\right.$ $\mathrm{MHz}): 143.3,141.7,136.8,133.4,132.3,129.3,129.1,127.9,127.5,126.8,125.0,112.0,85.2$, 60.2, 58.5, 29.0, 25.9, 19.2; LC-MS (ESI) m/z $333[M+H]^{+}$; HRMS (ESI) m/z calcd for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{ON}_{2}[\mathrm{M}+\mathrm{H}]^{+} 333.1961$, found 333.1961.

(E)-N-(tert-Butyl)-7-methyl-1-phenylisochroman-1-carbimidoyl cyanide (4c):

Following the general procedure as for $\mathbf{4 a}$, the reaction mixture of $\mathbf{3 c}(68.7 \mathrm{mg}, 0.3 \mathrm{mmol})$, ${ }^{t}$ BuNC ($170 \mu \mathrm{~L}, 1.5 \mathrm{mmol}$), AgOTf ($7.7 \mathrm{mg}, 0.03 \mathrm{mmol}$), and DDQ ($139.0 \mathrm{mg}, 0.6 \mathrm{mmol}$) in dry $\mathrm{PhCl}(3.0 \mathrm{~mL})$ was stirred at $100^{\circ} \mathrm{C}$ for 24 h to afford product $\mathbf{4 c}(72.8 \mathrm{mg}, 73 \%)$ as white solid. M.p. $153-154{ }^{\circ} \mathrm{C}$; $\operatorname{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right):$ 2983, 2203, 1636, 1497, 1452, 1365, 1209, 1083, 1048, 921, 756, 695; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.30-7.28(\mathrm{~m}, 3 \mathrm{H}), 7.19-7.17(\mathrm{~m}, 2 \mathrm{H}), 7.11-7.06(\mathrm{~m}$, $2 \mathrm{H}), 6.82(\mathrm{~s}, 1 \mathrm{H}), 3.99-3.95(\mathrm{~m}, 1 \mathrm{H}), 3.81-3.76(\mathrm{~m}, 1 \mathrm{H}), 3.10-3.08(\mathrm{~m}, 1 \mathrm{H}), 2.74(\mathrm{dt}, J=16.0$, $3.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}), 1.38(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): 143.2,141.7,135.0,132.4$, 131.8, 129.4, 129.2 (2), 128.7, 127.9, 127.6, 112.0, 84.9, 60.6, 58.5, 29.0, 27.9, 21.2; LC-MS (ESI) m/z $333[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) m/z calcd for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{ON}_{2}[\mathrm{M}+\mathrm{H}]^{+}$333.1961, found 333.1967.

(E)-N-(tert-Butyl)-1-(o-tolyl)isochroman-1-carbimidoyl cyanide (4d):

Following the general procedure as for $\mathbf{4 a}$, the reaction mixture of $\mathbf{3 d}(67.3 \mathrm{mg}, 0.3 \mathrm{mmol})$, ${ }^{t}$ BuNC ($\left.170 \mu \mathrm{~L}, 1.5 \mathrm{mmol}\right)$, AgOTf ($7.7 \mathrm{mg}, 0.03 \mathrm{mmol}$), and DDQ ($139.0 \mathrm{mg}, 0.6 \mathrm{mmol}$) in dry $\mathrm{PhCl}(3.0 \mathrm{~mL})$ was stirred at $100^{\circ} \mathrm{C}$ for 24 h to afford product $\mathbf{4 d}(70.7 \mathrm{mg}, 71 \%)$ as white solid. M.p. 112-113 ${ }^{\circ} \mathrm{C}$; IR (KBr, cm^{-1}): 2973, 2930, 2212, 1636, 1477, 1457, 1366, 1210, 1093, 1046, 919, 752 ; ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.28(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.23-7.17(\mathrm{~m}, 4 \mathrm{H}), 7.03-6.99$ $(\mathrm{m}, 2 \mathrm{H}), 6.77(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.03-3.99(\mathrm{~m}, 1 \mathrm{H}), 3.76-3.71(\mathrm{~m}, 1 \mathrm{H}), 3.21-3.17(\mathrm{~m}, 1 \mathrm{H})$, 2.77-2.74 (m, 1H), $2.32(\mathrm{~s}, 3 \mathrm{H}), 1.39(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): 143.2,139.5,138.1$, 135.3, 132.8, 132.2, 130.6, 129.5 (2), 128.1, 127.7, 125.4, 124.3, 111.9, 86.1, 60.2, 58.4, 28.9, 28.1, 22.2; LC-MS (ESI) m/z $333[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) m/z calcd for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{ON}_{2}[\mathrm{M}+\mathrm{H}]^{+}$ 333.1961 , found 333.1968 .

(E)-N-(tert-Butyl)-1-(m-tolyl)isochroman-1-carbimidoyl cyanide (4e):

Following the general procedure as for $\mathbf{4 a}$, the reaction mixture of $3 \mathbf{e}(67.3 \mathrm{mg}, 0.3 \mathrm{mmol})$, ${ }^{t}$ BuNC ($\left.170 \mu \mathrm{~L}, 1.5 \mathrm{mmol}\right)$, AgOTf ($7.7 \mathrm{mg}, 0.03 \mathrm{mmol}$), and DDQ ($139.0 \mathrm{mg}, 0.6 \mathrm{mmol}$) in dry $\mathrm{PhCl}(3.0 \mathrm{~mL})$ was stirred at $100^{\circ} \mathrm{C}$ for 21 h to afford product $4 \mathrm{e}(74.7 \mathrm{mg}, 75 \%)$ as white solid. M.p. $123-125^{\circ} \mathrm{C}$; IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 2971, 2208, 1646, 1480, 1358, 1208, 1091, 1048, 922, 755, $699 ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.26-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.20-7.14(\mathrm{~m}, 3 \mathrm{H}), 7.10(\mathrm{~d}, J=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.05-7.01(\mathrm{~m}, 2 \mathrm{H}), 7.00(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.00-3.96(\mathrm{~m}, 1 \mathrm{H}), 3.94-3.90(\mathrm{~m}, 1 \mathrm{H})$, 3.11-3.06 (m, 1H), 2.92-2.86 (m, 1H), $2.31(\mathrm{~s}, 3 \mathrm{H}), 1.40(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 125 \mathrm{MHz}$): 143.2, 141.6, 137.3, 134.5, 133.1, 129.5, 129.4, 129.2, 128.7, 127.6, 127.5, 125.9, 125.4, 111.9, 84.8, 60.7, 58.5, 29.1, 28.4, 21.6; LC-MS (ESI) m/z 333 [M+H] ${ }^{+}$HRMS (ESI) m/z calcd for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{ON}_{2}[\mathrm{M}+\mathrm{H}]^{+}$333.1961, found 333.1957.

(E)-N-(tert-Butyl)-5-methyl-1-(p-tolyl)isochroman-1-carbimidoyl cyanide (4f):

Following the general procedure as for $\mathbf{4 a}$, the reaction mixture of $3 \mathbf{f}(71.5 \mathrm{mg}, 0.3 \mathrm{mmol}$), ${ }^{t}$ BuNC ($\left.170 \mu \mathrm{~L}, 1.5 \mathrm{mmol}\right)$, AgOTf ($7.7 \mathrm{mg}, 0.03 \mathrm{mmol}$), and DDQ ($139.0 \mathrm{mg}, 0.6 \mathrm{mmol}$) in dry $\mathrm{PhCl}(3.0 \mathrm{~mL})$ was stirred at $100^{\circ} \mathrm{C}$ for 22 h to afford product $4 \mathrm{f}(81.1 \mathrm{mg}, 78 \%)$ as white solid. M.p. $122-123{ }^{\circ} \mathrm{C}$; IR (KBr, cm^{-1}): 2974, 2964, 2870, 2220, 1642, 1508, 1456, 1365, 1234, 1096, $1056,918,811,773 ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.14(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.09-7.06(\mathrm{~m}, 5 \mathrm{H})$, $6.87(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.03-3.99(\mathrm{~m}, 1 \mathrm{H}), 3.83-3.78(\mathrm{~m}, 1 \mathrm{H}), 2.98-2.93(\mathrm{~m}, 1 \mathrm{H}), 2.69-2.64(\mathrm{~m}$, $1 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}), 1.38(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}^{\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): 143.4,138.8,137.5,}$ 136.6, 133.4, 132.6, 129.2, 129.0, 128.2, 126.8, 124.9, 112.0, 85.0, 60.1, 58.4, 29.0, 25.9, 21.1, 19.2; LC-MS (ESI) m/z $347[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) m/z calcd for $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{ON}_{2}[\mathrm{M}+\mathrm{H}]^{+}$347.2118, found 347.2128 .

(E)-N-(tert-Butyl)-1-(naphthalen-1-yl)isochroman-1-carbimidoyl cyanide (4g):

Following the general procedure as for $\mathbf{4 a}$, the reaction mixture of $3 \mathrm{~g}(78.1 \mathrm{mg}, 0.3 \mathrm{mmol})$, ${ }^{t}$ BuNC ($\left.170 \mu \mathrm{~L}, 1.5 \mathrm{mmol}\right)$, AgOTf ($7.7 \mathrm{mg}, 0.03 \mathrm{mmol}$), and DDQ ($139.0 \mathrm{mg}, 0.6 \mathrm{mmol}$) in dry $\mathrm{PhCl}(3.0 \mathrm{~mL})$ was stirred at $100^{\circ} \mathrm{C}$ for 23 h to afford product $\mathbf{4 g}(76.5 \mathrm{mg}, 69 \%)$ as white solid. M.p. 141-143 ${ }^{\circ} \mathrm{C}$; IR (KBr, cm^{-1}): 2977, 2216, 1640, 1598, 1453, 1362, 1229, 1202, 1090, 1050, 910, 785, 745, 632; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 8.17-8.15(\mathrm{~m}, 1 \mathrm{H}), 7.84-7.82(\mathrm{~m}, 1 \mathrm{H}), 7.78$ (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.45-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.32(\mathrm{~m}, 1 \mathrm{H}), 7.28(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.21(\mathrm{~m}$, $2 \mathrm{H}), 7.11(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.08-4.04(\mathrm{~m}, 1 \mathrm{H}), 3.73-3.68(\mathrm{~m}, 1 \mathrm{H})$, 3.34-3.28 (m, 1H), $2.72(\mathrm{~d}, \mathrm{~J}=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.22(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): 143.0$, $137.7,135.6,134.6,132.6,131.0,129.9,129.8,129.6,129.2,128.5$ (2), 128.0, 125.6, 125.1, 125.0, 123.6, 111.9, 86.3, 60.2, 58.3, 28.7, 28.1; LC-MS (ESI) m/z $369[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) m / z calcd for $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{ON}_{2}[\mathrm{M}+\mathrm{H}]^{+}$369.1961, found 369.1957.

(E)-1-(3-Bromothiophen-2-yl)-N-(tert-butyl)-5-methylisochroman-1-carbimidoyl cyanide (4h):
Following the general procedure as for $\mathbf{4 a}$, the reaction mixture of $\mathbf{3 h}(92.4 \mathrm{mg}, 0.3 \mathrm{mmol})$,
${ }^{t}$ BuNC ($170 \mu \mathrm{~L}, 1.5 \mathrm{mmol}$), AgOTf ($7.7 \mathrm{mg}, 0.03 \mathrm{mmol}$), and DDQ ($139.0 \mathrm{mg}, 0.6 \mathrm{mmol}$) in dry $\mathrm{PhCl}(3.0 \mathrm{~mL})$ was stirred at $100^{\circ} \mathrm{C}$ for 24 h to afford product $4 \mathrm{~h}(72.3 \mathrm{mg}, 58 \%)$ as white solid. M.p. $153-155^{\circ} \mathrm{C}$; $\operatorname{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 3088,2972,2927,1942,1734,1645,1462,1356,1225,1086$, 1050, 868, 772, 740; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.21-7.19(\mathrm{~m}, 1 \mathrm{H}), 7.14-7.11(\mathrm{~m}, 3 \mathrm{H}), 7.03$ (d, J=5.0 Hz, 1H), 4.20-4.16 (m, 1H), 3.85-3.79 (m, 1H), 3.08-3.01 (m, 1H), 2.63-2.59 (m, 1H), $2.28(\mathrm{~s}, 3 \mathrm{H}), 1.41(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): 140.3,139.8,137.0,133.6,132.4$, 132.3, 130.1, 125.5, 125.4, 125.1, 111.5, 110.2, 82.3, 60.1, 58.5, 28.9, 25.5, 19.2; LC-MS (ESI) $\mathrm{m} / \mathrm{z}(\%): 419$ (78) $\left[\mathrm{M}\left({ }^{81} \mathrm{Br}\right)+\mathrm{H}\right]^{+}, 417$ (100) $\left[\mathrm{M}\left({ }^{79} \mathrm{Br}\right)+\mathrm{H}\right]^{+}$; HRMS (ESI) m/z calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{ON}_{2} \mathrm{BrS}[\mathrm{M}+\mathrm{H}]^{+}$417.0631, found 417.0630.

(E)-N-(tert-Butyl)-4-methyl-1-phenylisochroman-1-carbimidoyl cyanide (4i):

Following the general procedure as for $\mathbf{4 a}$, the reaction mixture of $\mathbf{3 i}(44.5 \mathrm{mg}, 0.3 \mathrm{mmol})$, ${ }^{t}$ BuNC ($170 \mu \mathrm{~L}, 1.5 \mathrm{mmol}$), AgOTf ($7.7 \mathrm{mg}, 0.03 \mathrm{mmol}$), and DDQ ($139.0 \mathrm{mg}, 0.6 \mathrm{mmol}$) in dry $\mathrm{PhCl}(3.0 \mathrm{~mL})$ was stirred at $100^{\circ} \mathrm{C}$ for 24 h to afford product $4 \mathrm{i}(79.4 \mathrm{mg}, 79 \%)$ as white solid. M.p. 113-114 ${ }^{\circ} \mathrm{C}$; IR (KBr, $\left.\mathrm{cm}^{-1}\right)$: 2972, 2207, 1640, 1483, 1450, 1365, 1230, 1211, 1109, 1045, 749,$699 ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.33-7.11(\mathrm{~m}, 8 \mathrm{H}), 7.03(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 0.23 \mathrm{H}), 6.97(\mathrm{~d}$, $J=7.8 \mathrm{~Hz}, 0.76 \mathrm{H}$), 3.96 (dd, $J=11.5,4.7 \mathrm{~Hz}, 0.78 \mathrm{H}), 3.80(\mathrm{dd}, J=11.8,3.8 \mathrm{~Hz}, 0.24 \mathrm{H}), 3.69$ (dd, $J=11.5,2.4 \mathrm{~Hz}, 0.23 \mathrm{H}$), $3.64(\mathrm{dd}, J=11.5,6.5 \mathrm{~Hz}, 0.77 \mathrm{H}), 3.15-3.08(\mathrm{~m}, 0.78 \mathrm{H})$, $2.85-2.84(\mathrm{~m}, 0.23 \mathrm{H}), 1.51(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 0.79 \mathrm{H}), 1.39(\mathrm{~s}, 6.96 \mathrm{H}), 1.37(\mathrm{~s}, 2.13 \mathrm{H}), 1.34(\mathrm{~d}, J=$ $7.0 \mathrm{~Hz}, 2.45 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): 140.6,139.6,132.6,131.5,129.5,129.4,129.2$, $128.5,128.1,128.0,127.9,127.7$ (2), 127.4, 125.5, 125.2, 111.9, 85.5, 85.2, 66.7, 65.9, 58.6, 58.5, 32.4, 31.7, 29.0 (2), 21.8, 18.6; LC-MS (ESI) m/z 333 [M+H] ${ }^{+}$; HRMS (ESI) m/z calcd for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{ON}_{2}[\mathrm{M}+\mathrm{H}]^{+}$333.1961, found 333.1960.

(E)-N-(tert-Butyl)-6-phenyl-6H-benzo[c]chromene-6-carbimidoyl cyanide (4j):
Following the general procedure as for $\mathbf{4 a}$, the reaction mixture of $\mathbf{3 j}(77.5 \mathrm{mg}, 0.3 \mathrm{mmol}$), ${ }^{t}$ BuNC ($170 \mu \mathrm{~L}, 1.5 \mathrm{mmol}$), AgOTf ($7.7 \mathrm{mg}, 0.03 \mathrm{mmol}$), and DDQ ($139.0 \mathrm{mg}, 0.6 \mathrm{mmol}$) in dry $\mathrm{PhCl}(3.0 \mathrm{~mL})$ was stirred at $100^{\circ} \mathrm{C}$ for 23 h to afford product $\mathbf{4 j}$ ($107.8 \mathrm{mg}, 98 \%$) as white solid. M.p. $142-144{ }^{\circ} \mathrm{C}$; IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 2969, 2224, 1646, 1593, 1484, 1440, 1231, 1019, 758, 694; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.77(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.44-7.40(\mathrm{~m}$, $6 \mathrm{H}), 7.29-7.20(\mathrm{~m}, 3 \mathrm{H}), 7.08(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.21(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): 151.3,140.7,138.1,133.1,130.0,129.6,129.0,128.6,128.3,128.0,127.8$, 127.3, 123.1, 122.9, 122.3, 119.0, 111.6, 86.8, 58.7, 28.8; LC-MS (ESI) m/z $367[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) m/z calcd for $\mathrm{C}_{25} \mathrm{H}_{23} \mathrm{ON}_{2}[\mathrm{M}+\mathrm{H}]^{+}$367.1805, found 367.1804.

(E)-N-(tert-Butyl)-1-phenyl-1H,3H-benzo[de]isochromene-1-carbimidoyl cyanide (4k):

Following the general procedure as for $\mathbf{4 a}$, the reaction mixture of $\mathbf{3 k}(73.9 \mathrm{mg}, 0.3 \mathrm{mmol})$, ${ }^{t}$ BuNC ($170 \mu \mathrm{~L}, 1.5 \mathrm{mmol}$), AgOTf ($7.7 \mathrm{mg}, 0.03 \mathrm{mmol}$), and DDQ ($139.0 \mathrm{mg}, 0.6 \mathrm{mmol}$) in dry $\mathrm{PhCl}(3.0 \mathrm{~mL})$ was stirred at $100^{\circ} \mathrm{C}$ for 23 h to afford product $\mathbf{4 k}(78.4 \mathrm{mg}, 74 \%)$ as white solid. M.p. $153-155^{\circ} \mathrm{C}$; IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 2964, 2856, 2212, 1631, 1446, 1364, 1230, 1205, 1059, 822, 768,$690 ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.89(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.51$ (t, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.29(\mathrm{~m}, 3 \mathrm{H}), 7.19(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H})$, 7.16-7.15 (m, 2H), $5.11(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.90(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.41(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): 142.5,139.8,133.1,131.2,130.4,129.1,128.2$ (2), 127.9, 126.8, 126.7, 125.7, 125.1, 124.6, 120.6, 111.9, 85.8, 63.8, 58.7, 29.1; LC-MS (ESI) m/z 355 [M+H] ; ; HRMS (ESI) m/z calcd for $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{ON} \mathrm{N}_{2}[\mathrm{M}+\mathrm{H}]^{+} 355.1805$, found 355.1801.

(E)-N-(tert-Butyl)-1-methylisochroman-1-carbimidoyl cyanide (4I):

Following the general procedure as for $\mathbf{4 a}$, the reaction mixture of $\mathbf{3 I}(44.5 \mathrm{mg}, 0.3 \mathrm{mmol}$), ${ }^{t}$ BuNC ($170 \mu \mathrm{~L}, 1.5 \mathrm{mmol}$), AgOTf ($7.7 \mathrm{mg}, 0.03 \mathrm{mmol}$), and DDQ ($139.0 \mathrm{mg}, 0.6 \mathrm{mmol}$) in dry $\mathrm{PhCl}(3.0 \mathrm{~mL})$ was stirred at $100^{\circ} \mathrm{C}$ for 24 h to afford product $4 \mathrm{I}(46.5 \mathrm{mg}, 60 \%)$ as pale yellow oil. IR (KBr, cm ${ }^{-1}$): 2975, 2212, 1645, 1460, 1368, 1232, 1109, 1031, 756; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500\right.$ $\mathrm{MHz}): \delta 7.23-7.14(\mathrm{~m}, 3 \mathrm{H}), ~ 6.99-6.97(\mathrm{~m}, 1 \mathrm{H}), 4.17-4.13(\mathrm{~m}, 1 \mathrm{H}), 4.03-3.98(\mathrm{~m}, 1 \mathrm{H}), 3.15-3.09$ $(\mathrm{m}, 1 \mathrm{H}), 2.75(\mathrm{dt}, J=16.0,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.68(\mathrm{~s}, 3 \mathrm{H}), 1.40(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$: 143.0, 135.6, 134.3, 129.1, 127.3, 126.5, 126.4, 111.7, 80.6, 60.8, 58.0, 29.1, 28.8, 25.3; LC-MS (ESI) m/z $257[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) m/z calcd for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{ON} \mathrm{N}_{2}[\mathrm{M}+\mathrm{H}]^{+}$257.1648, found 257.1645.

Synthesis and Characterization of 1,2,3,4-Tetrahydroisoquinolines, Related to Figure 4.

Compounds 5a (Sullivan et al., 2014), 5k (Pingaew et al., 2013), $\mathbf{5 s}$ (Michael et al., 2010) and 5u (Park et al., 2008) were prepared by known method. Othor tetrahydroisoquinolines were prepared as shown below.

7-Methyl-2-tosyl-1,2,3,4-tetrahydroisoquinoline (5b):

To a solution of $\mathbf{5 b}$ ' ($135.2 \mathrm{mg}, 1.0 \mathrm{mmol}$), $\mathrm{Et}_{3} \mathrm{~N}(0.28 \mathrm{~mL}, 2.0 \mathrm{mmol})$ and dichloromethane (3 mL) was added a solution of $\mathrm{TsCl}(228 \mathrm{mg}, 1.2 \mathrm{mmol})$ in dichloromethane $(3 \mathrm{~mL})$. After stirred at room temperature for 6 h , the reaction was quenched with $2 \mathrm{M} \mathrm{HCl}(15 \mathrm{~mL})$ and extracted with dichloromethane ($3 \times 15 \mathrm{~mL}$). The combined organic phase was washed with saturated $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution (15 mL) and brine (15 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The resulting solution was concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (petroleum ether/ethyl acetate $=5: 1$) to give 5 b" (259.1 mg , 90%), which was directly used for the next step without further purification. To a mixture of $\mathbf{5 b}$ " $(259.1 \mathrm{mg}, 0.9 \mathrm{mmol})$ and $(\mathrm{HCHO})_{n}(81 \mathrm{mg}, 2.7 \mathrm{mmol})$ was added $\mathrm{H}_{2} \mathrm{SO}_{4} / \mathrm{AcOH}=1: 4(5 \mathrm{~mL})$. After stirred at room temperature for 12 h , the reaction was quenched with water (20 mL) and extracted with dichloromethane $(3 \times 15 \mathrm{~mL})$. The combined organic phase was washed with saturated $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution (15 mL) and brine (15 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The resulting solution was concentrated under reduced pressure, and the residue was recrystallized to give pure product 5 b ($225.0 \mathrm{mg}, 83 \%$) as a white solid. M.p. $164-165^{\circ} \mathrm{C}$; $\mathrm{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 3022.4$, 2863.4, 2829.4, 1935.1, 1588.2, 1502.1, 1455.0, 1338.9, 1161.9; ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$: $\delta 7.72(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.99-6.92(\mathrm{~m}, 2 \mathrm{H}), 6.84(\mathrm{~s}, 1 \mathrm{H}), 4.21(\mathrm{~s}$, $2 \mathrm{H}), 3.33(\mathrm{t}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.88(\mathrm{t}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 143.73,136.03,133.44,131.56,130.11,129.78,128.75,127.86,127.70$, 126.90, 47.62, 43.97, 28.60, 21.63, 21.08; EI-MS m/z (\%): 146.1 (100), 301.1 (14) [M] ${ }^{+}$; HRMS (El) m/z calcd for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}_{2} \mathrm{~S}[\mathrm{M}]^{+}$301.1136, found 301.1139.

7-Phenyl-2-tosyl-1,2,3,4-tetrahydroisoquinoline (5c):
To a mixture of $5 \mathrm{~g}(219.8 \mathrm{mg}, 0.6 \mathrm{mmol})$, phenylboronic acid ($110 \mathrm{mg}, 0.9 \mathrm{mmol}$), $\mathrm{K}_{2} \mathrm{CO}_{3}(231$ $\mathrm{mg}, 1.8 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(6.7 \mathrm{mg}, 0.03 \mathrm{mmol}), \mathrm{PPh}_{3}(31.5 \mathrm{mg}, 0.12 \mathrm{mmol})$ were added MeOH $(1.2 \mathrm{~mL})$ and dioxane $(0.6 \mathrm{~mL})$. After stirred at $80^{\circ} \mathrm{C}$ for 5 h under N_{2}, the reaction mixture was filtered, and the filter residue was washed with ethyl acetate. The resulting solution was concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (petroleum ether/ethyl acetate $=5: 1$) to give pure product 5 c $(149.5 \mathrm{mg}, 69 \%)$ as a white solid. M.p.118-119 ${ }^{\circ} \mathrm{C}$; $\mathrm{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 3051.5,2927.7,2847.0$, 1962.2, 1902.0, 1594.6, 1487.1, 1454.7, 1339.4, 1157.0; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.75(\mathrm{~d}$, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.52(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.42(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.38-7.30(\mathrm{~m}, 4 \mathrm{H}), 7.25(\mathrm{~s}$, $1 \mathrm{H}), 7.16(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.31(\mathrm{~s}, 2 \mathrm{H}), 3.39(\mathrm{t}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.97(\mathrm{t}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.42$ (s, 3H); ${ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 143.85,140.68,139.59,133.42,132.34,132.21$, 129.86, 129.39, 128.93, 127.90, 127.47, 127.07, 125.73, 125.10, 47.83, 43.91, 28.76, 21.66; HRMS (EI) m/z calcd for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{NO}_{2} \mathrm{~S}[\mathrm{M}]^{+}$363.1293, found 363.1288.

7-Methoxy-2-tosyl-1,2,3,4-tetrahydroisoquinoline (5d):

To a solution of $\mathbf{5 d}$ ' ($736 \mathrm{mg}, 5 \mathrm{mmol}$) and THF (1 mL) in three-necked bottle was added $\mathrm{BH}_{3} \cdot \mathrm{THF}$ (1 M in THF, 15 mL) under N_{2}. After stirred at $75{ }^{\circ} \mathrm{C}$ overnight, the reaction was quenched with $\mathrm{MeOH}(5 \mathrm{~mL})$ carefully, and concentrated under reduced pressure. After dichloromethane (8 mL), $\mathrm{Et}_{3} \mathrm{~N}(1.4 \mathrm{~mL}, 10 \mathrm{mmol})$ and pyridine $(0.8 \mathrm{~mL}, 10 \mathrm{mmol})$ were added to this residue, a solution of $\mathrm{TsCl}(1.14 \mathrm{~g}, 6 \mathrm{mmol})$ in dichloromethane (8 mL) was added, and the mixture was stirred at room temperature overnight. The reaction was quenched with 2 M $\mathrm{HCl}(15 \mathrm{~mL})$, extracted with dichloromethane $(3 \times 15 \mathrm{~mL})$. The combined organic phase was washed with saturated $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution (15 mL) and brine (15 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The resulting solution was concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (petroleum ether/ethyl acetate $=5: 1$) to give 5d" (811.6 $\mathrm{mg}, 53 \%$ for two steps) without further purification. To a solution of 5 d " ($305.4 \mathrm{mg}, 1 \mathrm{mmol}$) in dichloromethane (2.4 mL) was added $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(225 \mu \mathrm{~L}, 3 \mathrm{mmol})$ and aq. HCHO (37%) (93 $\mu \mathrm{L})$. After stirred at room temperature for 2 h , the reaction was quenched with water $(10 \mathrm{~mL})$, and extracted with dichloromethane $(3 \times 10 \mathrm{~mL})$. The combined organic phase washed with brine (15 mL), and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The resulting solution was concentrated under reduced pressure. And the residue was purified by flash column chromatography on silica gel (petroleum ether/ethyl acetate $=5: 1$) to give product $5 \mathrm{~d}(114.8 \mathrm{mg}, 36 \%)$ as a white solid. M.p. $115-117^{\circ} \mathrm{C}$; IR (KBr, cm ${ }^{-1}$): 2925.4, 2849.8, 1609.2, 1503.6, 1457.5, 1337.4; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $500 \mathrm{MHz}): \delta 7.72(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.98(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.71$ (dd, $J=8.5,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.55(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{~s}, 2 \mathrm{H}), 3.75(3 \mathrm{H}, \mathrm{s}), 3.33(\mathrm{t}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H})$, 2.85 (t. $J=5.9,2 H$), $2.42(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 158.16,143.78,133.49$, 132.78, 129.89, 129.83, 127.87, 125.28, 113.35, 111.05, 55.44, 47.82, 44.13, 28.19, 21.66; El-MS m/z (\%): 134.1 (100), 317.1 (32) [M] ${ }^{+}$; HRMS (EI) m/z calcd for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}_{3} \mathrm{~S}[\mathrm{M}]^{+}$ 317.1086 , found 317.1087 .

7-Fluoro-2-tosyl-1,2,3,4-tetrahydroisoquinoline (5e):

To a solution of 5 e' ($675 \mathrm{mg}, 5 \mathrm{mmol}$) and THF (1 mL) in a three-necked bottle was added BH_{3}. THF (1 M in THF, 15 mL) under N_{2}. After stirred at $75{ }^{\circ} \mathrm{C}$ overnight, the reaction was quenched with $\mathrm{MeOH}(5 \mathrm{~mL})$ carefully, and concentrated under reduced pressure. After dichloromethane (8 mL), $\mathrm{Et}_{3} \mathrm{~N}(1.4 \mathrm{~mL}, 10 \mathrm{mmol})$ and pyridine $(0.8 \mathrm{~mL}, 10 \mathrm{mmol})$ were added to this residue, a solution of $\mathrm{TsCl}(1.14 \mathrm{~g}, 6 \mathrm{mmol})$ in dichloromethane $(8 \mathrm{~mL})$ was dropped, and stirred at room temperature overnight. The reaction was quenched with $2 \mathrm{M} \mathrm{HCl}(15 \mathrm{~mL})$, extracted with dichloromethane $(3 \times 15 \mathrm{~mL})$. The combined organic phase was washed with saturated $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution (15 mL), brine (15 mL), and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The resulting solution was concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (petroleum ether/ethyl acetate $=5: 1$) to give 5 e" ($670.9 \mathrm{mg}, 46 \%$ for two steps). To a mixture of 5 e " $(293.4 \mathrm{mg}, 1 \mathrm{mmol})$ and $(\mathrm{HCHO})_{n}(90 \mathrm{mg}, 3 \mathrm{mmol})$ was added $\mathrm{H}_{2} \mathrm{SO}_{4} / \mathrm{AcOH}=3: 2(10 \mathrm{~mL})$. After stirred at room temperature for 5 h , the reaction was quenched with water $(20 \mathrm{~mL})$, and extracted with dichloromethane $(3 \times 10 \mathrm{~mL})$. The combined
organic phase was washed with saturated $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution (15 mL) and brine (15 mL), and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The resulting solution was concentrated under reduced pressure. The residue was recrystallized (dichloromethane/hexane) to give pure product 5 e ($225.0 \mathrm{mg}, 83 \%$) as a white solid. M.p. $116-117^{\circ} \mathrm{C}$; $\mathrm{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right)$: 2975.2, 2908.6, 1921.2, 1731.4, 1605.3, 1499.1, 1437.1; ' ${ }^{\mathrm{H}} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.72$ (d, $\left.J=8.3 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.33(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H})$, 7.03 (dd, $J=8.5,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.84$ (td, $J=8.5,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.71$ (dd, $J=9.2,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.21$ (s, 2H), $3.34(\mathrm{t}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.88(\mathrm{t}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{19} \mathrm{~F} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 470\right.$ MHz): $\delta=-116.25(\mathrm{~m}, \mathrm{Ar}-\mathrm{F}) ;{ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 125 \mathrm{MHz}$): $\delta 161.31\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=244.7 \mathrm{~Hz}\right.$), $143.96,133.58\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=7.6 \mathrm{~Hz}\right), 133.34,130.43\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C} . \mathrm{F}}=7.8 \mathrm{~Hz}\right), 129.90,128.82\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=\right.$ $2.8 \mathrm{~Hz}), 127.86,114.15\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=21.2 \mathrm{~Hz}\right), 112.95\left(\mathrm{~d},{ }^{2} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=22.0 \mathrm{~Hz}\right), 47.58\left(\mathrm{~d},{ }^{4} J_{\mathrm{C}-\mathrm{F}}=2.3\right.$ Hz), 43.87, 28.33, 21.66; El-MS m/z (\%): 150.1 (100), 305.1 (16) [M] ${ }^{+}$; HRMS (EI) m/z calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{FNO}_{2} \mathrm{~S}[\mathrm{M}]^{+}$305.0886, found 305.0890 .

7-Chloro-2-tosyl-1,2,3,4-tetrahydroisoquinoline (5f):

To a solution of $\mathbf{5 f}$ ' ($758 \mathrm{mg}, 5 \mathrm{mmol}$) and THF (1 mL) in a three-necked bottle was added $\mathrm{BH}_{3} \cdot$ THF (1 M in THF, 15 mL) under N_{2}. After stirred at $75^{\circ} \mathrm{C}$ overnight, the reaction was quenched with $\mathrm{MeOH}(5 \mathrm{~mL})$ carefully, and concentrated under reduced pressure. After dichloromethane (8 mL), $\mathrm{Et}_{3} \mathrm{~N}(1.4 \mathrm{~mL}, 10 \mathrm{mmol})$ and pyridine ($0.8 \mathrm{~mL}, 10 \mathrm{mmol}$) were added in this residue, asolution of $\operatorname{TsCl}(1.14 \mathrm{~g}, 6 \mathrm{mmol})$ in dichloromethane $(8 \mathrm{~mL})$ was added, and the mixture was stirred at room temperature overnight. The reaction was quenched with 2 M $\mathrm{HCl}(15 \mathrm{~mL})$, extracted with dichloromethane ($3 \times 15 \mathrm{~mL}$). The combined organic phase was washed with saturated $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution (15 mL), brine (15 mL), and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The resulting solution was concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (petroleum ether/ethyl acetate $=5: 1$) to give 5 f" (850.4 $\mathrm{mg}, 55 \%$ for two steps). To a mixture of $5 \mathrm{ff}^{\prime \prime}(309.8 \mathrm{mg}, 1 \mathrm{mmol})$ and (HCHO$)_{n}(90 \mathrm{mg}, 3 \mathrm{mmol})$ was added $\mathrm{H}_{2} \mathrm{SO}_{4} / \mathrm{AcOH}=3: 2(10 \mathrm{~mL})$. After stirred at room temperature for 5 h , the reaction was quenched with water (20 mL), and extracted with dichloromethane $(3 \times 10 \mathrm{~mL})$. The combined organic phase was washed with saturated $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution (15 mL), brine (15 mL), and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The resulting solution was concentrated under reduced pressure. The residue was recrystallized (dichloromethane/Hexane) to give pure product ($266.6 \mathrm{mg}, 83 \%$) as a white solid. M.p. $156-158{ }^{\circ} \mathrm{C}$; $\operatorname{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 3032.1,2930.9,2843.7,1925.6,1741.2,1598.4$, 1483.4, 1419.8, 1336.9, 1161.4; $\left.{ }^{1} \mathrm{H} \mathrm{NMR} \mathrm{(CDCl}{ }_{3}, 500 \mathrm{MHz}\right): \delta 7.70(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{~d}$, $J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.09(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.05-6.95(\mathrm{~m}, 2 \mathrm{H}), 4.18(\mathrm{~s}, 2 \mathrm{H}), 3.32(\mathrm{t}, J=5.8 \mathrm{~Hz}$, 2 H), 2.87 (t, $J=5.6 \mathrm{~Hz}, 2 \mathrm{H}$), 2.41 ($\mathrm{s}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 125 \mathrm{MHz}$): $\delta 143.95,133.48$, 133.20, 131.97, 131.66, 130.23, 129.86, 127.78, 127.03, 126.30, 47.32, 43.64, 28.39, 21.60; EI-MS m/z (\%): 166.0 (100) [M-Ts] ${ }^{+}$; HRMS (EI) m/z calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{ClNO}_{2} \mathrm{~S}[\mathrm{M}]^{+} 321.0590$, found 321.0601 .

7-Bromo-2-tosyl-1,2,3,4-tetrahydroisoquinoline (5g):
To a solution of $5 \mathrm{~g}^{\prime}(980 \mathrm{mg}, 5 \mathrm{mmol})$ and THF (1 mL) in a three-necked bottle was added BH_{3}.THF (1 M in THF, 15 mL) under N_{2}. After stirred at $75{ }^{\circ} \mathrm{C}$ overnight, the reaction was quenched with $\mathrm{MeOH}(5 \mathrm{~mL})$ carefully, and concentrated under reduced pressure. After dichloromethane $(8 \mathrm{~mL})$ and $\mathrm{Et}_{3} \mathrm{~N}(1.4 \mathrm{~mL}, 10 \mathrm{mmol})$ were added to this residue, a solution of $\mathrm{TsCl}(1.14 \mathrm{~g}, 6 \mathrm{mmol})$ in dichloromethane $(8 \mathrm{~mL})$ was added, and the mixture was stirred at room temperature overnight. The reaction was quenched with $2 \mathrm{M} \mathrm{HCl}(15 \mathrm{~mL})$, extracted with dichloromethane $(3 \times 15 \mathrm{~mL})$. The combined organic phase was washed with saturated $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution (15 mL), brine (15 mL), and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The resulting solution was concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (petroleum ether/ethyl acetate =5:1) to give 5g" ($884.2 \mathrm{mg}, 50 \%$ for two steps). To a mixture of 5 g " $(884.2 \mathrm{mg}, 2.5 \mathrm{mmol})$ and $(\mathrm{HCHO})_{n}(225 \mathrm{mg}, 7.5 \mathrm{mmol})$ was added $\mathrm{H}_{2} \mathrm{SO}_{4} / \mathrm{AcOH}=3: 2(25 \mathrm{~mL})$. After stirred at room temperature for 5 h , the reaction was quenched with water (40 mL). The mixture was filtered to collect residue solid. The residue was recrystallized (hexane/ethyl acetate) to give product 5 g ($737.3 \mathrm{mg}, 81 \%$) as a white solid. M.p. $160-161^{\circ} \mathrm{C}$; IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3031.1, 2929.8, 2841.9, 1924.6, 1740.8, 1593.9, 1479.8, $1417.51337 .9,1161.3 ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.71(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{~d}, J=8.1$ $\mathrm{Hz}, 2 \mathrm{H}), 7.25(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{~s}, 1 \mathrm{H}), 6.95(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{~s}, 2 \mathrm{H}), 3.33(\mathrm{t}, J=$ $5.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.86(\mathrm{t}, \mathrm{J}=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 143.99$, $133.95,133.30,132.24,130.57,130.00,129.91,129.32,127.85,119.96,47.23,43.62,28.52$, 21.66; El-MS m/z (\%): 210.0 (100), 364 (8) [M ($\left.\left.{ }^{79} \mathrm{Br}\right)\right]^{+}, 366$ (10) $\left[\mathrm{M}\left({ }^{81} \mathrm{Br}\right)\right]^{+}$; HRMS (EI) m/z calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{BrNO}_{2} \mathrm{~S}[\mathrm{M}]^{+} 365.0085$, found 365.0084.

2-Tosyl-7-((trimethylsilyl)ethynyl)-1,2,3,4-tetrahydroisoquinoline (5h):
To a mixture of $\mathbf{1 g}(219.8 \mathrm{mg}, 0.6 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(42.1 \mathrm{mg}, 0.06 \mathrm{mmol})$ and $\mathrm{Cul}(11.4$ $\mathrm{mg}, 0.06 \mathrm{mmol})$ in DMF (3 mL) were added ethynyltrimethylsilane ($169 \mu \mathrm{~L}, 1.2 \mathrm{mmol}$) and $\mathrm{Et}_{3} \mathrm{~N}$ ($169 \mu \mathrm{~L}, 1.8 \mathrm{mmol}$). After stirred at $50{ }^{\circ} \mathrm{C}$ for 4 h , the reaction was quenched with saturated $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution, and extracted with EtOAc (10 mL) for three times. The combined organic phase were washed with water ($3 \times 10 \mathrm{~mL}$), brine (10 mL), and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, The resulting solution was concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (petroleum ether/ethyl acetate $=10: 1$) to give product 5h (138.2 mg, 60%) as a white solid. M.p. $39-41^{\circ} \mathrm{C}$; $\mathrm{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 3046.1,2977.9$, 2925.7, 2850.0, 1919.6, 1608.7, 1457.7, 1361.9, 1200.5, 1159.6; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.70(\mathrm{~d}$, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.22(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{~s}, 1 \mathrm{H}), 7.00(\mathrm{~d}, J=7.9$ $\mathrm{Hz}, 1 \mathrm{H}), 4.19(\mathrm{~s}, 2 \mathrm{H}), 3.34$, (t, $J=5.7 \mathrm{~Hz}, 2 \mathrm{H}$), 2.89 (t, $J=5.7 \mathrm{~Hz}, 2 \mathrm{H}$), 2.41 (s, 3H), 0.23 (s, $9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 143.91,133.85,133.37,131.87,130.31,130.00,129.87$,
128.86, 127.85, 121.29, 104.66, 94.24, 47.37, 43.62, 28.90, 21.65, 0.08; EI-MS m/z (\%): 228.1 (100), 383.1 (45) [M] ${ }^{+}$; HRMS (EI) m/z calcd for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{NO}_{2} \mathrm{SSi}[\mathrm{M}]^{+} 383.1375$, found 383.1373 .

7-Pinacolboryl-2-tosyl-1,2,3,4-tetrahydroisoquinoline (5i):
To a seal tube was added 1 g ($256.4 \mathrm{mg}, 0.7 \mathrm{mmol}$), $\mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2}$ ($31 \mathrm{mg}, 0.042 \mathrm{mmol}$), $\mathrm{B}_{2} \mathrm{pin}_{2}$ ($200 \mathrm{mg}, 0.78 \mathrm{mmol}$), KOAc ($206 \mathrm{mg}, 2.1 \mathrm{mmol}$) and dioxane (3 mL). After stirred at $100^{\circ} \mathrm{C}$ for 2 h , the reaction was filtered by celite and washed with EtOAc. The solvent was removed under vacuum, and the residue was purified by flash column chromatography on silica gel to give pure product $5 \mathbf{i}(212.4 \mathrm{mg}, 73 \%)$ as a white solid. M.p. $133-134{ }^{\circ} \mathrm{C}$; $\mathrm{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 3046.1$, 2977.9, 2925.7, 2850.0, 1919.6, 1608.7, 1457.7, 1361.9, 1200.5, 1159.6; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500\right.$ $\mathrm{MHz}): \delta 7.70(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{~s}, 1 \mathrm{H}), 7.31(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H})$, $7.08(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{~s}, 2 \mathrm{H}), 3.34(\mathrm{t}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.93(\mathrm{t}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.41(\mathrm{~s}$, 3 H), $1.32(\mathrm{~s}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 143.78,136.54,133.34,133.05,132.97$, 131.20, 129.78, 128.35, 127.87, 83.96, 47.56, 43.64, 29.24, 24.96, 21.63; El-MS m/z (\%): 258.2 (100), 411.2 (4) $[M-H]^{+}, 412.2$ (14) $[M]^{+} ; \mathrm{HRMS}(E l) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{BNO}_{4} \mathrm{~S}[\mathrm{M}-\mathrm{H}]^{+}$ 411.1790 , found 411.1786 .

5-Methyl-2-tosyl-1,2,3,4-tetrahydroisoquinoline (5j):
To a solution of $5 \mathbf{j}$ ' ($656 \mathrm{mg}, 5 \mathrm{mmol}$) and THF (1 mL) in a three-necked bottle was added BH_{3}. THF (1 M in THF, 15 mL) under N_{2}. After stirred at $75{ }^{\circ} \mathrm{C}$ overnight, the reaction was quenched with $\mathrm{MeOH}(5 \mathrm{~mL})$ carefully, and concentrated under reduced pressure. To the residue were added dichloromethane (8 mL), $\mathrm{Et}_{3} \mathrm{~N}(1.4 \mathrm{~mL}, 10 \mathrm{mmol})$ and pyridine ($0.8 \mathrm{~mL}, 10$ $\mathrm{mmol})$, and a solution of $\mathrm{TsCl}(1.14 \mathrm{~g}, 6 \mathrm{mmol})$ in dichloromethane $(8 \mathrm{~mL})$ was added dropwise. After stirred at room temperature overnight, the reaction was quenched with $2 \mathrm{M} \mathrm{HCl}(15 \mathrm{~mL})$, extracted with dichloromethane $(3 \times 15 \mathrm{~mL})$. The combined organic phase was washed with saturated $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution (15 mL), brine (15 mL), and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The resulting solution was concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (petroleum ether/ethyl acetate =5:1) to give 5j" ($714.0 \mathrm{mg}, 49 \%$ for two steps). To a mixture of 5 j" $(289.4 \mathrm{mg}, 1 \mathrm{mmol})$ and $(\mathrm{HCHO})_{n}(90 \mathrm{mg}, 3 \mathrm{mmol})$ was added $\mathrm{H}_{2} \mathrm{SO}_{4} / \mathrm{AcOH}=1: 4(10 \mathrm{~mL})$. After stirred at room temperature for 5 h , the reaction was quenched with water $(40 \mathrm{~mL})$. The mixture was filtered to collect the solid. The residue was recrystallized (hexane/ethyl acetate) to give product 5 j ($273.4 \mathrm{mg}, 91 \%$) as a white solid. M.p. $160-162^{\circ} \mathrm{C}$; IR (KBr, cm^{-1}): 3029.4, 2925.7, 1922.7, 17.6.6, 1659.4, 1493.5, 1465.3, 1335.4, $1160.5 ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.73(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.06(\mathrm{t}$, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{~s}, 2 \mathrm{H}), 3.36(\mathrm{t}, J=6.0$ $\mathrm{Hz}, 2 \mathrm{H}), 2.79(\mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta$
$143.78,136.57,133.27,131.74,131.71,129.78,128.23,127.94,126.15,124.20,48.11,43.94$, 26.58, 21.64, 19.28; El-MS m/z (\%): 146.1 (100), 301.1 (10) [M] ${ }^{+}$; HRMS (EI) m/z calcd for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}_{2} \mathrm{~S}[\mathrm{M}]^{+}$301.1136, found 301.1129.

6-Tosyl-5,6,7,8-tetrahydro-[1,3]dioxolo[4,5-g]isoquinoline(5I):
To a solution of 5 ' ($806 \mathrm{mg}, 5 \mathrm{mmol}$) and THF (1 mL) in three-necked bottle was added BH_{3}. THF (1 M in THF, 15 mL) under N_{2}. After stirred at $75{ }^{\circ} \mathrm{C}$ overnight, the reaction was quenched with $\mathrm{MeOH}(5 \mathrm{~mL})$ carefully, and concentrated under reduced pressure. After dichloromethane $(8 \mathrm{~mL})$ and $\mathrm{Et}_{3} \mathrm{~N}(1.4 \mathrm{~mL}, 10 \mathrm{mmol})$ were added in this residue, a solution of $\mathrm{TsCl}(1.14 \mathrm{~g}, 6 \mathrm{mmol})$ in dichloromethane $(8 \mathrm{~mL})$ was added, and the mixture was stirred at room temperature overnight. The reaction was quenched with $2 \mathrm{M} \mathrm{HCl}(15 \mathrm{~mL})$, extracted with dichloromethane $(3 \times 15 \mathrm{~mL})$. The combined organic phase was washed with saturated $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution (15 mL), brine (15 mL), and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The resulting solution was concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 3:1) to give 51 " ($850.4 \mathrm{mg}, 55 \%$ for two steps). To a mixture of 5 l " $(302.1 \mathrm{mg}, 0.94 \mathrm{mmol})$ and $(\mathrm{HCHO})_{n}(84.6 \mathrm{mg}, 2.82 \mathrm{mmol})$ was added $\mathrm{MeOH}(1 \mathrm{~mL})$ and $\mathrm{AcOH}(9 \mathrm{~mL})$. After stirred at $60^{\circ} \mathrm{C}$ for 12 h , the reaction was quenched with water $(20 \mathrm{~mL})$, and extracted with dichloromethane $(3 \times 10 \mathrm{~mL})$. The combined organic phase was washed with saturated $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution (15 mL), brine (15 mL), and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The resulting solution was concentrated under reduced pressure. The residue was recrystallized (dichloromethane/hexane) to give product $5 \mathrm{II}(304.8 \mathrm{mg}, 92 \%)$ as a white solid. M.p. $150-151^{\circ} \mathrm{C}$; $\mathrm{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right)$: 3046.4, 2893.3, 2837.2, 1917.7, 1710.3, 1594.4, 1495.5, 1391.1, 1344.3, 1160.6; ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.70(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{~d}, J=8.2$ $\mathrm{Hz}, 2 \mathrm{H}), 6.51(\mathrm{~s}, 1 \mathrm{H}), 6.46(\mathrm{~s}, 1 \mathrm{H}), 5.88(\mathrm{~s}, 2 \mathrm{H}), 4.12(\mathrm{~s}, 2 \mathrm{H}), 3.30(\mathrm{t}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.80(\mathrm{t}, J$ $=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 146.59,146.36,143.77,133.39$, 129.79, 127.81, 126.25, 124.55, 108.52, 106.20, 100.99, 47.64, 43.79, 28.91, 21.61; EI-MS $\mathrm{m} / \mathrm{z}(\%): 175.1$ (100), 331.1 (14) [M] ${ }^{+}$; HRMS (EI) m/z calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{NO}_{4} \mathrm{~S}[\mathrm{M}]^{+} 331.0878$, found 331.0877 .

5-Tosyl-4,5,6,7-tetrahydrothieno[3,2-c]pyridine (5m):

To a solution of $5 \mathbf{m}^{\prime}$ ($616 \mathrm{mg}, 5 \mathrm{mmol}$) and THF (1 mL) in three-necked bottle was added BH_{3}.THF (1 M in THF, 15 mL) under N_{2}. After stirred at $65{ }^{\circ} \mathrm{C}$ overnight, the reaction was quenched with $\mathrm{MeOH}(5 \mathrm{~mL})$ carefully, and concentrated under reduced pressure. After dichloromethane $(10 \mathrm{~mL})$ and $\mathrm{Et}_{3} \mathrm{~N}(1.4 \mathrm{~mL}, 10 \mathrm{mmol})$ were added to this residue, a solution of $\mathrm{TsCl}(950 \mathrm{mg}, 5 \mathrm{mmol})$ in dichloromethane $(10 \mathrm{~mL})$ was added dropwise, and stirred at room temperature for 6 h . The reaction was quenched with $2 \mathrm{M} \mathrm{HCl}(15 \mathrm{~mL})$, extracted with
dichloromethane ($3 \times 15 \mathrm{~mL}$). The combined organic phase was washed with saturated $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution (15 mL), brine (15 mL), and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The resulting solution was concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (petroleum ether/ethyl acetate = $3: 1$) to give $\mathbf{5 m}$ " ($874.6 \mathrm{mg}, 62 \%$ for two steps). To a mixture of 5 m " ($517.1 \mathrm{mg}, 1.8 \mathrm{mmol}$) and (HCHO$)_{n}(165.4 \mathrm{mg}, 5.4 \mathrm{mmol})$ were added $\mathrm{MeOH}(4.5 \mathrm{~mL})$ and $\mathrm{AcOH}(13.5 \mathrm{~mL})$. After stirred at $60{ }^{\circ} \mathrm{C}$ for 12 h , the reaction was quenched with water (20 mL), and extracted with dichloromethane $(3 \times 10 \mathrm{~mL})$. The combined organic phase was washed with saturated $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution (15 mL) and brine (15 mL), and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The resulting solution was concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (petroleum ether/ethyl acetate $=5: 1$) to give product $5 \mathrm{~m}(116.6 \mathrm{mg}, 22 \%)$ as a white solid. M.p. 159-160 ${ }^{\circ} \mathrm{C} ;$ IR (KBr, cm^{-1}): 3083.5, 3026.2, 2918.2, 2859.4, 1920.8, 1593.9, 1455.6, 1344.6; ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$): $\delta 7.71$ (d, $\left.J=8.3 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.31(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.09(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H})$, 6.71 (d, J=5.1 Hz, 1H), $4.19(\mathrm{~s}, 2 \mathrm{H}), 3.41(\mathrm{t}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.90(\mathrm{t}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.42(\mathrm{~s}$, $3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 125 \mathrm{MHz}$): $\delta 143.80,133.77,132.65,130.69,129.81,127.70,124.79$, 123.70, 45.94, 43.99, 25.29, 21.62; EI-MS m/z (\%): 110.0 (100), 293.1 (7) [M] ${ }^{+}$; HRMS (EI) m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{NO}_{2} \mathrm{~S}_{2}[\mathrm{M}]^{+} 293.0544$, found 293.0547.

3-Tosyl-1,2,3,4-tetrahydrobenzo[f]isoquinoline (5n):

To a solution of $\mathbf{5 n}$ ' ($836 \mathrm{mg}, 5 \mathrm{mmol}$) and THF (1 mL) in a three-necked bottle was added BH_{3}. THF (1 M in THF, 15 mL) under N_{2}. After stirred at $75{ }^{\circ} \mathrm{C}$ overnight, the reaction was quenched with $\mathrm{MeOH}(5 \mathrm{~mL})$ carefully, and concentrated under reduced pressure. After dichloromethane (8 mL), $\mathrm{Et}_{3} \mathrm{~N}(1.4 \mathrm{~mL}, 10 \mathrm{mmol})$ was added in this residue, the solution of $\mathrm{TsCl}(1.14 \mathrm{~g}, 6 \mathrm{mmol})$ in dichloromethane $(8 \mathrm{~mL})$ was added, and stirred at room temperature for 10 h . The reaction was quenched with $2 \mathrm{M} \mathrm{HCl}(15 \mathrm{~mL})$, extracted with dichloromethane (3 $\times 15 \mathrm{~mL})$. The combined organic phase was washed with saturated $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution (15 mL), brine (15 mL), and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The resulting solution was concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (petroleum ether/ethyl acetate $=5: 1$) to give $\mathbf{5 n "}$ ($787.2 \mathrm{mg}, \mathbf{4 8 \%}$ for two steps). To a mixture of $\mathbf{5 n "}$ $(684.1 \mathrm{mg}, 2.1 \mathrm{mmol})$ and $(\mathrm{HCHO})_{n}(189 \mathrm{mg}, 6.3 \mathrm{mmol})$ was added $\mathrm{H}_{2} \mathrm{SO}_{4} / \mathrm{AcOH}=1: 4(10$ $\mathrm{mL})$. After stirred at room temperature for 5 h , the reaction was quenched with water $(40 \mathrm{~mL})$, and extracted with dichloromethane $(3 \times 15 \mathrm{~mL})$. The combined organic phase was washed with saturated $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution (20 mL), brine $(20 \mathrm{~mL})$, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The resulting solution was concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (petroleum ether/ethyl acetate $=5: 1$) to give product $\mathbf{5 n}$ (383.1 $\mathrm{mg}, 54 \%$) as a white solid. M.p. $239-241^{\circ} \mathrm{C}$; $\mathrm{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 3058.0,2970.7,2923.4,2857.3$, 2822.8, 1925.1, 1591.1, 1500.5, 1340.4, 1158.7; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.86$ ($\mathrm{d}, \mathrm{J}=8.3$ $\mathrm{Hz}, 1 \mathrm{H}), 7.83-7.72(\mathrm{~m}, 3 \mathrm{H}), 7.66(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.34(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.12(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{~s}, 2 \mathrm{H}), 3.49(\mathrm{t}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H})$, $3.27(\mathrm{t}, \mathrm{J}=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 125 \mathrm{MHz}$): $\delta 143.90,133.27,132.43$,
131.89, 129.88, 129.06, 128.69, 128.44, 127.98, 127.00, 126.63, 125.76, 124.59, 122.81, 48.22, 43.68, 25.77, 21.66; El-MS m/z: $337.1\left[\mathrm{M}^{+}\right.$; HRMS (EI) m/z calcd for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{NO}_{2} \mathrm{~S}[\mathrm{M}]^{+}$ 337.1136, found 337.1133.

2'-Tosyl-2',3'-dihydro-1'H-spiro[cyclopropane-1,4'-isoquinoline] (50):
To a solution of NaH (60%) ($640 \mathrm{mg}, 16 \mathrm{mmol}$) and DMF (5.6 mL) was added dropwisely a solution of 2-phenylacetonitrile ($937.1 \mathrm{mg}, 8 \mathrm{mmol}$) in DMF (9.4 mL) at $0{ }^{\circ} \mathrm{C}$ under N_{2} atmosphere. After stirred for $40 \mathrm{~min}, 1,2$-dibromoethane ($1.8 \mathrm{~g}, 9.6 \mathrm{mmol}$) was added dropwise, and kept stirred for 5 h . The reaction was quenched with water, and extracted with ethyl acetate $(3 \times 15 \mathrm{~mL})$. The combined organic phase was washed with brine (15 mL), and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The resulting solution was concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (petroleum ether/ethyl acetate $=50$: 1) to give $\mathbf{5 0}{ }^{\prime}$ ($541.8 \mathrm{mg}, \mathbf{4 7 \%}$) as a colorless liquid. To a solution of $\mathbf{5 0}{ }^{\prime}(716 \mathrm{mg}, 5 \mathrm{mmol})$ and THF (1 mL) in three-necked bottle was added $\mathrm{BH}_{3} \cdot \operatorname{THF}\left(1 \mathrm{M}\right.$ in THF, 15 mL) under N_{2}. After stirred at $75{ }^{\circ} \mathrm{C}$ overnight, the reaction was quenched with $\mathrm{MeOH}(5 \mathrm{~mL})$ carefully, and concentrated under reduced pressure. After dichloromethane (8 mL), $\mathrm{Et}_{3} \mathrm{~N}(1.4 \mathrm{~mL}, 10 \mathrm{mmol})$ was added in this residue, a solution of $\mathrm{TsCl}(1.14 \mathrm{~g}, 6 \mathrm{mmol})$ in dichloromethane (8 mL) was added dropwise, and stirred at room temperature for 5 h . The reaction was quenched with 2 M $\mathrm{HCl}(15 \mathrm{~mL})$, extracted with dichloromethane $(3 \times 15 \mathrm{~mL})$. The combined organic phase was washed with saturated $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution (15 mL), brine (15 mL), and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The resulting solution was concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (petroleum ether/ethyl acetate $=5: 1$) to give 50" (903.5 $\mathrm{mg}, 60 \%$ for two steps). To a mixture of $50 "(304.1 \mathrm{mg}, 1 \mathrm{mmol})$ and $(\mathrm{HCHO})_{n}(90 \mathrm{mg}, 3 \mathrm{mmol})$ was added $\mathrm{H}_{2} \mathrm{SO}_{4} / \mathrm{AcOH}=1: 4(10 \mathrm{~mL})$. After stirred at room temperature for 4 h , the reaction was quenched with water (40 mL). The mixture was filtered to collect the solid. The residue was recrystallized (hexane/ethyl acetate) to give product 50 ($260.1 \mathrm{mg}, 83 \%$) as a white solid. M.p. $155-157^{\circ} \mathrm{C}$; IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3074.1, 2995.3, 2921.2, 2839.6, 1933.6, 1598.0, 1491.4, 1452.7, 1338.1; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.70(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H})$, 7.17-7.05 (m, 2H), $7.02(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{~s}, 2 \mathrm{H}), 3.14(\mathrm{~s}, 2 \mathrm{H})$, $2.42(\mathrm{~s}, 3 \mathrm{H}), 1.05-0.91(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 143.74,138.35,133.61,132.02$, 129.77, 127.91, 127.39, 126.18, 125.66, 121.71, 53.08, 48.83, 21.65, 19.54, 16.88; El-MS m/z (\%): 130.1 (100), 313.1 (9) [M] ${ }^{+}$; HRMS (EI) m/z calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{NO}_{2} \mathrm{~S}[\mathrm{M}]^{+} 313.1136$, found 313.1135 .

2'-Tosyl-2',3'-dihydro-1'H-spiro[cyclobutane-1,4'-isoquinoline] (5p):

To a solution of $\mathrm{NaH}(60 \%)(960 \mathrm{mg}, 24 \mathrm{mmol})$ and DMF (7 mL) was added a solution of 2-phenylacetonitrile ($1.17 \mathrm{~g}, 10 \mathrm{mmol}$) in DMF (11 mL) dropwise at $0{ }^{\circ} \mathrm{C}$ under N_{2} atmosphere. After stirred for $40 \mathrm{~min}, 1,3$-dibromopropane ($2.42 \mathrm{~g}, 12 \mathrm{mmol}$) was added dropwise, and kept stirred for 5 h . The reaction was quenched with water, extracted with ethyl acetate ($3 \times 15 \mathrm{~mL}$). The combined organic phase was washed with brine (15 mL), and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The resulting solution was concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (petroleum ether/ethyl acetate $=50: 1$) to give 5p' $(1.02$ g , 65%) as colorless liquid. To a solution of $5 \mathbf{p}^{\prime}$ ($786 \mathrm{mg}, 5 \mathrm{mmol}$) and THF (1 mL) in three-necked bottle was added $\mathrm{BH}_{3} \cdot$ THF (1 M in THF, 15 mL) under N_{2}. After stirred at $75{ }^{\circ} \mathrm{C}$ overnight, the reaction was quenched with $\mathrm{MeOH}(5 \mathrm{~mL})$ carefully, and concentrated under reduced pressure. After dichloromethane $(8 \mathrm{~mL})$ and $\mathrm{Et}_{3} \mathrm{~N}(1.4 \mathrm{~mL}, 10 \mathrm{mmol})$ were added in to the residue, a solution of $\mathrm{TsCl}(1.14 \mathrm{~g}, 6 \mathrm{mmol})$ in dichloromethane $(8 \mathrm{~mL})$ was added dropwise, and stirred at room temperature for 5 h . The reaction was quenched with $2 \mathrm{M} \mathrm{HCl}(15 \mathrm{~mL})$, extracted with dichloromethane ($3 \times 5 \mathrm{~mL}$). The combined organic phase was washed with saturated $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution (15 mL) and brine (15 mL), and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The resulting solution was concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (petroleum ether/ethyl acetate = 5: 1) to give 5p" (815.8 mg, 52\% for two steps). To a mixture of 5 "" $(304.1 \mathrm{mg}, 1 \mathrm{mmol})$ and $(\mathrm{HCHO})_{n}(90 \mathrm{mg}, 3 \mathrm{mmol})$ was added $\mathrm{H}_{2} \mathrm{SO}_{4} / \mathrm{AcOH}=1: 4(10 \mathrm{~mL})$, and stirred at room temperature for 4 h . After quenched with water (40 mL), the mixture was filtered to collect residue solid. The residue was recrystallized (hexane/ethyl acetate) to give the product 5 p ($301.2 \mathrm{mg}, 92 \%$) as a white solid. M.p. $175-176^{\circ} \mathrm{C}$; IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3063.1, 2980.5, 2937.1, 2843.0, 1925.2, 1593.1, 1489.6, 1337.3, 1162.9; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.75(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.56,(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.36(\mathrm{~d}, ~ J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.26(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 4.19$ (s, 2H), 3.31 (s, 2H), 2.44 (s, 3H), 2.40-2.30 (m, 2H), 2.20-2.00 (m, 4H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 143.78,141.23,133.29,130.80,129.84,127.88,127.41,126.32,126.07$, 53.68, 48.49, 41.57, 32.88, 21.63, 15.17; EI-MS m/z (\%): 143.1 (100), 327.1 (15) [M] ${ }^{+}$; HRMS (EI) m/z calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NO}_{2} \mathrm{~S}[\mathrm{M}]^{+}$327.1293, found 327.1287.

2'-Tosyl-2',3'-dihydro-1'H-spiro[cyclopentane-1,4'-isoquinoline] (5q):
To a solution of $\mathrm{NaH}(60 \%)(960 \mathrm{mg}, 24 \mathrm{mmol})$ in DMF (7 mL) was added a solution of 2-phenylacetonitrile ($1.17 \mathrm{~g}, 10 \mathrm{mmol}$) in DMF (11 mL) dropwise at $0{ }^{\circ} \mathrm{C}$ under N_{2} atmosphere. After stirred for $40 \mathrm{~min}, 1,4$-dibromobutane ($2.59 \mathrm{~g}, 12 \mathrm{mmol}$) was added dropwise, and kept stirred for 5 h . The reaction was quenched by water, extracted with ethyl acetate ($15 \mathrm{~mL} \times 3$). The combined organic phase was washed with brine (15 mL), and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The resulting solution was concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (petroleum ether/ethyl acetate $=50: 1$) to give 5 q' $^{\prime}(1.76$ $\mathrm{g}, 99 \%$) as colorless liquid. To a solution of $\mathbf{5 q} \mathbf{q}^{\prime}(786 \mathrm{mg}, 5 \mathrm{mmol})$ and THF (1 mL) in three-necked bottle was added $\mathrm{BH}_{3} \cdot \mathrm{THF}\left(1 \mathrm{M}\right.$ in THF, 15 mL) under N_{2}. After stirred at $75^{\circ} \mathrm{C}$ overnight, the reaction was quenched with $\mathrm{MeOH}(5 \mathrm{~mL})$ carefully, and concentrated under reduced pressure. After dichloromethane (8 mL) and $\mathrm{Et}_{3} \mathrm{~N}(1.4 \mathrm{~mL}, 10 \mathrm{mmol})$ were added in this residue, a solution of $\mathrm{TsCl}(1.14 \mathrm{~g}, 6 \mathrm{mmol})$ in dichloromethane $(8 \mathrm{~mL})$ was added dropwise, and stirred at room temperature for 5 h . The reaction was quenched with 2 M HCl $(15 \mathrm{~mL})$, extracted with dichloromethane $(3 \times 15 \mathrm{~mL})$. The combined organic phase was washed with saturated $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution (15 mL), brine (15 mL), and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The resulting solution was concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (petroleum ether/ethyl acetate $=5: 1$) to give $\mathbf{5 q}$ " (632.8 $\mathrm{mg}, 38 \%$ for two steps). To a mixture of 5 q " ($240 \mathrm{mg}, 0.73 \mathrm{mmol}$) and (HCHO$)_{n}(66 \mathrm{mg}, 2.2$ mmol) was added $\mathrm{H}_{2} \mathrm{SO}_{4} / \mathrm{AcOH}=1: 4(7.3 \mathrm{~mL})$, and stirred at room temperature for 12 h . After quenched with water (40 mL), the mixture was filtered to collect residue solid. The residue was recrystallized (hexane/ethyl acetate) to give pure product to give product 5 ($(224.1 \mathrm{mg}, 98 \%$) as a white solid. M.p. $161-163^{\circ} \mathrm{C}$; $\mathrm{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 3035.1,2953.7,2861.7,1923.6,1593.2$, 1468.7, 1450.3, 1340.7, 1219.0, 1162.3; ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.74(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H})$, $7.35(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.27(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{dt}, J=7.6,1.1$ $\mathrm{Hz}, 1 \mathrm{H}), 6.98(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{~s}, 2 \mathrm{H}), 3.00(\mathrm{~s}, 2 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 2.0-1.74(\mathrm{~m}, 8 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 125 \mathrm{MHz}$): $\delta 143.75,143.29,133.34,131.09,129.85,127.90,127.38,126.25$, 126.13, 125.94, 53.63, 48.43, 46.86, 40.23, 26.10, 21.66; EI-MS m/z (\%): 158.1 (100), 341.1 (24) [M] ; HRMS (EI) m/z calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{NO}_{2} \mathrm{~S}[\mathrm{M}]^{+} 341.1449$, found 341.1453.

5-Tosyl-1,2,3,4,4a,5,6,10b-octahydrophenanthridine (5r):
To the solution of $\mathbf{5 r}$ ' (Cheng et al., 2016) ($360 \mathrm{mg}, 2 \mathrm{mmol}$) in pyridine (5 mL) was added TsCl
($570 \mathrm{mg}, 3 \mathrm{mmol}$). After stirred at $40{ }^{\circ} \mathrm{C}$ overnight, the reaction was cooled to room temperature, then quenched with water $(30 \mathrm{~mL})$ and extracted with dichloromethane (3×15 $\mathrm{mL})$. The combined organic phase was washed with water $(2 \times 20 \mathrm{~mL}), 2 \mathrm{M} \mathrm{HCl}(20 \mathrm{~mL})$, saturated $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution (20 mL) and brine $(20 \mathrm{~mL})$, then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure, and the residue was purified by flash column chromatography on silica gel (petroleum ether/ethyl acetate $=5: 1$) to give pure 5 r"' as a white solid ($552.9 \mathrm{mg}, 84 \%$). To a mixture 5 r" $(306.3 \mathrm{mg}, 0.93 \mathrm{mmol})$ and $(\mathrm{HCHO})_{n}$ was added $\mathrm{H}_{2} \mathrm{SO}_{4} / \mathrm{AcOH}=1: 4(10 \mathrm{~mL})$ and stirred at room temperature for 12 h . The reaction was quenched with water (20 mL), then stirred for 20 min and filtered to collect the residue solid. The residue solid was washed with water and recrystallized (hexane/ethyl acetate) to give product 5 r ($272.4 \mathrm{mg}, 86 \%$) as a white solid. M.p. $100-102^{\circ} \mathrm{C}$; IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3058.5, 2925.6, 2857.4, 1597.1, 1493.0, 1454.2, 1386.8, 1336.3; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.74(\mathrm{~d}, \mathrm{~J}=8.0$ Hz, 2H), 7.34-7.24 (m, 3H), 7.22 (t, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}$), 7.17 (t, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{~d}, J=7.4 \mathrm{~Hz}$, $1 \mathrm{H}), 4.63(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.32(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.21-4.08(\mathrm{~m}, 1 \mathrm{H}), 3.07(\mathrm{~s}, 1 \mathrm{H}), 2.45$ $(\mathrm{d}, J=14.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 1.75-1.63(\mathrm{~m}, 1 \mathrm{H}), 1.62-1.20(\mathrm{~m}, 5 \mathrm{H}), 1.15-1.00(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 143.29,137.30,135.14,132.34,129.81,127.22,127.19,126.35$, 126.34, 126.06, 54.51, 44.01, 37.31, 27.86, 25.89, 25.41, 21.61, 19.87; ESI-MS m/z: 342.2 $[\mathrm{M}+\mathrm{H}]^{+} ; \mathrm{HRMS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{NO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 342.1522$, found 342.1521.

(3,4-Dihydroisoquinolin-2(1H)-yl)(4-nitrophenyl)methanone (5t):

To a solution of 1,2,3,4-tetrahydroisoquinoline ($133.2 \mathrm{mg}, 1 \mathrm{mmol}$), pyridine ($0.24 \mathrm{~mL}, 3 \mathrm{mmol}$) and dichloromethane (5 mL) was added a solution of 4-nitrobenzoyl chloride ($278.3 \mathrm{mg}, 1.5$ mmol) in dichloromethane (5 mL) dropwise. After stirred at room temperature overnight, the reaction was quenched with $\mathrm{HCl}(2 \mathrm{M}, 10 \mathrm{~mL})$, and then extracted with dichloromethane (15 mL) for three times. The combined organic phase was washed with saturated $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution (15 mL) and brine (15 mL), and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The resulting solution was concentrated under reduced pressure. The residue was purified by flash column chromatography on neutral alumina (petroleum ether/ethyl acetate/dichloromethane $=3: 1: 1$) to give product $5 \mathbf{t}$ ($201.6 \mathrm{mg}, 71 \%$) as a white solid. M.p. $148-149^{\circ} \mathrm{C}$; $\mathrm{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 2974.2$, 2892.9, 1930.6, 1628.8, 1593.2, 1520.3, 1438.1; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ (rotational isomers): $\delta 8.30(\mathrm{~s}, 2 \mathrm{H}), 7.62(\mathrm{~s}, 2 \mathrm{H}), 7.35-6.80(\mathrm{~m}, 4 \mathrm{H}), 4.90(\mathrm{~s}, 1 \mathrm{H}), 4.51(\mathrm{~s}, 1 \mathrm{H}), 4.01(\mathrm{~s}, 1 \mathrm{H})$, $3.59(\mathrm{~s}, 1 \mathrm{H}), 3.01(\mathrm{~s}, 1 \mathrm{H}), 2.88(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$ (rotational isomers): δ 168.70, 168.27, 148.60, 142.39, 142.27, 134.61, 133.50, 132.52, 132.20, 129.28, 128.81, 128.31, 128.04, 127.42, 127.00, 126.90, 126.68, 125.95, 124.07, 49.78, 45.35, 44.94, 40.80, 29.62, 28.25; El-MS m/z (\%): 282.1 (100) [M] ${ }^{+}$; HRMS (EI) m/z calcd for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}]^{+}$ 282.1004 , found 282.1012 .

C1 Functionalization of 1,2,3,4-Tetrahydroisoquinolines, Related to Figure 4.

(Z)- N-(tert-Butyl)-1-cyano-2-tosyl-1,2,3,4-tetrahydroisoquinoline-1-carbimidoyl cyanide (6a):
To a mixture of 5 a ($86.2 \mathrm{mg}, 0.3 \mathrm{mmol}$), DDQ ($204.3 \mathrm{mg}, 0.9 \mathrm{mmol}$) and AgOTf ($11.6 \mathrm{mg}, 0.045$ $\mathrm{mmol}, 15 \mathrm{~mol} \%$) was added $\mathrm{PhCl}(4.5 \mathrm{~mL})$ and ${ }^{\mathrm{t}} \mathrm{BuNC}(134 \mu \mathrm{~L}, 1.2 \mathrm{mmol})$ in a glovebox. The reaction was stirred at $80^{\circ} \mathrm{C}$ for 3 h under N_{2} atmosphere. Upon completion, the reaction mixture was cooled down to room temperature and the solvent was removed under reduced pressure. Then, purification of the residue by column chromatography on silica gel (petroleum ether/ethyl acetate $=10: 1$) to give the desired product $\mathbf{6 a}(99.8 \mathrm{mg}, 79 \%)$ as a white solid. M.p. $172-174{ }^{\circ} \mathrm{C}$; $\operatorname{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right)$: 2977.3, 2931.3, 2872.0, 2271.8, 1931.4, 1646.3, 1596.5, $1331.4,1162.9$; ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$): $\delta 7.88(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.38(\mathrm{~d}, J=8.4,2 \mathrm{H})$, 7.36-7.28 (m, 3H), 7.22 (d, J = 7.2, 1H), 4.23-4.15 (m, 1H), 3.35-3.25 (m, 1H), 3.10-3.01 (m, 1H), 2.87-2.79 (m, 1H), 2.45 (s, 3H), $1.52(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 125 \mathrm{MHz}$): $\delta 145.35$, 137.47, 134.74, 133.45, 130.01, 129.92, 129.88, 129.02, 128.53, 128.00, 127.76, 114.27, 110.00, 66.74, 59.31, 43.01, 29.04, 28.95, 21.80; ESI-MS m/z: 421.2 [M+H] ${ }^{+}$; HRMS (DART Positive) m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 421.1693$, found 421.1690.

(Z)- N -(tert-Butyl)-1-cyano-7-methyl-2-tosyl-1,2,3,4-tetrahydroisoquinoline-1-carbimidoyl cyanide (6b):
Following the general procedure for $\mathbf{6 a}$, the reaction of $\mathbf{5 b}(90.4 \mathrm{mg}, 0.3 \mathrm{mmol})$, DDQ (204.3 $\mathrm{mg}, 0.9 \mathrm{mmol})$, $\mathrm{AgOTf}(11.6 \mathrm{mg}, 15 \mathrm{~mol} \%)$ and ${ }^{\mathrm{t}} \mathrm{BuNC}(134 \mu \mathrm{~L}, 1.2 \mathrm{mmol})$ in $\mathrm{PhCl}(4.5 \mathrm{~mL})$ at $80^{\circ} \mathrm{C}$ for 3 h afforded the desired product $\mathbf{6 b}$ as a white solid ($98.6 \mathrm{mg}, 76 \%$). M.p. $181-183^{\circ} \mathrm{C}$; IR (KBr, cm^{-1}): 2974.7, 2925.4, 2868.0, 2226.8, 1914.4, 1646.3, 1599, 1362, 1164; ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.88(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.38(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.16-7.06(\mathrm{~m}, 3 \mathrm{H})$, 4.19-4.12 (m, 1H), 3.28-3.17 (m, 1H), 3.08-3.00 (m, 1H), 2.81-2.75 (m, 1H), 2.45 (s, 3H), 2.31 $(\mathrm{s}, 3 \mathrm{H}), 1.53(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 125 \mathrm{MHz}$): $\delta 145.33,137.89,137.55,133.58,131.67$, 130.93, 129.91, 129.83, 129.07, 128.27, 128.09, 114.40, 110.07, 66.70, 59.31, 43.18, 29.00, 28.65, 21.85, 21.26; ESI-MS m/z: 435.2 [M+H] ${ }^{+}$; HRMS (DART Positive) m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 435.1849$, found 435.1849 .

(Z)- N-(tert-Butyl)-1-cyano-7-phenyl-2-tosyl-1,2,3,4-tetrahydroisoquinoline-1-carbimidoyl cyanide (6c):
Following the general procedure for $\mathbf{6 a}$, the reaction of $\mathbf{5 c}(109.5 \mathrm{mg}, 0.3 \mathrm{mmol})$, DDQ (204.3 $\mathrm{mg}, 0.9 \mathrm{mmol})$, $\mathrm{AgOTf}(11.6 \mathrm{mg}, 15 \mathrm{~mol} \%)$ and ${ }^{t} \mathrm{BuNC}(134 \mu \mathrm{~L}, 1.2 \mathrm{mmol})$ in $\mathrm{PhCl}(4.5 \mathrm{~mL})$ at $80^{\circ} \mathrm{C}$ for 3 h afforded the desired product $6 \mathbf{c}$ as a white solid ($115.3 \mathrm{mg}, 77 \%$). M.p. 193-195 ${ }^{\circ} \mathrm{C} ;$ IR (KBr, cm ${ }^{-1}$): 2212, 1645, 1593, 1477, 1337, 1160; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.91$ (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.57(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.52-7.30(\mathrm{~m}, 9 \mathrm{H}), 4.25-4.16(\mathrm{~m}, 1 \mathrm{H}), 3.39-3.26(\mathrm{~m}$, $1 \mathrm{H}), 3.15-3.05(\mathrm{~m}, 1 \mathrm{H}), 2.88(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}), 1.55(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, 125 MHz): $\delta 145.41,141.24,139.56,137.50,133.54,133.46,130.47,129.93,129.12,129.06$, 128.99, 128.78, 128.08, 126.95, 126.27, 114.28, 110.08, 66.89, 59.43, 43.10, 29.07, 28.77, 21.83; ESI-MS m/z: $497.2[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (DART Positive) m/z calcd for $\mathrm{C}_{29} \mathrm{H}_{29} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$ 497.2006, found 497.2005.

(Z)- N-(tert-butyl)-1-cyano-7-methoxy-2-tosyl-1,2,3,4-tetrahydroisoquinoline-1-carbimido yl cyanide (6d):
Following the general procedure for $\mathbf{6 a}$, the reaction of $\mathbf{5 d}(95.1 \mathrm{mg}, 0.3 \mathrm{mmol})$, DDQ (204.3 $\mathrm{mg}, 0.9 \mathrm{mmol}$), AgOTf ($11.6 \mathrm{mg}, 15 \mathrm{~mol} \%$) and ${ }^{\mathrm{t}} \mathrm{BuNC}(134 \mu \mathrm{~L}, 1.2 \mathrm{mmol})$ in $\mathrm{PhCl}(4.5 \mathrm{~mL})$ at $80^{\circ} \mathrm{C}$ for 3 h afforded the desired product 6 d as a white solid ($135.3 \mathrm{mg}, 99 \%$). M.p. 177-178 ${ }^{\circ} \mathrm{C}$; IR (KBr, cm^{-1}): 2979.7, 1936.6, 2249.7, 2219.1, 1644.6, 1607.7, 1503.1, 1338.5, 1279.0, 1203.3; ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$): $\delta 7.88(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.13$ (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{dd}, J=8.5,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.18-4.11(\mathrm{~m}, 1 \mathrm{H}), 3.76$ (s, 3H), 3.24-3.14 (m, 1H), 3.07-2.99 (m, 1H), 2.80-2.72 (m, 1H), $2.45(\mathrm{~s}, 3 \mathrm{H}), 1.54(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 125 \mathrm{MHz}$): $\delta 159.02,145.37,137.54,133.52,131.03,129.91,129.23,129.07$, 126.67, 117.09, 114.22, 111.85, 110.02, 66.79, 59.39, 55.53, 43.33, 29.06, 28.22, 21.84; ESI-MS m/z: $451.2[M+H]^{+}$; HRMS (DART Positive) m / z calcd for $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$ 451.1798, found 451.1798.

(Z)-N-(tert-Butyl)-1-cyano-7-fluoro-2-tosyl-1,2,3,4-tetrahydroisoquinoline-1-carbimidoyl cyanide (6e):
Following the general procedure for $\mathbf{6 a}$, the reaction of $\mathbf{5 e}(91.6 \mathrm{mg}, 0.3 \mathrm{mmol})$, DDQ (204.3 $\mathrm{mg}, 0.9 \mathrm{mmol})$, $\mathrm{AgOTf}(11.6 \mathrm{mg}, 15 \mathrm{~mol} \%)$ and ${ }^{t} \mathrm{BuNC}(134 \mu \mathrm{~L}, 1.2 \mathrm{mmol})$ in $\mathrm{PhCl}(4.5 \mathrm{~mL})$ at $80^{\circ} \mathrm{C}$ for 3 h afforded the desired product 6 e as a white solid ($55.9 \mathrm{mg}, 43 \%$). M.p. $125-128^{\circ} \mathrm{C}$; IR (KBr, cm ${ }^{-1}$): 2982.3, 2925.8, 2865.2, 2219.7, 1918.0, 1645.6, 1501.2, 1350.4, 1276.6, $1200.8 ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$): $\delta 7.87(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.38(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.21$ (dd, $J=8.5,5.6 \mathrm{~Hz}, 1 \mathrm{H}$), 7.07 (dt, $J=5.2,2.6 \mathrm{~Hz}, 2 \mathrm{H}$), 7.02 (dd, $J=9.3,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.23-4.15$ (m, 1H), 3.30-3.18 (m, 1H), 3.09-2.99 (m, 1H), 2.86-2.78, (m, 1H), $2.45(\mathrm{~s}, 3 \mathrm{H}), 1.53(\mathrm{~s}, 9 \mathrm{H})$;
${ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CDCl}_{3}, 470 \mathrm{MHz}\right): \delta-112.0(\mathrm{~m}, \mathrm{Ar}-\mathrm{F}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 161.73\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}\right.$ $=248.2 \mathrm{~Hz}$), 145.56, 137.27, 133.30, $131.72\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=7.7 \mathrm{~Hz}\right), 130.56\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=2.8 \mathrm{~Hz}\right.$), $130.26\left(\mathrm{~d},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=7.4 \mathrm{~Hz}\right), 129.97,129.08,117.81\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=21.6 \mathrm{~Hz}\right), 114.49\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=24.6\right.$ $\mathrm{Hz})$, 113.83, 109.87, 66.63, 59.65, 43.13, 28.89, 28.49, 21.85; ESI-MS m/z: $439.2[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (DART Positive) m/z calcd for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{FN}_{4} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 439.1599$, found 439.1599.

(Z)-N-(tert-Butyl)-7-chloro-1-cyano-2-tosyl-1,2,3,4-tetrahydroisoquinoline-1-carbimidoyl cyanide (6f):

Following the general procedure for $\mathbf{6 a}$, the reaction of $5 \mathbf{f}(96.5 \mathrm{mg}, 0.3 \mathrm{mmol})$, DDQ (204.3 mg , $0.9 \mathrm{mmol})$, $\mathrm{AgOTf}(11.6 \mathrm{mg}, 15 \mathrm{~mol} \%)$ and ${ }^{\mathrm{t}} \mathrm{BuNC}(134 \mu \mathrm{~L}, 1.2 \mathrm{mmol})$ in $\mathrm{PhCl}(4.5 \mathrm{~mL})$ at $80^{\circ} \mathrm{C}$ for 3 h afforded the desired product 6 f as a white solid ($62.4 \mathrm{mg}, 46 \%$). M.p. $137-139{ }^{\circ} \mathrm{C}$; IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 2982.5,2927.9,2218.4,1922.3,1643.8,1485.1,1348.8,1164.7 ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, 500 MHz): $\delta 7.87(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{dd}, J=8.1,1.9 \mathrm{~Hz}, 1 \mathrm{H})$, $7.29(\mathrm{~d}, 1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.22-4.13(\mathrm{~m}, 1 \mathrm{H}), 3.29-3.17(\mathrm{~m}, 1 \mathrm{H}), 3.07-2.97$ (m, 1H), 2.86-2.76 (m, 1H), $2.45(\mathrm{~s}, 3 \mathrm{H}), 1.54(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 145.60$, 137.21, 133.80, 133.28, 133.22, 131.32, 130.39, 130.32, 129.99, 129.10, 127.84, 113.82, 109.87, 66.47, 59.68, 42.93, 28.98, 28.63, 21.86; ESI-MS m/z (\%): 455.1 [M ($\left.\left.{ }^{35} \mathrm{Cl}\right)+\mathrm{H}\right]^{+}(100)$, $457.1\left[\mathrm{M}\left({ }^{37} \mathrm{Cl}\right)+\mathrm{H}\right]^{+}(36)$; HRMS (DART Positive) m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{ClN}_{4} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$ 455.1303 , found 455.1301 .

(Z)-7-bromo-N-(tert-butyl)-1-cyano-2-tosyl-1,2,3,4-tetrahydroisoquinoline-1-carbimidoyl cyanide (6 g):
Following the general procedure for $\mathbf{6 a}$, the reaction of $\mathbf{5 g}(109.9 \mathrm{mg}, 0.3 \mathrm{mmol})$, DDQ (204.3 $\mathrm{mg}, 0.9 \mathrm{mmol})$, $\operatorname{AgOTf}\left(11.6 \mathrm{mg}, 15 \mathrm{~mol} \%\right.$) and ${ }^{\mathrm{t}} \mathrm{BuNC}(134 \mu \mathrm{~L}, 1.2 \mathrm{mmol})$ in $\mathrm{PhCl}(4.5 \mathrm{~mL})$ at $80^{\circ} \mathrm{C}$ for 3 h afforded the desired product 6 g as a white solid ($60.2 \mathrm{mg}, 40 \%$). M.p. $158-160{ }^{\circ} \mathrm{C}$; IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 2977.0, 2932.9, 2245.6, 2220.7, 1925.7, 1645.9, 1593.0, 1483.3, 1338.5, 1209.5; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.87(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.49-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.38(\mathrm{~d}, J=$ $8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.11(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.20-4.13(\mathrm{~m}, 1 \mathrm{H}), 3.25-3.15(\mathrm{~m}, 1 \mathrm{H}), 3.07-2.99(\mathrm{~m}, 1 \mathrm{H})$, 2.84-2.76 (m, 1H), $2.45(\mathrm{~s}, 3 \mathrm{H}), 1.54(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 145.60,137.22$, $133.70,133.23,133.21,131.54,130.80,130.57,129.98,129.08,121.36,113.82,109.86$, 66.26, 59.66, 42.84, 28.96, 28.65, 21.85; ESI-MS m/z (\%): 499.1 [$\left.\mathrm{M}\left({ }^{79} \mathrm{Br}\right)+\mathrm{H}\right]^{+}(88), 501.1[\mathrm{M}$ $\left.\left({ }^{81} \mathrm{Br}\right)+\mathrm{H}\right]^{+}(100)$; HRMS (DART Positive) m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{BrN}_{4} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 499.0798$, found 499.0798.

(Z)- N -(tert-Butyl)-1-cyano-2-tosyl-7-((trimethylsilyl)ethynyl)-1,2,3,4-tetrahydroisoquinoli ne-1-carbimidoyl cyanide (6h):
Following the general procedure for $\mathbf{6 a}$, the reaction of $\mathbf{5 h}(115.1 \mathrm{mg}, 0.3 \mathrm{mmol})$, DDQ (204.3 $\mathrm{mg}, 0.9 \mathrm{mmol}$), AgOTf ($11.6 \mathrm{mg}, 15 \mathrm{~mol} \%$) and ${ }^{t} \mathrm{BuNC}(134 \mu \mathrm{~L}, 1.2 \mathrm{mmol})$ in $\mathrm{PhCl}(4.5 \mathrm{~mL})$ at $80^{\circ} \mathrm{C}$ for 4 h afforded the desired product 6 h as a white solid ($86.2 \mathrm{mg}, 57 \%$). M.p. $185-187^{\circ} \mathrm{C}$; IR (KBr, cm^{-1}): 2969, 2878, 2156, 1648, 1598, 1494, 1358, 1169, 852; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500\right.$ $\mathrm{MHz}): \delta 7.87(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.42-7.35(\mathrm{~m}, 4 \mathrm{H}), 7.16(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.20-4.12(\mathrm{~m}, 1 \mathrm{H})$, 3.30-3.20 (m, 1H,), 3.09-3.00 (m, 1H), 2.86-2.78 (m, 1H), $2.45(\mathrm{~s}, 3 \mathrm{H}), 1.54(\mathrm{~s}, 9 \mathrm{H}), 0.24(\mathrm{~s}$, $9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 145.50,137.15,134.88,133.34,132.99,131.52,129.97$, 129.96, 129.07, 128.86, 123.32, 114.01, 109.92, 103.23, 96.19, 66.50, 59.60, 42.86, 28.98, 28.95, 21.84, -0.07; ESI-MS m/z: $517.2[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (DART Positive) m/z calcd for $\mathrm{C}_{28} \mathrm{H}_{33} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{SSi}\left[\mathrm{M}+\mathrm{H}^{+}\right.$517.2086, found 517.2086.

(Z)-N-(tert-Butyl)-1-cyano-7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2-tosyl-1,2,3,4-t etrahydroisoquinoline-1-carbimidoyl cyanide (6i):
Following the general procedure for $\mathbf{6 a}$, the reaction of $\mathbf{5 i}(124.0 \mathrm{mg}, 0.3 \mathrm{mmol})$, DDQ (204.3 $\mathrm{mg}, 0.9 \mathrm{mmol})$, $\mathrm{AgOTf}\left(11.6 \mathrm{mg}, 15 \mathrm{~mol} \%\right.$) and ${ }^{\mathrm{t}} \mathrm{BuNC}(134 \mu \mathrm{~L}, 1.2 \mathrm{mmol}) \mathrm{in} \mathrm{PhCl}(4.5 \mathrm{~mL})$ at $80^{\circ} \mathrm{C}$ for 3 h afforded the desired product 6 i as a white solid ($81.9 \mathrm{mg}, 50 \%$). M.p. $240-242^{\circ} \mathrm{C}$; IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 2983.4, 2934.5, 2873.8, 2224.2, 1915.5, 1736.4, 1645.3, 1606.0, 1334.9, 1212.4; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.89(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.74(\mathrm{~s}, 1 \mathrm{H}), 7.72(\mathrm{dd}, J=7.6$, $0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.21(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.16-4.09(\mathrm{~m}, 1 \mathrm{H}), 3.31-3.21(\mathrm{~m}$, 1 H), 3.14-3.06 (m, 1H), 2.88-2.80 (m, 1H), $2.45(\mathrm{~s}, 3 \mathrm{H}), 1.54(\mathrm{~s}, 9 \mathrm{H}), 1.33(\mathrm{~s}, 6 \mathrm{H}), 1.29(\mathrm{~s}, 6 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$: $\delta 145.40,137.38,137.14,135.69,134.90,133.46,129.95$, 129.33, 129.12, 128.01, 114.28, 110.09, 84.23, 66.76, 59.42, 42.89, 29.11, 28.90, 25.26, 24.76, 21.85; ESI-MS m/z: $547.3[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (DART Positive) m / z calcd for $\mathrm{C}_{29} \mathrm{H}_{36} \mathrm{BN}_{4} \mathrm{O}_{4} \mathrm{~S}$ $[\mathrm{M}+\mathrm{H}]^{+} 546.2584$, found 546.2579.

(Z)-N-(tert-Butyl)-1-cyano-5-methyl-2-tosyl-1,2,3,4-tetrahydroisoquinoline-1-carbimidoyl cyanide (6j):
Following the general procedure for $\mathbf{6 a}$, the reaction of $5 \mathbf{j}(90.4 \mathrm{mg}, 0.3 \mathrm{mmol})$, DDQ (204.3 mg ,
$0.9 \mathrm{mmol}), \mathrm{AgOTf}(11.6 \mathrm{mg}, 15 \mathrm{~mol} \%)$ and ${ }^{\mathrm{t}} \mathrm{BuNC}(134 \mu \mathrm{~L}, 1.2 \mathrm{mmol})$ in $\mathrm{PhCl}(4.5 \mathrm{~mL})$ at $80^{\circ} \mathrm{C}$ for 3 h afforded the desired product $\mathbf{6 j}$ as a white solid ($97.1 \mathrm{mg}, 74 \%$). M.p. $197-199{ }^{\circ} \mathrm{C}$; IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 2973.7, 2862.5, 2407.4, 2226.6, 1916.3, 1649.8, 1595.4, 1466.4, 1411.3; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.87(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.38(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.24-7.18(\mathrm{~m}, 2 \mathrm{H})$, 7.16-7.10 (m, 1H), 4.27-4.16 (m, 1H), 3.10-3.00 (m, 2H), 2.86-2.76 (m, 1H), 2.45 (s, 3H), 2.27 (s, 3H), 1.53 (s, 9H); ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 125 \mathrm{MHz}$): $\delta 145.38,137.69,137.45,133.38,131.25$, 129.90, 129.10, 128.58. 127.50, 125.50, 114.18, 110.01, 67.05, 59.31, 42.81, 28.97, 26.43, 21.84, 19.39; ESI-MS m/z: $435.2[M+H]^{+}$; HRMS (DART Positive) m/z calcd for $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}$ $[\mathrm{M}+\mathrm{H}]^{+} 435.1849$, found 435.1848.

(Z)- N-(tert-Butyl)-1-cyano-6,7-dimethoxy-2-tosyl-1,2,3,4-tetrahydroisoquinoline-1-carbi midoyl cyanide (6 k):
Following the general procedure for $\mathbf{6 a}$, the reaction of $\mathbf{5 k}$ ($104.2 \mathrm{mg}, 0.3 \mathrm{mmol}$), DDQ (204.3 $\mathrm{mg}, 0.9 \mathrm{mmol})$, $\mathrm{AgOTf}(11.6 \mathrm{mg}, 15 \mathrm{~mol} \%)$ and ${ }^{\mathrm{t}} \mathrm{BuNC}(134 \mu \mathrm{~L}, 1.2 \mathrm{mmol})$ in $\mathrm{PhCl}(4.5 \mathrm{~mL})$ at $80^{\circ} \mathrm{C}$ for 3 h afforded the desired product $\mathbf{6 k}$ as a white solid ($142.6 \mathrm{mg}, 99 \%$). M.p. 194-196 ${ }^{\circ} \mathrm{C}$; $\mathrm{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right)$: 2977.3, 2936.6, 2250.9, 1658.9, 1453.6, 1269.3; ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right):$ $\delta 7.88(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.38(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.68(\mathrm{~s}, 1 \mathrm{H}), 6.63(\mathrm{~s}, 1 \mathrm{H}), 4.17-4.10(\mathrm{~m}, 1 \mathrm{H})$, 3.88 (s, 3H), $3.81(\mathrm{~s}, 3 \mathrm{H}), 3.26-3.16(\mathrm{~m}, 1 \mathrm{H}), 3.08-3.00(\mathrm{~m}, 1 \mathrm{H}), 2.76-2.68(\mathrm{~m}, 1 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H})$, $1.52(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 150.42,148.86,145.37,137.76,133.52,129.91$, 129.08, 127.79, 119.41, 114.39, 111.60, 110.07, 109.44, 66.44, 59.27, 56.13, 56.09, 43.08, 29.12, 28.64, 21.84; ESI-MS m/z: $481.2[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (DART Positive) m / z calcd for $\mathrm{C}_{25} \mathrm{H}_{29} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 481.1904$, found 481.1901.

(Z)- N-(tert-Butyl)-5-cyano-6-tosyl-5,6,7,8-tetrahydro-[1,3]dioxolo[4,5-g]isoquinoline-5-ca rbimidoyl cyanide (61):
Following the general procedure for $\mathbf{6 a}$, the reaction of $5 \mathbf{5 l}(99.4 \mathrm{mg}, 0.3 \mathrm{mmol})$, DDQ (204.3 mg , $0.9 \mathrm{mmol}), \mathrm{AgOTf}(11.6 \mathrm{mg}, 15 \mathrm{~mol} \%)$ and ${ }^{\mathrm{t}} \mathrm{BuNC}(134 \mu \mathrm{~L}, 1.2 \mathrm{mmol})$ in $\mathrm{PhCl}(4.5 \mathrm{~mL})$ at $80^{\circ} \mathrm{C}$ for 3 h afforded the desired product 6 I as a white solid ($120.0 \mathrm{mg}, 86 \%$). M.p. $189-191^{\circ} \mathrm{C}$; IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 2979.2,2915.4,2874.6,2249.8,2221.3,1646.6,1483.2,1341.1,1288.7{ }^{1}{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$): $\delta 7.86$ (d, $\left.J=8.4 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.37(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.68(\mathrm{~s}, 1 \mathrm{H}), 6.61$ (s, $1 \mathrm{H}), 5.99(\mathrm{dd}, \mathrm{J}=5.9,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.17-4.09(\mathrm{~m}, 1 \mathrm{H}), 4.24-4.13(\mathrm{~m}, 1 \mathrm{H}), 3.05-2.96(\mathrm{~m}, 1 \mathrm{H})$, 2.74-2.66 (m, 1H), $2.44(\mathrm{~s}, 3 \mathrm{H}), 1.52$, (s, 9H); ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 125 \mathrm{MHz}$): $\delta 149.25,147.82$, 145.38, 137.50, 133.44, 129.89, 129.34, 129.05, 120.85, 114.20, 110.05, 109.09, 106.83, 102.05, 66.79, 59.38, 43.06, 29.10, 29.02, 21.83; ESI-MS m/z: $465.2[M+H]^{+}$; HRMS (DART Positive) m / z calcd for $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 465.1591$, found 465.1590.

(Z)-N-(tert-Butyl)-4-cyano-5-tosyl-4,5,6,7-tetrahydrothieno[3,2-c]pyridine-4-carbimidoyl cyanide (6m):

Following the general procedure for $\mathbf{6 a}$, the reaction of $5 \mathrm{~m}(88.2 \mathrm{mg}, 0.3 \mathrm{mmol})$, DDQ (204.3 $\mathrm{mg}, 0.9 \mathrm{mmol}), \mathrm{AgOTf}(11.6 \mathrm{mg}, 15 \mathrm{~mol} \%)$ and ${ }^{\mathrm{t}} \mathrm{BuNC}(134 \mu \mathrm{~L}, 1.2 \mathrm{mmol})$ in $\mathrm{PhCl}(4.5 \mathrm{~mL})$ at $80^{\circ} \mathrm{C}$ for 3 h afforded the desired product 6 m as a white solid ($56.3 \mathrm{mg}, 44 \%$). M.p. 156-158 ${ }^{\circ} \mathrm{C}$; IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 2978.6, 2930.4, 2875.7, 2223.4, 1921.7, 1645.6, 1595.3, 1398.7, 1337.5, 1162.0; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.88(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.38(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{~d}$, $J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.26-4.17(\mathrm{~m}, 1 \mathrm{H}), 3.25-3.16(\mathrm{~m}, 1 \mathrm{H}), 3.15-3.07(\mathrm{~m}$, $1 \mathrm{H}), 2.93(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 1.52(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 145.50$, 138.04, 136.66, 133.34, 129.95, 129.06, 126.81, 126.07, 124.28, 113.29, 109.79, 65.75, 59.41, 43.81, 29.03, 25.06, 21.83; ESI-MS m/z: $427.1[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (DART Positive) m/z calcd for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+}$427.1257, found 427.1256.

(Z)-N-(tert-Butyl)-4-cyano-3-tosyl-1,2,3,4-tetrahydrobenzo[f]isoquinoline-4-carbimidoyl cyanide (6n):
Following the general procedure for $\mathbf{6 a}$, the reaction of $\mathbf{5 n}(101.2 \mathrm{mg}, 0.3 \mathrm{mmol})$, DDQ (204.3 $\mathrm{mg}, 0.9 \mathrm{mmol}$), AgOTf ($11.6 \mathrm{mg}, 15 \mathrm{~mol} \%$) and ${ }^{\mathrm{t}} \mathrm{BuNC}(134 \mu \mathrm{~L}, 1.2 \mathrm{mmol})$ in $\mathrm{PhCl}(4.5 \mathrm{~mL})$ at $80^{\circ} \mathrm{C}$ for 3 h afforded the desired product $\mathbf{6 n}$ as a white solid ($111.3 \mathrm{mg}, 79 \%$). M.p. 212-214 ${ }^{\circ} \mathrm{C}$; IR (KBr, cm^{-1}): 2977.3, 2932.9, 2226.7, 1915.8, 1643.0, 1353.3, 1200.9, 1164.5; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.97(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.92(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.86(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.80(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.65-7.56(\mathrm{~m}, 2 \mathrm{H}), 7.40(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H})$, 4.41-4.32 (m, 1H), 3.55-3.35 (m, 2H), 3.21-3.10 (m, 1H), $2.46(\mathrm{~s}, 3 \mathrm{H}), 1.54(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 145.48,137.33,133.34,133.17,132.20,131.60,129.96,129.16,128.81$, 128.70, 127.93, 127.67, 125.17, 123.64, 123.24, 114.07, 109.91, 67.20, 59.53, 42.66, 29.03, 25.70, 21.86; ESI-MS m/z: $471.2[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (DART Positive) m/z calcd for $\mathrm{C}_{27} \mathrm{H}_{27} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}$ $[\mathrm{M}+\mathrm{H}]^{+} 471.1849$, found 471.1848 .

(Z)-N-(tert-Butyl)-1'-cyano-2'-tosyl-2',3'-dihydro-1'H-spiro[cyclopropane-1,4'-isoquinolin e]-1'-carbimidoyl cyanide (20):
Following the general procedure for 6a, the reaction of $\mathbf{5 0}(94.0 \mathrm{mg}, 0.3 \mathrm{mmol})$, DDQ (204.3
$\mathrm{mg}, 0.9 \mathrm{mmol}), \operatorname{AgOTf}(11.6 \mathrm{mg}, 15 \mathrm{~mol} \%)$ and ${ }^{\mathrm{t}} \mathrm{BuNC}(134 \mu \mathrm{~L}, 1.2 \mathrm{mmol})$ in $\mathrm{PhCl}(4.5 \mathrm{~mL})$ at $80^{\circ} \mathrm{C}$ for 3 h afforded the desired product 60 as a white solid ($108.3 \mathrm{mg}, 81 \%$). M.p. $192-195$ ${ }^{\circ} \mathrm{C}$; IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 2980.4, 2228.0, 1921.0, 1645.3, 1489.5, 1334.7, 1164.6; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, 500 MHz): $\delta 7.85(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.36-7.30(\mathrm{~m}, 1 \mathrm{H}), 7.30-7.23(\mathrm{~m}$, $2 \mathrm{H}), 6.87(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{dd}, J=12.4,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.26(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.45(\mathrm{~s}$, $3 \mathrm{H}), 1.53(\mathrm{~s}, 9 \mathrm{H}), 1.47-1.38(\mathrm{~m}, 1 \mathrm{H}), 1.18-1.04(\mathrm{~m}, 1 \mathrm{H}), 1.00-0.90(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, 125 MHz): $\delta 145.35,139.77,137.59,133.50,130.32,129.88,129.07,129.02,127.77,127.06$, 122.91, 114.14, 109.93, 67.74, 59.31, 51.54, 28.98, 21.84, 20.17, 19.78, 11.92; ESI-MS m/z: $447.2[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (DART Positive) m / z calcd for $\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 447.1849$, found 447.1848.

(Z)-N-(tert-Butyl)-1'-cyano-2'-tosyl-2',3'-dihydro-1'H-spiro[cyclobutane-1,4'-isoquinoline] -1'-carbimidoyl cyanide (6p):
Following the general procedure for $\mathbf{6 a}$, the reaction of $\mathbf{5 p}(98.0 \mathrm{mg}, 0.3 \mathrm{mmol})$, DDQ (204.3 $\mathrm{mg}, 0.9 \mathrm{mmol})$, AgOTf ($11.6 \mathrm{mg}, 15 \mathrm{~mol} \%$) and ${ }^{\mathrm{t}} \mathrm{BuNC}(134 \mu \mathrm{~L}, 1.2 \mathrm{mmol})$ in $\mathrm{PhCl}(4.5 \mathrm{~mL})$ at $80^{\circ} \mathrm{C}$ for 3 h afforded the desired product 6 p as a white solid ($92.6 \mathrm{mg}, 67 \%$). M.p. $158-161^{\circ} \mathrm{C}$; IR (KBr, cm^{-1}): 2979.4, 2936.5, 2863.9, 2220.7, 1692.2, 1648.5, 1482.7, 1356.2, 1165.5; ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.89(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.66(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.40(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{~d}, J=12.1$ $\mathrm{Hz}, 1 \mathrm{H}), 3.03(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.70-2.60(\mathrm{~m}, 1 \mathrm{H}), 2.50-2.39(\mathrm{~m}, 4 \mathrm{H}), 2.25-2.03(\mathrm{~m}, 3 \mathrm{H})$, 1.95-1.85 (m,1H), $1.53(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 145.44,142.52,137.54,133.34$, 130.51, 129.89, 129.23, 127.67, 127.52, 127.48, 126.78, 114.01, 109.89, 67.58, 59.31, 51.82, 41.09, 34.82, 28.98, 28.85, 21.87, 15.17; ESI-MS m/z: $461.2[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (DART Positive) m / z calcd for $\mathrm{C}_{26} \mathrm{H}_{29} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$461.2006, found 461.2006.

(Z)-N-(tert-Butyl)-1'-cyano-2'-tosyl-2',3'-dihydro-1'H-spiro[cyclopentane-1,4'-isoquinolin e]-1'-carbimidoyl cyanide (6q):
Following the general procedure for $\mathbf{6 a}$, the reaction of $\mathbf{5 q}(102.5 \mathrm{mg}, 0.3 \mathrm{mmol})$, DDQ (204.3 $\mathrm{mg}, 0.9 \mathrm{mmol})$, $\mathrm{AgOTf}(11.6 \mathrm{mg}, 15 \mathrm{~mol} \%)$ and ${ }^{\mathrm{t}} \mathrm{BuNC}(134 \mu \mathrm{~L}, 1.2 \mathrm{mmol})$ in $\mathrm{PhCl}(4.5 \mathrm{~mL})$ at $80^{\circ} \mathrm{C}$ for 3 h afforded the desired product 6 q as a white solid ($77.5 \mathrm{mg}, 54 \%$). M.p. $234-236{ }^{\circ} \mathrm{C}$; IR (KBr, cm^{-1}): 2972.2, 2869.4, 2226.5, 1934.9, 1647.5, 1592.7, 1484.9, 1453.4, 1339.0, 1169.6; ${ }^{1} \mathrm{H}$ NMR (acetone- $\mathrm{d}_{6}, 500 \mathrm{MHz}$): $\delta 7.94(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.58(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H})$, 7.52 (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}$), $7.49(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 3.92(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.95(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.47(\mathrm{~s}, 3 \mathrm{H}), 2.31-2.24(\mathrm{~m}, 1 \mathrm{H})$,
2.24-2.14 (m, 1H), 2.00-1.78 (m,3H), 1.75-1.60 (m,3H), 1.55 (s, 9H); ${ }^{13} \mathrm{C}$ NMR (acetone- d_{6}, $125 \mathrm{MHz}): \delta 146.59,145.77,138.75,134.35,131.56,130.87,130.22,128.95,128.42,128.15$, 114.55, 111.17, 68.45, 59.80, 52.34, 47.37, 41.77, 38.21, 29.12, 26.79, 25.99, 21.72; ESI-MS $\mathrm{m} / \mathrm{z}: 475.2[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (DART Positive) m / z calcd for $\mathrm{C}_{27} \mathrm{H}_{31} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 475.2162$, found 475.2158.

(Z)-N-(tert-Butyl)-6-cyano-5-tosyl-1,2,3,4,4a,5,6,10b-octahydrophenanthridine-6-carbimi doyl cyanide (6r):
Following the general procedure for $\mathbf{6 a}$, the reaction of $\mathbf{5 r}(102.5 \mathrm{mg}, 0.3 \mathrm{mmol})$, DDQ (204.3 $\mathrm{mg}, 0.9 \mathrm{mmol}$), AgOTf ($11.6 \mathrm{mg}, 15 \mathrm{~mol} \%$) and ${ }^{\mathrm{t}} \mathrm{BuNC}(134 \mu \mathrm{~L}, 1.2 \mathrm{mmol})$ in $\mathrm{PhCl}(4.5 \mathrm{~mL})$ at $80{ }^{\circ} \mathrm{C}$ for 3 h afforded the desired product 6 r as a white solid ($101.1 \mathrm{mg}, 71 \%$, d.r. $=1: 1$ (determined by crude ${ }^{1} \mathrm{H}$ NMR)). One of the isomers can be obtained through recrystallization in ethyl acetate and hexane. One isomer: M.p. $235-237^{\circ} \mathrm{C}$; $\mathrm{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 2933.3,2863.6$, 2216.7, 1940.8, 1645.8, 1598.1, 1454.4; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 8.02(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H})$, 7.47 (t, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{t}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.21(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.05(\mathrm{dt}, J=12.2,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.12(\mathrm{~s}, 1 \mathrm{H}), 2.51(\mathrm{~d}, J=14.6 \mathrm{~Hz}$, $1 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 1.96(\mathrm{~d}, J=13.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.79-1.66(\mathrm{~m}, 2 \mathrm{H}), 1.64(\mathrm{~s}, 9 \mathrm{H}), 1.52-1.47(\mathrm{~m}, 1 \mathrm{H})$, 1.43-1.31 ($\mathrm{m}, 2 \mathrm{H}$), 1.25-1.12 ($\mathrm{m}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 144.97,136.87,136.30$, $135.38,130.56,129.85,129.59,128.78,127.92,127.82,126.26,115.16,110.51,64.43,59.78$, 57.80, 36.53, 30.68, 29.15, 27.06, 25.95, 21.81, 19.32; ESI-MS m/z: $475.2[M+H]^{+}$; HRMS (DART Positive) m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{~N}_{3}[\mathrm{M}+\mathrm{H}]^{+} 475.2162$, found 475.2157 .

(Z)-N-(tert-Butyl)-1-cyano-2-(4-methoxybenzoyl)-1,2,3,4-tetrahydroisoquinoline-1-carbi midoyl cyanide (6s):
Following the general procedure for $\mathbf{6 a}$, the reaction of $\mathbf{5 s}(80.0 \mathrm{mg}, 0.3 \mathrm{mmol})$, DDQ (204.3 $\mathrm{mg}, 0.9 \mathrm{mmol})$, AgOTf ($11.6 \mathrm{mg}, 15 \mathrm{~mol} \%$) and ${ }^{t} \mathrm{BuNC}(134 \mu \mathrm{~L}, 1.2 \mathrm{mmol})$ in $\mathrm{PhCl}(4.5 \mathrm{~mL})$ at $80^{\circ} \mathrm{C}$ for 3 h afforded the desired product $\mathbf{6 s}$ as a white solid ($75.0 \mathrm{mg}, 62 \%$). M.p. $158-160{ }^{\circ} \mathrm{C}$; IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 2979.6, 2937.5, 2220.7, 1646.4, 1605.2, 1508.6, 1422.9, 1369.9, 1250.1, 1174.6; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.66-7.58(\mathrm{~m}, 3 \mathrm{H}), 7.43-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.26(\mathrm{~m}, 1 \mathrm{H})$, $6.99(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.31-4.24(\mathrm{~m}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.53-3.31(\mathrm{~m}, 2 \mathrm{H}), 2.90-2.80(\mathrm{~m}, 1 \mathrm{H})$, 1.44 (s, 9H); ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 172.94,162.23,136.99,135.57,129.80,129.76$, 129.73, 128.60, 128.24, 128.02, 126.16, 116.76, 114.35, 109.94, 65.27, 59.34, 55.61, 45.20, 29.30, 29.06; ESI-MS m/z: $401.2[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (DART Positive) m/z calcd for $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{~N}_{4} \mathrm{O}_{2}$ $[\mathrm{M}+\mathrm{H}]^{+}$401.1972, found 401.1971.

(Z)-N-(tert-Butyl)-1-cyano-2-(4-nitrobenzoyl)-1,2,3,4-tetrahydroisoquinoline-1-carbimido yl cyanide (6t):
Following the general procedure for $\mathbf{6 a}$, the reaction of $5 \mathbf{t}(85.0 \mathrm{mg}, 0.3 \mathrm{mmol})$, DDQ (204.3 mg , $0.9 \mathrm{mmol}), \mathrm{AgOTf}(11.6 \mathrm{mg}, 15 \mathrm{~mol} \%)$ and ${ }^{\mathrm{t}} \mathrm{BuNC}(134 \mu \mathrm{~L}, 1.2 \mathrm{mmol})$ in $\mathrm{PhCl}(4.5 \mathrm{~mL})$ at $80^{\circ} \mathrm{C}$ for 3 h afforded the desired product 6 t as a white solid ($59.3 \mathrm{mg}, 48 \%$). M.p. $198-200{ }^{\circ} \mathrm{C}$; IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 2975.0,2930.6,2245.6,2214.1,1765.4,1658.2,1523.5,1347.9 ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $500 \mathrm{MHz}): \delta 8.37(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.81(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.66-7.60(\mathrm{~m}, 1 \mathrm{H}), 7.44-7.37(\mathrm{~m}$, $2 \mathrm{H}), 7.32-7.27(\mathrm{~m}, 1 \mathrm{H}), ~ 4.07-4.00(\mathrm{~m}, 1 \mathrm{H}), 3.55-3.46(\mathrm{~m}, 1 \mathrm{H}), 3.39-3.28(\mathrm{~m}, 1 \mathrm{H}), 2.91-2.82(\mathrm{~m}$, $1 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 170.70,149.41,140.13,136.36,134.91$, 130.14, 129.78, 128.50, 128.42, 127.59, 124.45, 116.21, 109.98, 65.03, 59.67, 44.93, 29.05, 29.00; ESI-MS m/z: $416.2[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (DART Positive) m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{~N}_{5} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$ 416.1717, found 416.1717 .

6u

$6 \mathbf{u}^{\prime}$
(Z)-N-(tert-butyl)-1-cyano-2-(methylsulfonyl)-1,2,3,4-tetrahydroisoquinoline-1-carbimido yl cyanide (6 u) and (1Z,1Z)-N,N-di-tert-butyl-2-(methylsulfonyl)-3,4-dihydroisoquinoline$\mathbf{1 , 1 (2 H)}$-bis(carbimidoyl) dicyanide (6u'):
To a test tube, $5 \mathbf{u}(63.4 \mathrm{mg}, 0.3 \mathrm{mmol}),{ }^{t} \mathrm{BuNC}(136.0 \mu \mathrm{~L}, 1.2 \mathrm{mmol})$, AgOTf ($11.6 \mathrm{mg}, 0.045$ $\mathrm{mmol})$, DDQ ($204.3 \mathrm{mg}, 0.9 \mathrm{mmol}$) and dry chlorobenzene $(3.0 \mathrm{~mL})$ were added in a glove box. The mixture was stirred at $80^{\circ} \mathrm{C}$ for 3 h under a nitrogen atmosphere as monitored by TLC. Upon completion of the reaction, the solution was cooled down to room temperature. After removal of the solvent, the residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate $=6: 1$ to $3: 1$) to give the product $\mathbf{6 u}\left(59.1 \mathrm{mg}, 57 \%\right.$) and $\mathbf{6 u} \mathbf{u}^{\prime}$ ($20.5 \mathrm{mg}, 16 \%$), respectively, as a yellow solid.

6u: M.p. $161-162{ }^{\circ} \mathrm{C}$; $\mathrm{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right)$: 3432.8, 2979.4, 2870.9, 2220.7, 1644.7, 1351.0, 1165.1, 964.0, 767.7, 495.3; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.40-7.34(\mathrm{~m}, 3 \mathrm{H}), 7.28(\mathrm{~d}, \mathrm{~J}=7.3 \mathrm{~Hz}, 1 \mathrm{H})$, 4.22-4.18 (m, 1H), 3.40-3.33 (m, 1H), 3.27-3.22 (m, 1H), 3.20 (s, 3H), 2.95-2.91 (m, 1H), 1.44 (s, 9H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 137.56,134.79,130.13,130.07,128.19,127.95$, 127.72, 115.73, 109.64, 66.96, 59.32, 42.75, 37.56, 29.21, 28.87; ESI-MS m/z: $345.14\left[\mathrm{M}^{+} \mathrm{H}\right]$; HRMS (DART) m/z calcd for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}\left[\mathrm{M}^{+} \mathrm{H}\right] 345.1380$, found 345.1380.

6u': M.p. 147-148 ${ }^{\circ} \mathrm{C}$; $\operatorname{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 3433.7,2975.3,2216.6,1643.5,1340.1,1152.9,1075.5$, 777.0; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.44-7.42(\mathrm{~m}, 1 \mathrm{H}), 7.38-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.24(\mathrm{~m}, 1 \mathrm{H})$, $3.61(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.14(\mathrm{~s}, 3 \mathrm{H}), 3.02(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.46(\mathrm{~s}, 18 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (CDCl_{3}, 125 MHz): $\delta 138.23,135.59,129.97,129.52,129.25,129.13,127.00,111.52,76.45,59.44$,

Synthesis and Characterization of 5,6-Dihydrophenanthridines, Related to Figure 5

8-Methyl-5-tosyl-5,6-dihydrophenanthridine (7b):

To a mixture of 2-bromoaniline ($1.72 \mathrm{~g}, 10 \mathrm{mmol}$), p-tolylboronic acid ($1.43 \mathrm{~g}, 10.5 \mathrm{mmol}$), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(351 \mathrm{mg}, 0.5 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(5.53 \mathrm{~g}, 40 \mathrm{mmol})$ was added water (10 mL) and DMF (40 mL), then reduced pressure and backfilled with N_{2}. After stirred at $80{ }^{\circ} \mathrm{C}$ for 2 h , the mixture was cooled down to room temperature and filtered on diatomite. The filtrate was washed with water ($2 \times 15 \mathrm{~mL}$) and brine (20 mL), and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The resulting solution was concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (petroleum ether/ethyl acetate $=50: 1$) to give pure $\mathbf{7 b} \mathbf{b}^{\prime}(1.53 \mathrm{~g}$, 83%). To a solution of $7 b^{\prime}(1.53 \mathrm{~g}, 8.34 \mathrm{mmol})$ in pyridine (15 mL) was added $\mathrm{TsCl}(1.75 \mathrm{~g}$, 9.17 mmol) portionwise. After stirred at $60^{\circ} \mathrm{C}$ for 12 h , pyridine was removed under vacuum. To this residue was added dichloromethane (20 mL) and $2 \mathrm{M} \mathrm{HCl}(20 \mathrm{~mL})$. After stirred for 10 min, the mixture was extracted by dichloromethane ($2 \times 15 \mathrm{~mL}$). The combined organic phase was washed with saturated $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution (15 mL) and brine $(15 \mathrm{~mL})$, and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The resulting solution was concentrated under reduced pressure to give crude $\mathbf{7 b}$ " $(2.39 \mathrm{~g}, 85 \%)$ without further purification.

To a mixture of $\mathbf{7 b}$ " ($1.687 \mathrm{~g}, 5 \mathrm{mmol}$) and $(\mathrm{HCHO})_{n}(450 \mathrm{mg}, 15 \mathrm{mmol})$ was added $\mathrm{H}_{2} \mathrm{SO}_{4} / \mathrm{AcOH}=1: 4(25 \mathrm{~mL})$. After stirred at room temperature for 5 h , the reaction was quenched with water (50 mL), then filtered and washed with water for several times. The residue was collected and purified by flash column chromatography on basic alumina (petroleum ether/ethyl acetate/dichloromethane $=20: 1: 2$) to give $7 \mathrm{~b}(1.42 \mathrm{~g}, 81 \%)$ as a white solid. M.p. $150-152{ }^{\circ} \mathrm{C}$; IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3038.3, 2989.5, 2908.9, 1915.7, 1591.6, 1476.7, 1341.7, 1200.2, 1158.1; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.77$ (dd, $\left.J=7.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.54$ (dd, $J=7.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.36-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.11(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.96(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.90$ (d, J=7.9 Hz, 1H), 6.87 (s, 1H), 6.69 (d, J = $8.1 \mathrm{~Hz}, 2 \mathrm{H}$), 4.79 (s, 2H), $2.30(\mathrm{~s}, 3 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 142.95,137.92,135.86,134.88,131.37,130.85,128.42$, 128.37, 128.31, 128.18, 127.99, 127.47, 127.23, 126.80, 123.58, 123.02, 49.96, 21.38, 21.15; El-MS m/z (\%): 194.1 (100), 349.1 (17) [M] ${ }^{+}$; HRMS (El) m/z calcd for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{NO}_{2} \mathrm{~S}[\mathrm{M}]^{+}$ 349.1136 , found 349.1140 .

8-Bromo-5-tosyl-5,6-dihydrophenanthridine (7c):

To a mixture of 2-iodoaniline ($2.2 \mathrm{~g}, 10 \mathrm{mmol}$), (4-bromophenyl)boronic acid (2.04 g , $10.2 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(140.4 \mathrm{mg}, 0.2 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(5.52 \mathrm{~g}, 40 \mathrm{mmol})$ was added water $(10 \mathrm{~mL})$ and DMF $(40 \mathrm{~mL})$, then reduced pressure and backfilled with N_{2}. After stirred at $80^{\circ} \mathrm{C}$ for 2 h , the mixture was cooled down to room temperature and filtered on diatomite. The filtrate was washed with water $(2 \times 15 \mathrm{~mL})$ and brine $(20 \mathrm{~mL})$, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The resulting solution was concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (petroleum ether/ethyl acetate $=50: 1$) to give pure 7c' (2.16 g , 87%). To a solution of $7 c^{\prime}(2.16 \mathrm{~g}, 8.7 \mathrm{mmol})$ in pyridine $(15 \mathrm{~mL})$ was added $\mathrm{TsCl}(2.00 \mathrm{~g}, 10.44$ mmol) portionwise. After stirred at $60^{\circ} \mathrm{C}$ for 9 h , pyridine was removed under vacuum. To this residue was added dichloromethane $(20 \mathrm{~mL})$ and $2 \mathrm{M} \mathrm{HCl}(20 \mathrm{~mL})$. After stirred for 10 min , the mixture was extracted by dichloromethane $(2 \times 15 \mathrm{~mL})$. The combined organic phase was washed with saturated $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution (15 mL) and brine (15 mL), and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The resulting solution was concentrated under reduced pressure to give crude 7c" $(2.78 \mathrm{~g}, 80 \%)$ without further purification.

To a mixture of $7 \mathbf{c}^{\prime \prime}$ ($371.7 \mathrm{mg}, 1 \mathrm{mmol}$) and $(\mathrm{HCHO})_{n}(90 \mathrm{mg}, 3 \mathrm{mmol})$ was added $\mathrm{H}_{2} \mathrm{SO}_{4} / \mathrm{AcOH}=1: 4(10 \mathrm{~mL})$. After stirred at room temperature for 24 h , the reaction was quenched with water (30 mL), and the mixture was extracted by dichloromethane $(2 \times 15 \mathrm{~mL})$. The combined organic phase was washed with saturated $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution (15 mL) and brine (15 mL), and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under vacuum, and the residue was purified by flash column chromatography on neutral alumina (petroleum ether/ethyl acetate/dichloromethane $=20: 1: 2)$ to give pure product $7 \mathrm{c}(159.3 \mathrm{mg}, 38 \%)$ as a white solid. M.p. $153-155{ }^{\circ} \mathrm{C}$; IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 3054.7$, 2917.9, 1909.3, 1590.0, 1474.1, 1439.1, 1403.6, $1341.1 ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.78(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{t}$, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{~s}, 1 \mathrm{H}), 7.08(\mathrm{~d}, J=8.2$ $\mathrm{Hz}, 1 \mathrm{H}), 6.98(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.76(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.77(\mathrm{~s}, 2 \mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 125 \mathrm{MHz}$): $\delta 143.48,136.05,134.65,133.28,130.63,130.13,129.76,129.21,128.95$, 128.64, 128.49, 127.73, 127.23, 124.66, 123.70, 121.93, 49.35, 21.46; EI-MS m/z (\%): 258.0 (100), 413.0 (30) $\left[\mathrm{M}\left({ }^{79} \mathrm{Br}\right)\right]^{+}, 415.0$ (22) $\left[\mathrm{M}\left({ }^{81} \mathrm{Br}\right)\right]^{+}$; HRMS (EI) m/z calcd for $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{BrNO}_{2} \mathrm{~S}$ $[\mathrm{M}]^{+} 413.0085$, found 413.0080 .

8-Phenyl-5-tosyl-5,6-dihydrophenanthridine (7d):
To a mixture of $7 \mathrm{c}(248.6 \mathrm{mg}, 0.6 \mathrm{mmol})$, phenylboronic acid ($88 \mathrm{mg}, 0.72 \mathrm{mmol}$), $\mathrm{K}_{2} \mathrm{CO}_{3}(332$ $\mathrm{mg}, 2.4 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(21 \mathrm{mg}, 0.03 \mathrm{mmol})$ were added water $(0.6 \mathrm{~mL})$ and DMF (2.4 mL). After stirred at $80{ }^{\circ} \mathrm{C}$ for 5 h under N_{2}, the reaction mixture was filtered, and the filter residue was washed with ethyl acetate. The resulting solution was concentrated under reduced pressure. The residue was purified by flash column chromatography on basic $\mathrm{Al}_{2} \mathrm{O}_{3}$ (petroleum ether/ethyl acetate $=10: 1$) to give product $7 \mathbf{d}(153.2 \mathrm{mg}, 62 \%)$ as a white solid. M.p.144-146 ${ }^{\circ} \mathrm{C}$; IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 3030.8,2918.0,1918.0,1593.1,1470.8,1342.2,1157.9$, 1077.8; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.81(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, 7.56-7.42 (m, 4H), 7.42-7.16 (m, 6H), $6.98(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.66(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.86(\mathrm{~s}$, 2H), 2.09 ($\mathrm{s}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 125 \mathrm{MHz}$): $\delta 143.09,140.82,140.31,136.13,134.73$, $131.76,130.45,130.07,129.05,128.45,128.43,128.37,127.77,127.60,127.22,126.89$, 126.27, 124.84, 123.78, 123.56, 50.05, 21.37; El-MS m/z (\%): 256.1 (100) [M-Ts] ${ }^{+}, 301.1$ (22) $[\mathrm{M}]^{+} ; \mathrm{HRMS}(\mathrm{El}) \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{26} \mathrm{H}_{21} \mathrm{NO}_{2} \mathrm{~S}[\mathrm{M}]^{+} 411.1293$, found 411.1289.

5-Tosyl-8-((trimethylsilyl)ethynyl)-5,6-dihydrophenanthridine (7e):

To a mixture of $7 \mathrm{c}(331.4 \mathrm{mg}, 0.8 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(9.0 \mathrm{mg}, 0.04 \mathrm{mmol})$, $\mathrm{Cul}(7.6 \mathrm{mg}, 0.04$ mmol) in a schlenk tube was added ethynyltrimethylsilane ($340 \mu \mathrm{~L}, 2.4 \mathrm{mmol}$) and $\mathrm{Et}_{3} \mathrm{~N}(2.5$ mL) under N_{2}. After stirred at $90^{\circ} \mathrm{C}$ for 24 h , the reaction was concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (petroleum ether/ethyl acetate $=10: 1$) to give 7 e ($196.4 \mathrm{mg}, 57 \%$) as a white solid. M.p. $162-164{ }^{\circ} \mathrm{C}$; IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 2958.2,2142.1,1597.0,1466.2,1434.4,1240.9,1160.0 ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500\right.$ $\mathrm{MHz}): \delta 7.78(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{t}, J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.22-7.10(\mathrm{~m}, 3 \mathrm{H}), 6.97(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.74(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.78(\mathrm{~s}, 2 \mathrm{H})$, 2.17 (s, 3H), $0.28(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 143.32,136.26,134.69,131.38$, $131.12,131.08,130.02,129.53,128.90,128.59,128.31,127.58,127.23,124.00,122.84$, 122.69, 104.50, 95.78, 49.56, 21.43, 0.10; EI-MS m/z (\%): 276.1 (100) [M-Ts] ${ }^{+} ; 431.1$ (40) $[\mathrm{M}]^{+} ;$HRMS (EI) m/z calcd for $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{NO}_{2} \mathrm{SSi}[\mathrm{M}]^{+} 431.1375$, found 431.1372.

7f

3,8-Dimethyl-5-tosyl-5,6-dihydrophenanthridine (7f):

To a mixture of 2-bromo-5-methylaniline ($930 \mathrm{mg}, 5 \mathrm{mmol}$), p-tolylboronic acid ($748 \mathrm{mg}, 5.5$ $\mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(70.1 \mathrm{mg}, 0.1 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(2.76 \mathrm{~g}, 20 \mathrm{mmol})$ was added water $(10 \mathrm{~mL})$ and DMF (40 mL), then reduced pressure and backfilled with N_{2}. After stirred at $80^{\circ} \mathrm{C}$ for 2 h , the mixture was cooled down to room temperature and filtered on diatomite. The filtrate was washed with water ($2 \times 15 \mathrm{~mL}$) and brine (20 mL), and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The resulting solution was concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (petroleum ether/ethyl acetate $=50: 1)$ to give $7 \mathbf{f f}^{\prime}(835.7 \mathrm{mg}$, 85%) . To a solution of $7 \mathbf{f f}^{\prime}(835.7 \mathrm{mg}, 4.24 \mathrm{mmol})$ in pyridine (10 mL) was added TsCl $(969 \mathrm{mg}$, 5.1 mmol) portionwise. After stirred at $60^{\circ} \mathrm{C}$ for 12 h , pyridine was removed under vacuum. To this residue was added dichloromethane $(20 \mathrm{~mL})$ and $2 \mathrm{M} \mathrm{HCl}(20 \mathrm{~mL})$. After stirred for 10 min , the mixture was extracted by dichloromethane ($2 \times 15 \mathrm{~mL}$). The combined organic phase was washed with saturated $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution (15 mL) and brine (15 mL), and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The resulting solution was concentrated under reduced pressure to give crude 7 f " (1.32 g , 89%) without further purification.

To a mixture of $7 \mathrm{ff}^{\prime \prime}(351.5 \mathrm{mg}, 1 \mathrm{mmol})$ and $(\mathrm{HCHO})_{n}(90 \mathrm{mg}, 3 \mathrm{mmol})$ was added $\mathrm{H}_{2} \mathrm{SO}_{4} / \mathrm{AcOH}=1: 10(10 \mathrm{~mL})$. After stirred at room temperature for 5 h , the reaction was quenched with water (20 mL), then filtered and washed with water for several times. The residue was collected and purified by flash column chromatography on neutral alumina (petroleum ether/ethyl acetate/dichloromethane $=20: 1: 2)$ to give pure product $7 \mathrm{f}(210.4 \mathrm{mg}$, 58%) as a white solid. M.p. $176-178{ }^{\circ} \mathrm{C}$; $\mathrm{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right)$: 3026.8, 2917.9, 2858.8, 1906.7, 1603.6, 1518.3, 1479.8, 1342.4, 1285.5, 1160.9; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.59(\mathrm{~d}, \mathrm{~J}=0.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.42(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{dd}, J=7.9,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.97$ (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}$), 6.88 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 6.84 (s, 1 H), $6.70(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.76$ (d, 2H), $2.43(\mathrm{~s}, 3 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 142.89,138.13,137.41$, 135.76, 134.92, 131.00, 128.58, 128.56, 128.41, 128.33, 128.22, 128.12, 127.26, 126.75, 123.39, 122.71, 50.09, 21.47, 21.38, 21.12; EI-MS m/z (\%): 208.1 (100), 363.1 (26) [M] ${ }^{+}$; HRMS (EI) m/z calcd for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{NO}_{2} \mathrm{~S}[\mathrm{M}]^{+} 363.1293$, found 363.1292.

7 g

3-Fluoro-8-methyl-5-tosyl-5,6-dihydrophenanthridine (7g):

To a mixture of 2-bromo-5-fluoroaniline ($950 \mathrm{mg}, 5 \mathrm{mmol}$), p-tolylboronic acid ($1.02 \mathrm{~g}, 7.5$ $\mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(175.5 \mathrm{mg}, 0.25 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(2.76 \mathrm{~g}, 20 \mathrm{mmol})$ was added water $(5 \mathrm{~mL})$ and DMF (20 mL), then reduced pressure and backfilled with N_{2}. After stirred at $80^{\circ} \mathrm{C}$ for 2 h , the mixture was cooled down to room temperature and filtered on diatomite. The filtrate was washed with water ($2 \times 15 \mathrm{~mL}$) and brine (20 mL), and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The resulting solution was concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (petroleum ether/ethyl acetate $=50: 1$) to give $7 \mathbf{g g}^{\prime}(977.3 \mathrm{mg}$, 97%) . To a solution of $7 \mathrm{~g}^{\prime}$ ($977.3 \mathrm{mg}, 4.86 \mathrm{mmol}$) in pyridine (10 mL) was added $\mathrm{TsCl}(1.38 \mathrm{~g}$, 7.29 mmol) portionwise. After stirred at $60^{\circ} \mathrm{C}$ for 12 h , pyridine was removed under vacuum. To this residue was added dichloromethane (20 mL) and $2 \mathrm{M} \mathrm{HCl}(20 \mathrm{~mL})$. After stirred for 10 min , the mixture was extracted by dichloromethane $(2 \times 15 \mathrm{~mL})$. The combined organic phase was washed with saturated $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution (15 mL) and brine (15 mL), and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The resulting solution was concentrated under reduced pressure to give crude $\mathbf{7 g}$ " $(1.43 \mathrm{~g}, 83 \%)$ without further purification.

To a mixture of 7 g " ($351.5 \mathrm{mg}, 1 \mathrm{mmol}$) and $(\mathrm{HCHO})_{n}(90 \mathrm{mg}, 3 \mathrm{mmol})$ was added $\mathrm{H}_{2} \mathrm{SO}_{4} / \mathrm{AcOH}=1: 4(10 \mathrm{~mL})$. After stirred at room temperature for 12 h , the reaction was quenched with water (20 mL), then filtered and washed with water for several times. The residue was collected and purified by flash column chromatography on neutral alumina (petroleum ether/ethyl acetate/dichloromethane $=20: 1: 2$) to give product 7 g ($286.7 \mathrm{mg}, 78 \%$) as a white solid. M.p. $152-153{ }^{\circ} \mathrm{C}$; $\mathrm{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 3034.3,2916.6,1918.5,1603.4,1481.5$, 1334.2, 1279.1, 1160.0; ${ }^{1} \mathrm{H}$ NMR (CDCl ${ }_{3}, 500 \mathrm{MHz}$): $\delta 7.58-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.07(\mathrm{~d}, J=7.9 \mathrm{~Hz}$, $1 \mathrm{H}), 7.05-6.97(\mathrm{~m}, 3 \mathrm{H}), 6.91(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{~s}, 1 \mathrm{H}), 6.73(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.79(\mathrm{~s}$, 2 H), $2.30(\mathrm{~s}, 3 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{19} \mathrm{~F} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 470 \mathrm{MHz}\right): \delta-112.53(\mathrm{~m}, \mathrm{Ar}-\mathrm{F}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 161.90\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=247.1 \mathrm{~Hz}\right), 143.27,137.90,137.27\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=11.0 \mathrm{~Hz}\right)$, $134.85,130.81,128.55,128.51,127.84,127.24,127.09\left(\mathrm{~d},{ }^{4} J_{\mathrm{C}-\mathrm{F}}=3.6 \mathrm{~Hz}\right.$), 126.83, 124.87 (d , ${ }^{3} J_{\text {C-F }}=9.0 \mathrm{~Hz}$), 122.81, $115.18\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=24.0 \mathrm{~Hz}\right), 114.76\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=21.6 \mathrm{~Hz}\right), 49.95,21.44$, 21.16; El-MS m/z (\%): 212.1 (100), 367.1 (25) [M] ${ }^{+}$; HRMS (EI) m/z calcd for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{FNO}_{2} \mathrm{~S}$ [M] ${ }^{+} 367.1042$, found 367.1034

3-Chloro-8-methyl-5-tosyl-5,6-dihydrophenanthridine (7h):

To a mixture of 2-bromo-5-chloroaniline ($1.03 \mathrm{~g}, 5 \mathrm{mmol}$), p-tolylboronic acid ($1.02 \mathrm{~g}, 7.5$ $\mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(175.5 \mathrm{mg}, 0.25 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(2.76 \mathrm{~g}, 20 \mathrm{mmol})$ was added water $(5 \mathrm{~mL})$ and DMF (20 mL), then reduced pressure and backfilled with N_{2}. After stirred at $80^{\circ} \mathrm{C}$ for 2 h , the mixture was cooled down to room temperature and filtered on diatomite. The filtrate was washed with water $(2 \times 15 \mathrm{~mL})$ and brine (20 mL), and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The resulting solution was concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (petroleum ether/ethyl acetate $=50: 1$) to give pure $\mathbf{7 h}$ ' ${ }^{(760.1}$ $\mathrm{mg}, 70 \%$). To a solution of $7 \mathrm{~h}^{\prime}(760.1 \mathrm{mg}, 3.5 \mathrm{mmol})$ in pyridine (7 mL) was added TsCl (995 $\mathrm{mg}, 5.24 \mathrm{mmol}$) portionwise. After stirred at $60^{\circ} \mathrm{C}$ for 12 h , pyridine was removed under vacuum. To this residue was added dichloromethane (20 mL) and $2 \mathrm{M} \mathrm{HCl}(20 \mathrm{~mL})$. After stirred for 10 min , the mixture was extracted by dichloromethane ($2 \times 15 \mathrm{~mL}$). The combined organic phase was washed with saturated $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution (15 mL) and brine (15 mL), and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The resulting solution was concentrated under reduced pressure to give crude $\mathbf{7 h "}$ ($1.43 \mathrm{~g}, 83 \%$) without further purification.

To a mixture of 7 h " $(371.7 \mathrm{mg}, 1 \mathrm{mmol})$ and $(\mathrm{HCHO}){ }_{n}(90 \mathrm{mg}, 3 \mathrm{mmol})$ was added $\mathrm{H}_{2} \mathrm{SO}_{4} / \mathrm{AcOH}=1: 4(10 \mathrm{~mL})$. After stirred at room temperature for 12 h , the reaction was quenched with water (20 mL), then filtered and washed with water for several times. The residue was collected and purified by flash column chromatography on neutral alumina (petroleum ether/ethyl acetate/dichloromethane $=20: 1: 2$) to give product $7 \mathrm{~h}(340.7 \mathrm{mg}, 89 \%)$ as a white solid. M.p. $152-153{ }^{\circ} \mathrm{C}$; $\mathrm{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 3030.2,2915.9,2855.3,1906.9,1591.2$, 1465.0, 1337.5, 1158.4; ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$): $\delta 7.79$ (d, $J=2.2 \mathrm{~Hz}, 1 \mathrm{H}$), 7.46 (d, $J=8.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.27$ (dd, $J=8.5,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.91$ (d, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~s}, 1 \mathrm{H}), 6.72(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.76(\mathrm{~s}, 2 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}_{\mathrm{NMR}}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 143.28,138.34,136.82,134.70,133.15,131.08,129.33$, 128.51, 128.49, 128.01, 127.67, 127.55, 127.19, 126.83, 124.60, 122.91, 49.82, 21.38, 21.15; EI-MS m/z (\%): 227.0 (100), 385.1 (28) [M $\left.\left({ }^{37} \mathrm{Cl}\right)\right]^{+}$, 383.1 (83) [M ($\left.\left.{ }^{35} \mathrm{CI}\right)\right]^{+}$; HRMS (EI) m/z calcd for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{ClNO}_{2} \mathrm{~S}[\mathrm{M}]^{+} 383.0747$, found 383.0740 .

2,8-Dimethyl-5-tosyl-5,6-dihydrophenanthridine (7i):

To a mixture of 2-bromo-4-methylaniline ($930 \mathrm{mg}, 5 \mathrm{mmol}$), p-tolylboronic acid ($748 \mathrm{mg}, 5.5$ $\mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(70.1 \mathrm{mg}, 0.1 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(2.76 \mathrm{~g}, 20 \mathrm{mmol})$ was added water $(10 \mathrm{~mL})$ and DMF (40 mL), then reduced pressure and backfilled with N_{2}. After stirred at $80^{\circ} \mathrm{C}$ for 2 h , the mixture was cooled down to room temperature and filtered on diatomite. The filtrate was washed with water $(2 \times 15 \mathrm{~mL})$ and brine (20 mL), and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The resulting solution was concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (petroleum ether/ethyl acetate $=50: 1$) to give 7i’ (838.8 mg , 85%). To a solution of $7 \mathrm{i}^{\prime}(838.8 \mathrm{mg}, 4.25 \mathrm{mmol})$ in pyridine (10 mL) was added $\mathrm{TsCl}(969 \mathrm{mg}$, 5.1 mmol) portionwise. After stirred at $60^{\circ} \mathrm{C}$ for 12 h , pyridine was removed under vacuum. To this residue was added dichloromethane $(20 \mathrm{~mL})$ and $2 \mathrm{M} \mathrm{HCl}(20 \mathrm{~mL})$. After stirred for 10 min , the mixture was extracted by dichloromethane ($2 \times 15 \mathrm{~mL}$). The combined organic phase was washed with saturated $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution (15 mL) and brine (15 mL), and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The resulting solution was concentrated under reduced pressure to give crude 7i" ($1.36 \mathrm{~g}, 91 \%$) without further purification.

To a mixture of 7 i " ($351.5 \mathrm{mg}, 1 \mathrm{mmol}$) and $(\mathrm{HCHO})_{n}(90 \mathrm{mg}, 3 \mathrm{mmol})$ was added $\mathrm{H}_{2} \mathrm{SO}_{4} / \mathrm{AcOH}=1: 10(10 \mathrm{~mL})$. After stirred at room temperature for 5 h , the reaction was quenched with water (20 mL), then filtered and washed with water for several times. The residue was collected and purified by flash column chromatography on basic alumina (petroleum ether/ethyl acetate/dichloromethane = $20: 1: 2$) to give product $7 \mathbf{7 i}(312.7 \mathrm{mg}, 86 \%)$ as a white solid. M.p. $183-185^{\circ} \mathrm{C}$; $\mathrm{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 3033.5,2918.5,2859.4,1909.5,1645.3$, 1483.0, 1343.6, 1281.9, 1159.0; ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$): $\delta 7.65(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.34$ (d , $J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{dd}, J=8.1,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.97$ (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H})$, $6.89(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~s}, 1 \mathrm{H}), 6.70(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.76(\mathrm{~s}, 2 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 2.29$ $(\mathrm{s}, 3 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 142.84,137.72,137.19,134.88,133.32$, 131.33, 130.51, 128.80, 128.51, 128.33, 128.20, 127.93, 127.25, 126.78, 124.05, 122.94, 50.04, 21.47, 21.37, 21.12; EI-MS m/z (\%): 208.1 (100), 363.1 (22) [M] ${ }^{+}$; HRMS (EI) m/z calcd for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{NO}_{2} \mathrm{~S}\left[\mathrm{M}^{+}\right.$363.1293, found 363.1295.

C1 Functionalization of 5,6-Dihydrophenanthridines, Related to Figure 5.

${ }^{t} \mathrm{Bu}$

(Z)- \mathbf{N}-(tert-Butyl)phenanthridine-6-carbimidoyl cyanide (8a):

Following the general procedure for $\mathbf{6 a}$, the reaction of $\mathbf{7 a}(100.6 \mathrm{mg}, 0.3 \mathrm{mmol})$, DDQ (204.3 $\mathrm{mg}, 0.9 \mathrm{mmol})$, $\mathrm{AgOTf}\left(11.6 \mathrm{mg}, 15 \mathrm{~mol} \%\right.$) and ${ }^{\mathrm{t}} \mathrm{BuNC}(134 \mu \mathrm{~L}, 1.2 \mathrm{mmol}) \mathrm{in} \mathrm{PhCl}(4.5 \mathrm{~mL})$ at $80^{\circ} \mathrm{C}$ for 3 h afforded the desired product 8 a as a white solid ($58.6 \mathrm{mg}, 68 \%$). M.p. $104-105^{\circ} \mathrm{C}$; IR (KBr, cm^{-1}): 3075, 2975, 2217, 1612, 1450, 1362, 1207, 937; ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta$ $9.10(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.69(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.60(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.31(\mathrm{~d}, J=7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.89(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.83-7.74(\mathrm{~m}, 2 \mathrm{H}), 7.72(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}),, 1.70(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 151.44,142.74,139.05,134.01,131.09,131.05,129.22,128.97,128.05$, 127.73, 124.81, 123.82, 122.38, 122.12, 112.44, 59.94, 29.41; ESI-MS m/z: $288.1[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (DART Positive) m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}_{3}[\mathrm{M}+\mathrm{H}]^{+} 288.1495$, found 288.1492.

(Z)- \mathbf{N}-(tert-Butyl)-8-methylphenanthridine-6-carbimidoyl cyanide (8b):

To a mixture of $7 \mathbf{b}(104.7 \mathrm{mg}, 0.3 \mathrm{mmol})$, DDQ ($272.4 \mathrm{mg}, 1.2 \mathrm{mmol}$) and AgOTf ($11.6 \mathrm{mg}, 15$ $\mathrm{mol} \%$) was added $\mathrm{PhCl}(3.0 \mathrm{~mL})$ and ${ }^{t} \mathrm{BuNC}(168 \mu \mathrm{~L}, 1.5 \mathrm{mmol})$ in glovebox. The reaction was stirred at $80{ }^{\circ} \mathrm{C}$ for 3 h under N_{2} atmosphere. Upon completion, the reaction mixture was cooled down to room temperature and removed solvent under reduced pressure. Then, purified by column chromatography on basic $\mathrm{Al}_{2} \mathrm{O}_{3}$ (petroleum ether/ethyl acetate $=30: 1$) to give the desired product $\mathbf{8 b}(45.9 \mathrm{mg}, 51 \%)$ as a white solid. M.p. $159-161{ }^{\circ} \mathrm{C}$; $\mathrm{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right)$: 2965.9, 2208.3, 1954.4, 1741.1, 1621.8, 1568.0, 1459.3, 1366.4, 1234.9; ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 500$ $\mathrm{MHz}): \delta 8.90(\mathrm{~s}, 1 \mathrm{H}), 8.59-8.50(\mathrm{~m}, 2 \mathrm{H}), 8.31-8.25(\mathrm{~m}, 1 \mathrm{H}), 7.80-7.68(\mathrm{~m}, 3 \mathrm{H}), 2.59(\mathrm{~s}, 3 \mathrm{H})$, 1.71 (s, 9H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 151.10,142.48,139.03$ 138.06, 132.76, 131.95, 131.02, 128.88, 128.76, 127.18, 124.93, 123.97, 122.28, 121.95, 112.45, 59.94, 29.40, 22.18; El-MS m/z (\%): 245.1 (100), 301.2 (18) [M] $]^{+}$HRMS (EI) m/z calcd for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{~N}_{3}[\mathrm{M}]^{+}$301.1579, found 301.1584 .

(Z)-8-Bromo- \boldsymbol{N}-(tert-butyl)phenanthridine-6-carbimidoyl cyanide (8c):

Following the general procedure for $\mathbf{6 a}$, the reaction of $\mathbf{7 c}(124.3 \mathrm{mg}, 0.3 \mathrm{mmol})$, DDQ (204.3
$\mathrm{mg}, 0.9 \mathrm{mmol}), \operatorname{AgOTf}(11.6 \mathrm{mg}, 15 \mathrm{~mol} \%)$ and ${ }^{\mathrm{t}} \mathrm{BuNC}(134 \mu \mathrm{~L}, 1.2 \mathrm{mmol})$ in $\mathrm{PhCl}(4.5 \mathrm{~mL})$ at $80^{\circ} \mathrm{C}$ for 3 h afforded the desired product 8 c as a white solid ($34.5 \mathrm{mg}, 31 \%$). M.p. $172-175^{\circ} \mathrm{C}$; IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 2967.0, 2931.7, 2220.7, 1614.3, 1692.6, 1616.6, 1566.5; ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 500$ $\mathrm{MHz}): \delta 9.47(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.56-8.47(\mathrm{~m}, 2 \mathrm{H}), 8.30(\mathrm{dd}, J=8.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.95(\mathrm{dd}, J=$ 8.8, $2.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.84-7.74 (m, 2H), $1.71(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 149.67$, 142.66, 139.10, 134.17, 132.64, 131.33, 130.68, 129.65, 129.52, 124.96, 124.32, 124.08, 122.43, 121.97, 112.08, 60.13, 29.34; ESI-MS m/z (\%): 366.1 [M ($\left.\left.{ }^{79} \mathrm{Br}\right)+\mathrm{H}\right]^{+}(81), 368.1[\mathrm{M}$ $\left.\left({ }^{81} \mathrm{Br}\right)+\mathrm{H}\right]^{+}$(100); HRMS (DART Positive) m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{Br}[\mathrm{M}+\mathrm{H}]^{+} 366.0600$, found 366.0601 .

(Z)-N-(tert-Butyl)-3,8-dimethylphenanthridine-6-carbimidoyl cyanide (8d):

Following the general procedure for $\mathbf{8 b}$, the reaction of $\mathbf{7 d}(123.45 \mathrm{mg}, 0.3 \mathrm{mmol})$, DDQ (272.4 $\mathrm{mg}, 1.2 \mathrm{mmol})$, $\mathrm{AgOTf}(11.6 \mathrm{mg}, 15 \mathrm{~mol} \%)$ and ${ }^{t} \mathrm{BuNC}(168 \mu \mathrm{~L}, 1.5 \mathrm{mmol})$ in $\mathrm{PhCl}(3 \mathrm{~mL})$ at 80 ${ }^{\circ} \mathrm{C}$ for 3 h afforded the desired product 8 d as a white solid ($38.5 \mathrm{mg}, 36 \%$). M.p. $112-115^{\circ} \mathrm{C}$; IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 2965.7,2859.4,2216.6,1608.8,1463.4,1395.9 ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta$ $9.55(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.70(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.58(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.31(\mathrm{~d}, J=7.5 \mathrm{~Hz}$, 1 H), 8.13 (dd, $J=8.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.82-7.72(\mathrm{~m}, 4 \mathrm{H}), 7.54(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.44(\mathrm{t}, J=7.4$ $\mathrm{Hz}, 1 \mathrm{H}), 1.73(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 151.15,142.71,140.56,140.41,139.40$, 132.97, 131.16, 129.97, 129.26, 129.18, 129.14, 128.07, 127.38, 126.05, 124.67, 124.27, 122.94, 122.14, 112.32, 59.90, 29.43; EI-MS m/z (\%): 307.1 (100), 363.2 (33) [M] ${ }^{+}$; HRMS (EI) m / z calcd for $\mathrm{C}_{25} \mathrm{H}_{21} \mathrm{~N}_{3}[\mathrm{M}]^{+}$363.1735, found 363.1736.

(Z)-N-(tert-Butyl)-8-((trimethylsilyl)ethynyl)phenanthridine-6-carbimidoyl cyanide (8e): Following the general procedure for $\mathbf{8 b}$, the reaction of $7 \mathbf{e}(123.45 \mathrm{mg}, 0.3 \mathrm{mmol})$, DDQ (272.4 $\mathrm{mg}, 1.2 \mathrm{mmol}$), AgOTf ($11.6 \mathrm{mg}, 15 \mathrm{~mol} \%$) and ${ }^{\mathrm{t}} \mathrm{BuNC}(168 \mu \mathrm{~L}, 1.5 \mathrm{mmol})$ in $\mathrm{PhCl}(3 \mathrm{~mL})$ at 80 ${ }^{\circ} \mathrm{C}$ for 3 h afforded the desired product 8 e as a white solid ($36.8 \mathrm{mg}, 32 \%$). M.p. $135-139{ }^{\circ} \mathrm{C}$; IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 2966.6,2150.3,1690.5,1647.2,1619.5,1465.2,1363.4 ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500\right.$ $\mathrm{MHz}): \delta 9.36(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.59(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.55(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.30(\mathrm{dd}, J=$ $8.2,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.89(\mathrm{dd}, J=8.6,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.84-7.72(\mathrm{~m}, 2 \mathrm{H}), 1.71(\mathrm{~s}, 9 \mathrm{H}), 0.30(\mathrm{~s}, 9 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$: $\delta 150.40,142.88,138.78,133.38,133.35,132.13,131.10$, $129.51,129.15,124.33,123.43,122.86,122.25,122.21,112.05,104.63,96.30,59.96,29.17$, -0.11; El-MS m/z (\%): 327.1 (100), 383.2 (30) [M] ${ }^{+}$; HRMS (EI) m/z calcd for $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{Si}[\mathrm{M}]^{+}$ 383.1818 , found 383.1815 .

(Z)-N-(tert-Butyl)-3,8-dimethylphenanthridine-6-carbimidoyl cyanide (8f):

Following the general procedure for $\mathbf{8 b}$, the reaction of $7 \mathbf{f}(108.9 \mathrm{mg}, 0.3 \mathrm{mmol})$, DDQ (272.4 $\mathrm{mg}, 1.2 \mathrm{mmol}$), $\mathrm{AgOTf}(11.6 \mathrm{mg}, 15 \mathrm{~mol} \%)$ and ${ }^{t} \mathrm{BuNC}(168 \mu \mathrm{~L}, 1.5 \mathrm{mmol})$ in $\mathrm{PhCl}(3 \mathrm{~mL})$ at 80 ${ }^{\circ} \mathrm{C}$ for 3 h afforded the desired product 8 f as a white solid ($46.2 \mathrm{mg}, 49 \%$). M.p. $159-161{ }^{\circ} \mathrm{C}$; IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 2970.1,2909.2,2212.4,1619.9,1565.2,1470.6 ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta$ $8.89(\mathrm{~s}, 1 \mathrm{H}), 8.52(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.43(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.09(\mathrm{~s}, 1 \mathrm{H}), 7.68(\mathrm{dd}, J=8.5$, $1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{dd}, J=8.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.60(\mathrm{~s}, 3 \mathrm{H}), 2.57(\mathrm{~s}, 3 \mathrm{H}), 1.70(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 151.06,142.64,139.17,138.98,137.53,132.69,132.04,130.72,130.46$, 127.11, 123.70, 122.64, 122.10, 121.73, 112.50, 59.87, 29.41, 22.16, 21.55; EI-MS m/z (\%): 259.1 (100), 315.2 (36) [M] ${ }^{+}$; HRMS (EI) m/z calcd for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{~N}_{3}[\mathrm{M}]^{+} 315.1735$, found 315.1738 .

${ }^{t} \mathrm{Bu}$
(Z)- \mathbf{N}-(tert-Butyl)-3-fluoro-8-methylphenanthridine-6-carbimidoyl cyanide (8 g):

Following the general procedure for $\mathbf{6 a}$, the reaction of $\mathbf{7 g}(110.2 \mathrm{mg}, 0.3 \mathrm{mmol})$, DDQ (204.3 $\mathrm{mg}, 0.9 \mathrm{mmol}), \mathrm{AgOTf}(11.6 \mathrm{mg}, 15 \mathrm{~mol} \%)$ and ${ }^{t} \mathrm{BuNC}(134 \mu \mathrm{~L}, 1.2 \mathrm{mmol})$ in $\mathrm{PhCl}(4.5 \mathrm{~mL})$ at $80^{\circ} \mathrm{C}$ for 3 h afforded the desired product 8 g as a white solid ($44.3 \mathrm{mg}, 46 \%$). M.p. $162-164{ }^{\circ} \mathrm{C}$; IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 2966.8, 2927.6, 2220.2, 1620.7, 1575.9, 1472.7; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta$ $8.82(\mathrm{~s}, 1 \mathrm{H}), 8.48$ (dd, $J=9.1,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.44(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.90$ (dd, $J=9.5,2.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.68(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{td}, J=8.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.57(\mathrm{~s}, 3 \mathrm{H}), 1.71(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CDCl}_{3}, 470 \mathrm{MHz}\right): \delta-111.95(\mathrm{~m}, \mathrm{Ar}-\mathrm{F}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 162.59\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=249.0\right.$ Hz), 152.24, $143.55\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=12.0 \mathrm{~Hz}\right.$), 138.67, 137.89, 133.14, 131.78, 127.22, 123.89 (d , $\left.{ }^{3} J_{C-F}=9.3 \mathrm{~Hz}\right), 123.48,122.03,121.60\left(\mathrm{~d},{ }^{4} J_{\mathrm{C}-\mathrm{F}}=2.2 \mathrm{~Hz}\right), 117.98\left(\mathrm{~d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=24.0 \mathrm{~Hz}\right), 115.17$ ($\mathrm{d},{ }^{2} J_{\mathrm{C}-\mathrm{F}}=20.7 \mathrm{~Hz}$), 112.30, 60.09, 29.38, 22.12; El-MS m/z (\%): 263.1 (100), 319.2 (21) [M] ; HRMS (EI) m/z calcd for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{~F}[\mathrm{M}]^{+} 319.1485$, found 319.1484.

(Z)- \mathbf{N}-(tert-Butyl)-3-chloro-8-methylphenanthridine-6-carbimidoyl cyanide (8h):

Following the general procedure for $\mathbf{6 a}$, the reaction of $\mathbf{7 h}(115.2 \mathrm{mg}, 0.3 \mathrm{mmol})$, DDQ (204.3 $\mathrm{mg}, 0.9 \mathrm{mmol}), \mathrm{AgOTf}\left(11.6 \mathrm{mg}, 15 \mathrm{~mol} \%\right.$) and ${ }^{\mathrm{t}} \mathrm{BuNC}(134 \mu \mathrm{~L}, 1.2 \mathrm{mmol})$ in $\mathrm{PhCl}(4.5 \mathrm{~mL})$ at
$80^{\circ} \mathrm{C}$ for 3 h afforded the desired product 8 h as a white solid ($46.6 \mathrm{mg}, 46 \%$). M.p. 207-209 ${ }^{\circ} \mathrm{C}$; IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 2966.4, 2923.7, 2218.4, 1614.3, 1466.8, 1365.1; ${ }^{1} \mathrm{H} \mathrm{NMR}^{\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta}$ $8.82(\mathrm{~s}, 1 \mathrm{H}), 8.40(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.36(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.20(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{dd}$, $J=8.4,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{dd}, J=8.8,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.57(\mathrm{~s}, 3 \mathrm{H}), 1.71(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, 125 MHz): $\delta 152.00,142.87,138.68,138.39,134.35,133.10,131.44,129.87,129.24,127.26$, $123.75,123.25,123.24,122.09,112.25,60.08,29.36,22.17$; El-MS m/z (\%): 279.1 (100), 337.1 (7) [M ($\left.\left.{ }^{37} \mathrm{Cl}\right)\right]^{+}, 335.1$ (21) $\left[\mathrm{M}\left({ }^{35} \mathrm{CI}\right)\right]^{+}$; HRMS (EI) m/z calcd for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{Cl}[\mathrm{M}]^{+}$335.1189, found 335.1183.

(Z)- N -(tert-Butyl)-2,8-dimethylphenanthridine-6-carbimidoyl cyanide (8i):

Following the general procedure for $\mathbf{8 b}$, the reaction of $\mathbf{7 h}(108.9 \mathrm{mg}, 0.3 \mathrm{mmol})$, DDQ (272.4 $\mathrm{mg}, 1.2 \mathrm{mmol})$, $\mathrm{AgOTf}(11.6 \mathrm{mg}, 15 \mathrm{~mol} \%)$ and ${ }^{t} \mathrm{BuNC}(168 \mu \mathrm{~L}, 1.5 \mathrm{mmol})$ in $\mathrm{PhCl}(3 \mathrm{~mL})$ at 80 ${ }^{\circ} \mathrm{C}$ for 3 h afforded the desired product 8 h as a white solid ($29.1 \mathrm{mg}, 31 \%$). M.p. $139-140{ }^{\circ} \mathrm{C}$; IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 2970.6,2915.2,2212.4,1899.3,1743.5,1609.2,1567.8,1462.8,1233.3,1200.3 ;$ ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 8.91(\mathrm{~s}, 1 \mathrm{H}), 8.52(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.30(\mathrm{~s}, 1 \mathrm{H}), 8.16(\mathrm{~d}, J=$ $8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.64(\mathrm{~s}, 3 \mathrm{H}), 2.57(\mathrm{~s}, 3 \mathrm{H}), 1.71(\mathrm{~s}$, $9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta 150.13,140.85,139.22,139.14,137.87,132.48,131.60$, $130.75,130.55,127.10,124.77,124.06,122.22,121.55,112.51,59.80,29.40,22.35,22.17 ;$ EI-MS m/z (\%): 259.1 (100), 315.2 (38) [M] $]^{+}$; HRMS (EI) m/z calcd for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{~N}_{3}[\mathrm{M}]^{+} 315.1735$, found 315.1728.

Synthetic applications of the α-Iminonitrile-decorated Isochromans, Related to Figure 6.

N-tert-Butyl-1-methylisochroman-1-carboxamide (9a):
To a sealed tube containing $\mathrm{Al}_{2} \mathrm{O}_{3}(1.0 \mathrm{~g})$ was added (E)- N -(tert-butyl)-1-methyl-isochroman-1-carbimidoyl cyanide $41(51.3 \mathrm{mg}, 0.2 \mathrm{mmol})$ in toluene $(2.0 \mathrm{~mL})$ and the mixture was stirred at $150^{\circ} \mathrm{C}$ for 25 h . Upon completion, the reaction mixture was cooled down to room temperature and diluted with ethyl acetate. After filtration through a thin pad of celite, the solid was repeatedly rinsed with ethyl acetate $(3 \times 10 \mathrm{~mL})$. Then the combined organic phase was evaporated in vacuum to give the crude product which was purified by column chromatography on silica gel to give product $9 \mathrm{a}(26.0 \mathrm{mg}, 53 \%)$ as white solid. M.p. $52-54{ }^{\circ} \mathrm{C}$; IR (KBr, cm^{-1}): 3364, 2977, 2931, 1665, 1510, 1450, 1363, 1286, 1235, 1109, 1041, 976, 745, $653 ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.67(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.22-7.15(\mathrm{~m}, 2 \mathrm{H}), 7.06(\mathrm{~d}, J=7.0$ $\mathrm{Hz}, 1 \mathrm{H}), 6.72(\mathrm{~s}, 1 \mathrm{H}), 3.98(\mathrm{t}, \mathrm{J}=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.92-2.86(\mathrm{~m}, 1 \mathrm{H}), 2.84-2.79(\mathrm{~m}, 1 \mathrm{H}), 1.68(\mathrm{~s}$,

3H), 1.31 (s, 9H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): 172.8,136.8,132.2,128.3,127.6,126.8,126.2$, 79.1, 61.2, 50.6, 29.1, 28.6, 27.0; LC-MS (ESI) m/z 248 [M+H] ${ }^{+}$; HRMS (ESI) m/z calcd for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{2} \mathrm{~N} 248.1645[\mathrm{M}+\mathrm{H}]^{+}$, found 248.1644.

Methyl 1-methylisochroman-1-carboxylate (9b):

To a test tube containing (E)-N-(tert-butyl)- 1-methylisochroman-1-carbimidoyl cyanide $4 \mathbf{I I}$ (51.3 $\mathrm{mg}, 0.2 \mathrm{mmol})$ in $\mathrm{MeOH}(3.0 \mathrm{~mL})$ was added $1 \mathrm{M} \mathrm{HCl}(0.6 \mathrm{~mL})$ and the mixture was stirred at room temperature for 10 h . Then water $(30 \mathrm{~mL})$ was added and the solution was extracted with ethyl acetate ($3 \times 10 \mathrm{~mL}$). The combined organic phase was washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After that, the filtrate was evaporated in vacuum to give the crude product which was purified by column chromatography on silica gel to give 9 l ($30.1 \mathrm{mg}, 73 \%$) as pale yellow oil. IR (KBr, $\left.\mathrm{cm}^{-1}\right): 2949,1738,1446,1250,1117,977,742 ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta$ 7.43-7.41 (m, 1H), 7.22-7.20 (m, 2H), 7.12-7.10 (m, 1H), 4.15-4.07 (m, 2H), 3.74 (s, 3H), 3.04-2.97 (m, 1H), 2.74-2.69 (m, 1H), $1.74(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): 174.1,136.2$, 133.5, 128.7, 127.1, 126.8, 126.3, 78.3, 62.1, 52.5, 28.7, 27.9; LC-MS (ESI) m/z $224\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$; HRMS (ESI) m/z calcd for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$207.1016, found 207.1015.

Methylisochroman-1-carboxylic acid (9c):

(E)- N -(tert-butyl)-1-methylisochroman-1- carbimidoyl cyanide 41 ($51.3 \mathrm{mg}, 0.2 \mathrm{mmol}$) was subjected to hydrolysis in aqueous $\mathrm{CH}_{3} \mathrm{CN}(80 \% \mathrm{v} / \mathrm{v}, 50 \mathrm{~mL})$ containing 0.1 N HCl at room temperature for 2.5 h . Upon completion, water (50 mL) was added and the solution was extracted with dichloromethane $(3 \times 10 \mathrm{~mL})$. The combined organic phase was washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After that, the filtrate was evaporated in vacuum to give the crude product which was purified by column chromatography on silica gel to give 9c (34.1 mg , 89%) as pale yellow oil. IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 2933, 2631, 1711, 1449, 1373, 1286, 1217, 1117, 740, $652 ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.55-7.54(\mathrm{~m}, 1 \mathrm{H}), 7.23-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.11-7.09(\mathrm{~m}, 1 \mathrm{H})$, 4.17-4.13 (m, 1H), 4.08-4.03 (m, 1H), 2.93-2.83 (m, 2H), 1.78 (s, 3H); ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 125$ MHz): 176.7, 135.0, 133.1, 128.7, 127.5, 127.0, 126.6, 78.3, 61.9, 28.7, 27.1; LC-MS (ESI) m/z $210\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+} ;$HRMS (ESI) m/z calcd for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}_{3} \mathrm{~N}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+} 210.1125$, found 210.1124.

N-Hydroxy-1-methylisochroman-1-carbimidoyl cyanide (9d):

To a sealed tube containing $\mathrm{NH}_{2} \mathrm{OH}^{\circ} \mathrm{HCl}(16.7 \mathrm{mg}, 0.24 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(41.5 \mathrm{mg}, 0.3 \mathrm{mmol})$ was added (E)-N-(tert- butyl)-1-methylisochroman-1-carbimidoyl cyanide $4 \mathbf{~ (5 1 . 3 ~ m g , ~} 0.2$ $\mathrm{mmol})$ in EtOH (3.0 mL). The mixture was stirred at $100^{\circ} \mathrm{C}$ for 4 h . Upon completion, the reaction mixture was cooled down to room temperature and diluted with ethyl acetate. After
filtration through a thin pad of celite, the solid was repeatedly rinsed with ethyl acetate (3×10 mL). Then the combined organic phase was evaporated in vacuum to give the crude product which was purified by column chromatography on silica gel to give product 9d ($31.6 \mathrm{mg}, 73 \%$) as colorless oil. IR (KBr, cm ${ }^{-1}$): 3133, 2988, 2865, 1619, 1482, 1453, 1375, 1286, 1091, 994, 754, 665; ${ }^{1} \mathrm{H}$ NMR ($\mathrm{d}_{6}-\mathrm{DMSO}, 500 \mathrm{MHz}$): $\delta 13.41$ (s, 1H), 7.23-7.17 (m, 3H), 7.13-7.11 (m, 1H), 4.00-3.96 (m, 1H), 3.81-3.77 (m, 1H), 2.88-2.83 (m, 1H), 2.76 (dt, J=16.5, 9.5 Hz, 1H), 1.72 (s, 3 H); ${ }^{13} \mathrm{C}$ NMR (d_{6}-DMSO, 125 MHz): 137.1, 135.9, 134.0, 129.4, 127.8, 127.3, 126.6, 110.4, 76.7, 60.3, 28.4, 26.4; LC-MS (ESI) m/z $234\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$; HRMS (ESI) m/z calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{2} \mathrm{~N}_{3}$ $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$234.1237, found 234.1235.

3-(1-Methylisochroman-1-yl)quinoxalin-2-amine (9e):

To a test tube containing benzene-1,2-diamine ($26.0 \mathrm{mg}, 0.24 \mathrm{mmol}$) and $\mathrm{NaOAc}(19.7 \mathrm{mg}$, $0.24 \mathrm{mmol})$, ($($ E)- N -(tert-butyl)-1-methylisochroman-1-carbimidoyl cyanide 41 ($51.3 \mathrm{mg}, 0.2$ mmol) in $\mathrm{AcOH}(2.0 \mathrm{~mL})$ was added. The mixture was stirred at $120{ }^{\circ} \mathrm{C}$ for 7.5 h . Upon completion, the reaction mixture was poured into water (50 mL) and extracted with dichloromethane ($3 \times 10 \mathrm{~mL}$). The combined organic phase was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated in vacuum to give the crude product which was purified by column chromatography on silica gel to give product $9 \mathrm{e}(30.3 \mathrm{mg}, 52 \%)$ as yellow solid. M.p. 155-157 ${ }^{\circ} \mathrm{C} ; \operatorname{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 3454,2929,1727,1626,1423,1365,1274,1101,1038,756 ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.88(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.60-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.37(\mathrm{~m}, 1 \mathrm{H}), 7.21-7.15$ (m, 2H), $7.11(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.89(\mathrm{~s}, 2 \mathrm{H}), 4.31-4.25(\mathrm{~m}, 1 \mathrm{H})$, 4.14-4.10 (m, 1H), 3.14-3.08 (m, 1H), $2.96(\mathrm{dt}, J=16.7,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 125 \mathrm{MHz}$): 150.7, 147.9, 140.9, 138.0, 136.4, 132.1, 129.9, 129.2, 128.8, 127.5, 126.9, 126.1, 124.9, 124.5, 81.6, 60.6, 28.5, 26.2; El-MS m/z (\%): 291 (30) [M ${ }^{+}$], 263 (27), 147 (100), 129 (20); HRMS (EI) m/z calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}[\mathrm{M}]^{+}$291.1372, found 291.1370.

2-(1-Methylisochroman-1-yl)benzo[d]thiazole (9f):
Following the above procedure as for $\mathbf{5 e}$, the reaction mixture of (E) -N -(tert-butyl)-1-methylisochroman-1-carbimidoyl cyanide $\mathbf{4 I}(51.3 \mathrm{mg}, 0.2 \mathrm{mmol}$), 2-aminobenzenethiol (30.0 $\mathrm{mg}, 0.24 \mathrm{mmol}$), and $\mathrm{NaOAc}(19.7 \mathrm{mg}, 0.24 \mathrm{mmol})$ in $\mathrm{AcOH}(2.0 \mathrm{~mL})$ was stirred at $120^{\circ} \mathrm{C}$ for 3 h to afford product $9 \mathrm{f}(22.9 \mathrm{mg}, 41 \%)$ as white solid. M.p. $96-98{ }^{\circ} \mathrm{C}$; $\mathrm{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 2978$, 2919, 1935, 1735, 1513, 1481, 1440, 1365, 1274, 1202, 1110, 1012, 762, 723; ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}, $500 \mathrm{MHz}): \delta 8.03(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{t}$, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.23-7.19(\mathrm{~m}, 2 \mathrm{H}), 7.13(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.13(\mathrm{t}, J=$ $5.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.96(\mathrm{t}, \mathrm{J}=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): 178.3,153.4$,
$138.1,135.5,132.9,128.7,127.6,127.1,126.3,125.7,124.8,123.3,121.5,78.9,61.3,29.6$, 29.1; LC-MS (ESI) m/z $282[\mathrm{M}+\mathrm{H}]^{+}$; HRMS (ESI) m/z calcd for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{ONS}[\mathrm{M}+\mathrm{H}]^{+}$282.0947, found 282.0946.

2-(1-Methylisochroman-1-yl)benzo[d]oxazole (9g):
Following the above procedure as for $\mathbf{5 e}$, the reaction mixture of (E) - N-(tert-butyl)-1-methyl-isochroman-1-carbimidoyl cyanide $41(51.3 \mathrm{mg}, 0.2 \mathrm{mmol})$, 2-aminophenol ($26.2 \mathrm{mg}, 0.24$ mmol), and $\mathrm{NaOAc}(19.7 \mathrm{mg}, 0.24 \mathrm{mmol})$ in $\mathrm{AcOH}(4.0 \mathrm{~mL})$ was stirred at $120^{\circ} \mathrm{C}$ for 4 h to afford product $9 \mathrm{~g}(29.4 \mathrm{mg}, 55 \%)$ as pale yellow oil. IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 2987,2934,1738,1556$, $1451,1370,1282,1242,1104,936,841,744 ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.75-7.74(\mathrm{~m}, 1 \mathrm{H})$, 7.52-7.50 (m, 1H), 7.33-7.30 (m, 3H), 7.25-7.19 (m, 3H), 4.18-4.15 (m, 2H), 3.10-3.08 (m, 1H), 2.88-2.84 (m, 1H), $2.07(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): 168.0,150.9,140.7,136.8,133.4$, 129.1, 127.4, 126.8, 126.4, 125.2, 124.3, 120.4, 110.9, 75.3, 61.8, 28.8, 28.4; LC-MS (ESI) $\mathrm{m} / \mathrm{z} 266[\mathrm{M}+\mathrm{H}]^{+} ;$HRMS (ESI) m/z calcd for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{O}_{2} \mathrm{~N}[\mathrm{M}+\mathrm{H}]^{+}$266.1176, found 266.1174.

N, N 'di-tert-butylisochroman-1,1-dicarboxamide (9h):

To a sealed tube containing $\operatorname{Pd}(\mathrm{OAc})_{2}(2.3 \mathrm{mg}, 0.01 \mathrm{mmol}), \mathrm{Cu}(\mathrm{TFA})_{2}(202.7 \mathrm{mg}, 0.7 \mathrm{mmol})$ and ($1 E, 1 E$)-N,N'-di-tert-butyl- isochroman-1,1-bis(carbimidoyl) cyanide 2a ($84.1 \mathrm{mg}, 0.24$ mmol), 2-phenylpyridine ($31.0 \mathrm{mg}, 0.2 \mathrm{mmol}$) in THF (2.0 mL) was added. The mixture was stirred at $120{ }^{\circ} \mathrm{C}$ for 24 h . Upon completion, the reaction mixture was cooled down to room temperature and was purified by column chromatography on silica gel to give product 9 h (67.1 $\mathrm{mg}, 84 \%$) as white solid, together with $5 \mathbf{i}(26.3 \mathrm{mg}, 73 \%)$ as pale yellow solid. M.p. $139-141^{\circ} \mathrm{C}$; IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3352, 2971, 1693, 1517, 1452, 1362, 1223, 1116, 1036, 746, 646; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.90-7.88(\mathrm{~m}, 1 \mathrm{H}), 7.23-7.21(\mathrm{~m}, 2 \mathrm{H}), 7.09-7.08(\mathrm{~m}, 1 \mathrm{H}), 7.05(\mathrm{~s}, 2 \mathrm{H})$, $4.24(\mathrm{t}, J=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.87(\mathrm{t}, J=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.31(\mathrm{~s}, 18 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}^{2}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$: $168.5,133.0,131.3,128.6,127.6,127.5,126.3,81.4,63.2,51.2,28.6,28.5$; LC-MS (DART) $\mathrm{m} / \mathrm{z} 333\left[\mathrm{M}+\mathrm{H}^{+}\right.$; HRMS (DART) m/z calcd for $\mathrm{C}_{19} \mathrm{H}_{29} \mathrm{O}_{3} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+}$333.2173, found 333.2171.

2-(Pyridin-2-yl)benzonitrile (9i) (Xu et al., 2012):
To a sealed tube containing $\operatorname{Pd}(\mathrm{OAc})_{2}(2.3 \mathrm{mg}, 0.01 \mathrm{mmol}), \mathrm{Cu}(\mathrm{TFA})_{2}(115.8 \mathrm{mg}, 0.4 \mathrm{mmol})$ and (E) - N-(tert-butyl)-1-methyl- isochroman-1-carbimidoyl cyanide 41 ($61.5 \mathrm{mg}, 0.24 \mathrm{mmol}$), 2-phenylpyridine ($31.1 \mathrm{mg}, 0.2 \mathrm{mmol}$) in THF (1.0 mL) was added. The mixture was stirred at
$120{ }^{\circ} \mathrm{C}$ for 23 h . Upon completion, the reaction mixture was cooled down to room temperature and was purified by column chromatography on silica gel to give product $9 \mathrm{i}(27.1 \mathrm{mg}, 75 \%)$ as pale yellow solid, together with $5 \mathrm{a}(33.2 \mathrm{mg}, 56 \%)$ as white solid. M.p. $42-43^{\circ} \mathrm{C}$; $\mathrm{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right)$: 3062, 2923, 2856, 2224, 1956, 1579, 1460, 1432, 1300, 1155, 1100, 760; ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 500$ $\mathrm{MHz}): \delta 8.75(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.82-7.74(\mathrm{~m}, 4 \mathrm{H}), 7.66(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{t}, J=7.5 \mathrm{~Hz}$, 1H), 7.33-7.31 (m, 1H); ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): 155.2,149.9,143.4,136.8,134.1,132.8$, 129.9, 128.7, 123.3, 123.2, 118.7, 111.0; LC-MS (ESI) m/z $181[\mathrm{M}+\mathrm{H}]^{+}$.

2-(Pyrimidin-2-yl)benzonitrile (9j) (Xu et al., 2012):
Following the above procedure as for $5 \mathbf{i}$ and $\mathbf{5 h}$, the reaction mixture of $\mathrm{Pd}(\mathrm{OAc})_{2}(2.3 \mathrm{mg}$, $0.01 \mathrm{mmol}), \mathrm{Cu}(\mathrm{TFA})_{2}(202.7 \mathrm{mg}, 0.7 \mathrm{mmol}),(1 E, 1 E)-N, N^{\prime}$-di-tert-butylisochroman-1,1-bis(carbimidoyl) cyanide $\mathbf{2 a}(84.1 \mathrm{mg}, 0.24 \mathrm{mmol})$ and 2-phenyl-pyrimidine ($31.2 \mathrm{mg}, 0.2 \mathrm{mmol}$) in THF (2.0 mL) was stirred at $120^{\circ} \mathrm{C}$ for 22 h to afford product $9 \mathrm{j}(26.7 \mathrm{mg}, 67 \%)$ as white solid, together with $9 \mathrm{~h}(75.4 \mathrm{mg}, 94 \%)$ as white solid. M.p. $140-141^{\circ} \mathrm{C}$; $\mathrm{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right)$: 3422, 3039, 2922, 2220, 1644, 1555, 1412, 1365, 757; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 8.91(\mathrm{~d}, J=4.5 \mathrm{~Hz}$, $2 \mathrm{H}), 8.35$ (dd, $J=8.0,0.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{dd}, J=7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{td}, J=7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.56(\mathrm{td}, J=8.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{t}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): 162.8$, 157.3, 140.3, 135.0, 132.5, 130.4, 130.2, 120.1, 118.9, 111.8; El-MS m/z (\%): 181 (100) [M] ${ }^{+}$, 128 (96).

1-(Pyrimidin-2-yl)-1H-indole-2-carbonitrile (9k) (Xu et al., 2012):
Following the above procedure as for $5 \mathbf{i}$ and 5 h , the reaction mixture of $\mathrm{Pd}(\mathrm{OAc})_{2}(2.3 \mathrm{mg}$, $0.01 \mathrm{mmol}), \mathrm{Cu}(\mathrm{TFA})_{2}(202.7 \mathrm{mg}, 0.7 \mathrm{mmol}),(1 E, 1 E)-N, N^{\prime}$-di-tert-butylisochroman-1,1-bis(carbimidoyl) cyanide 2a ($84.1 \mathrm{mg}, 0.24 \mathrm{mmol}$) and 1-(pyrimidin-2-yl)-1 H-indole ($39.0 \mathrm{mg}, 0.2$ $\mathrm{mmol})$ in THF (2.0 mL) was stirred at $120^{\circ} \mathrm{C}$ for 23 h to afford product $9 \mathbf{k}(22.1 \mathrm{mg}, 50 \%)$ as white solid, together with $9 \mathrm{~h}\left(66.4 \mathrm{mg}, 83 \%\right.$) as white solid. M.p. $124-125{ }^{\circ} \mathrm{C}$; $\mathrm{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right)$: $3436,3104,3036,2360,1571,1439,1338,1254,813,735 ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 8.83$ (d, $J=4.5 \mathrm{~Hz}, 2 \mathrm{H}), 8.69(\mathrm{dd}, J=8.5,0.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.52-7.48(\mathrm{~m}, 1 \mathrm{H})$, $7.47(\mathrm{~d}, J=0.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-7.31(\mathrm{~m}, 1 \mathrm{H}), 7.23(\mathrm{t}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125\right.$ $\mathrm{MHz}): 158.3,156.5,136.6,127.7,127.5,123.5,122.0,120.9,117.9,116.1,114.2,108.9$; EI-MS m/z (\%): 220 (100) [M] ${ }^{+}$.

Application for the Synthesis of Pyrene-based Materials, Related to Figure 7.

4,9-Ditosyl-4,5,9,10-tetrahydropyrido[2,3,4,5-Imn]phenanthridine (10)
To a mixture of $\mathrm{LiAlH}_{4}(760 \mathrm{mg}, 20 \mathrm{mmol})$ and anhydrous 1,4 -dioxane (20 mL) was added pyrido[2,3,4,5-imn] phenanthridine-5,10(4H,9H)-dione 10' ($472 \mathrm{mg}, 2 \mathrm{mmol}$) (Gawlak adn Robbins, 1964) at $0{ }^{\circ} \mathrm{C}$ under a nitrogen atmosphere. The mixture was stirred at $110^{\circ} \mathrm{C}$ for 24 h. The reaction was quenched with saturated $\mathrm{Na}_{2} \mathrm{SO}_{4}$ solution after cooling to room temperature. The mixture was filtered and the residue was washed with dichloromethane ($5 \times$ 5 mL). Evaporation of the solvent gave the product $\mathbf{1 0 "}$ ($344.9 \mathrm{mg}, 83 \%$) as a yellow solid, which was directly used for the next step without further purification. To a mixture of TsCl (912 $\mathrm{mg}, 4.8 \mathrm{mmol}$) and pyridine (8 mL) was added 10 " at $0^{\circ} \mathrm{C}$ under a nitrogen atmosphere. After stirred for 5 min , the reaction was transferred to a refrigerator at $-20^{\circ} \mathrm{C}$ overnight. Pyridine was removed on rotary evaporator, and the residue was dissolved in dichloromethane (15 mL), washed with $2 \mathrm{M} \mathrm{HCl}(15 \mathrm{~mL})$. The aqueous phase was extracted by dichloromethane (3×15 $\mathrm{mL})$. The combined organic phase was washed with saturated $\mathrm{Na}_{2} \mathrm{CO}_{3}(15 \mathrm{~mL})$ solution and brine (15 mL) and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed on a rotary evaporator and the residue was recrystallized by dichloromethane/Hexane (below $5^{\circ} \mathrm{C}$) to give the product 10 ($527.3 \mathrm{mg}, 64 \%$) as a white solid. M.p. $213-215^{\circ} \mathrm{C}$; $\mathrm{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right)$: 2922, 1914, 1599, 1447, 1344, 1294, 1161; ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$): $\delta 7.48$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), $7.34(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, 4H), 7.19 (t, J = $7.5 \mathrm{~Hz}, 2 \mathrm{H}$), 7.02 (d, $J=8.0 \mathrm{~Hz}, 4 \mathrm{H}$), 6.92 (d, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$), 4.74 (s, 4H), 2.30 (s, 6 H); ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 125 \mathrm{MHz}$): $\delta 144.23,136.06,134.28,130.05,129.46,128.54$, 127.00, 124.01, 122.85, 122.22, 48.89, 21.58; ESI-MS m/z: $534.2\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$; HRMS (DART Positive) m / z calcd for $\mathrm{C}_{28} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+} 517.1250$, found 517.1250 .

(5Z,10Z)- N^{5}, N^{10}-di-tert-butylpyrido[2,3,4,5-Imn]phenanthridine-5,10-bis(carbimidoyl cyanide) (11)
To a mixture of $10(51.7 \mathrm{mg}, 0.1 \mathrm{mmol})$, DDQ ($113.0 \mathrm{mg}, 0.5 \mathrm{mmol}$), AgOTf ($3.9 \mathrm{mg}, 30 \mathrm{~mol} \%$,) and $\mathrm{PhCl}(1.5 \mathrm{~mL})$ was added ${ }^{t} \mathrm{BuNC}(90 \mathrm{uL}, 0.8 \mathrm{mmol})$. The mixture was sealed and stirred at $80^{\circ} \mathrm{C}$ under nitrogen atmosphere; the reaction was cooled to room temperature and the solvent was removed under reduced pressure. The residue was purified by column chromatography on basic $\mathrm{Al}_{2} \mathrm{O}_{3}$ (petroleum ether/dichloromethane $=2: 1$) to give the product 11 as a yellow solid ($11.9 \mathrm{mg}, 28 \%$). M.p. $>300^{\circ} \mathrm{C}$; $\mathrm{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 2965.2,2926.1,2858.9$, 2235.6, 1831.8, 1696.4, 1636.5, 1463.9; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 9.64(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $8.85(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 8.34(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.76(\mathrm{~s}, 18 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right): \delta$ 151.78, 140.48, 139.65, 131.76, 129.81, 128.14, 122.33, 122.11, 112.08, 60.28, 29.43; ESI-MS m/z: $421.2[M+H]^{+}$; HRMS (ESI) m/z calcd for $\mathrm{C}_{26} \mathrm{H}_{25} \mathrm{~N}_{6}[\mathrm{M}+\mathrm{H}]^{+} 421.2135$, found 421.2132.

Figure S1. UV-Vis absorption of compound 11 (red curve) and 4,9-diazapyrene (Black curve). $\mathrm{c}=5 \times 10^{-5} \mathrm{M}$ in THF. Related to Figure 7.

Figure S2. Emission spectrum of 4,9-diazapyrene. $\mathrm{c}=2 \times 10^{-5} \mathrm{M}$ in THF, excited at 330 nm . Related to Figure 7.

Figure S3. Emission spectra of 4,9-diazapyrene (blue curve) and compound 11 (red curve) in the solid state. Related to Figure 7.

Figure S4. Aggregation-induced Emssion (AIE) of Compound 11. (A) PL spectra of 11 in THF/water mixtures with different fractions of water $\left(f_{w}\right)$. Observation of the aggregation-induced emission (AIE): Stock solutions of $\mathbf{1 1}$ with a concentration of $200 \mu \mathrm{M}$ in THF were first prepared; 1 mL aliquots of the stock solutions were transferred into 10 mL volumetric flasks; Appropriate amounts of THF were then added, after which water was added dropwise under vigorous stirring to furnish $20 \mu \mathrm{M}$ solutions with defined fractions of water (0% to 90%). (B) Photographs taken under illumination of a UV lamp (365 nm). Related to Figure 7.

X-ray Crystallographic Analysis for 2a, 4h, 6a and 8b

Figure S5. Crystallographic data for 2a. 25% probability ellipsoids. $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}, \mathrm{M}=350.46$, Monoclinic, $P 21 / c$ (No. 14), $a=13.460$ (11) $\AA, b=9.739$ (8) $\AA, c=16.398$ (13) $\AA, \beta=100.331$ $(10)^{\circ}, V=2115$ (3) $\AA^{3}, Z=4$, Crystal size: $0.24 \times 0.22 \times 0.18 \mathrm{~mm}, \mathrm{~T}=293 \mathrm{~K}, \mathrm{R}_{1}=0.0713$ $(\mathrm{I}>4 \sigma(\mathrm{I})), \mathrm{wR}_{2}=0.2813$ (all data), $\mathrm{GOF}=1.048$, reflections collected/unique: $11496 / 4758$ (Rint $=0.0660$), Data: 2565, restraints: 0, parameters: 236. CCDC 1533930 contains the supplemental crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif. Related to Table 1.

4h

X-ray structure of $\mathbf{4 h}$

Figure S6. Crystallographic data for $\mathbf{4 h}$. 25% probability ellipsoids; $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{BrN}_{2} \mathrm{OS}, \mathrm{M}=417.36$, monoclinic, P21/c (No.14), $a=9.581$ (5) $\AA, b=13.015$ (6) \AA, $c=16.536$ (8) $\AA \AA, \beta=106.114$ (6) ${ }^{\circ}$, $V=1981(2) \AA^{3}, Z=4$, Crystal size: $0.26 \times 0.18 \times 0.14 \mathrm{~mm}, \mathrm{~T}=293 \mathrm{~K}, \mathrm{R}_{1}=0.0351(\mathrm{I}>4 \sigma(\mathrm{I}))$, $\mathrm{wR}_{2}=0.0905$ (all data), $\mathrm{GOF}=1.055$, reflections collected/unique: $9979 / 3503$ (Rint $=0.0246$), Data: 2600, restraints: 0, parameters: 254. CCDC 1534967 contains the supplemental crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif. Related to
Figure 3.

Figure S7. Crystallographic data for 6a. 25% probability ellipsoids; Chemical Formula: $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}, \mathrm{M}=420.52$, monoclinic, $\mathrm{P} 21 / \mathrm{n}, \mathrm{a}=9.745$ (8) $\AA, \mathrm{b}=11.135$ (9) $\AA, \mathrm{c}=20.716$ (16) $\AA, \beta=93.037(11)^{\circ}, V=2245(3) \AA^{3}, Z=4$, Crystal size: $0.24 \times 0.15 \times 0.12 \mathrm{~mm}, T=293 \mathrm{~K}, \mathrm{R}_{1}$ $=0.0541(\mathrm{l}>4 \sigma(\mathrm{I})), w R_{2}=0.1748$ (all data), GOF $=1.050$, reflections collected/unique: 9937/3942 (Rint = 0.0700), Data: 2417, restraints: 0, parameters: 271. CCDC 1829908 contains the supplemental crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif. Related to Figure 4.

8b

X-ray structure of 8b

Figure S8. Crystallographic data for $\mathbf{8 b}$. 25% probability ellipsoids; Chemical Formula: $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{~N}_{3}, \mathrm{M}=301.38$, triclinic, $\mathrm{P}-1, a=7.219$ (9) \AA, $b=9.096$ (11) $\AA, c=13.168$ (16) $\AA, a=$ $79.250(14)^{\circ}, \beta=83.431(14)^{\circ}, \gamma=89.505(15)^{\circ}, V=844(2) \AA^{3}, Z=2$, Crystal size: 0.21×0.18 $\times 0.14 \mathrm{~mm}, \mathrm{~T}=293 \mathrm{~K}, \mathrm{R}_{1}=0.0531$ ($\mathrm{I}>4 \sigma(\mathrm{I})$), wR $\mathrm{R}_{2}=0.1663$ (all data), $\mathrm{GOF}=1.058$, reflections collected/unique: 5215/3694 (Rint = 0.0238), Data: 2421, restraints: 0, parameters: 209. CCDC 1829633 contains the supplemental crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif. Related to Figure 5.

Mechanistic Studies, Related to Figure 8 and Figure 9.

(A) Control Experiments, Related to Figure 8.

To a sealed tube were added 1a ($40.2 \mathrm{mg}, 0.3 \mathrm{mmol}$), ${ }^{\text {t }}$ BuNC ($170 \mu \mathrm{~L}, 1.5 \mathrm{mmol}$), AgOTf (7.8 $\mathrm{mg}, 0.03 \mathrm{mmol})$, o-chloranil ($147.5 \mathrm{mg}, 0.6 \mathrm{mmol}$) in dry $\mathrm{PhCl}(3.0 \mathrm{~mL})$ in the glove box. The mixture was stirred at $100^{\circ} \mathrm{C}$ under N_{2} for 24 h . Upon completation, the reaction mixture was cooled down to room temperature and purified by silica gel plate to give product $\mathbf{2 a}$ as white solid ($6.8 \mathrm{mg}, 6 \%$).

To a test tube were added $\mathbf{3 a}$ ($63.1 \mathrm{mg}, 0.3 \mathrm{mmol}$), ${ }^{t}$ BuNC ($170 \mu \mathrm{~L}, 1.5 \mathrm{mmol}$), AgOTf (7.8 mg , 0.03 mmol), o-chloranil ($147.5 \mathrm{mg}, 0.6 \mathrm{mmol}$) in dry $\mathrm{PhCl}(3.0 \mathrm{~mL})$ in the glove box. The mixture was stirred at $80^{\circ} \mathrm{C}$ under N_{2} for 24 h . Upon completation, the reaction mixture was cooled down to room temperature and purified by column chromatography on silica gel to give product $\mathbf{4 a}$ as white solid ($22.9 \mathrm{mg}, 24 \%$).

To a test tube were added $\mathbf{3 1}(44.4 \mathrm{mg}, 0.3 \mathrm{mmol})$, ${ }^{\mathrm{t}}$ BuNC ($\left.170 \mu \mathrm{~L}, 1.5 \mathrm{mmol}\right)$, $\mathrm{AgOTf}(7.8 \mathrm{mg}$, $0.03 \mathrm{mmol})$, o-chloranil ($147.5 \mathrm{mg}, 0.6 \mathrm{mmol}$) in dry $\mathrm{PhCl}(3.0 \mathrm{~mL})$ in the glove box. The mixture was stirred at $80^{\circ} \mathrm{C}$ under N_{2} for 24 h . Upon completation, the reaction mixture was cooled down to room temperature and was purified by column chromatography on silica gel to give product 4 I as pale yellow oil ($26.5 \mathrm{mg}, 34 \%$).

To a sealed tube were added $\mathbf{3 j}$ ($77.5 \mathrm{mg}, 0.3 \mathrm{mmol}$), ${ }^{\text {t }}$ BuNC ($170 \mu \mathrm{~L}, 1.5 \mathrm{mmol}$), AgOTf (7.8 $\mathrm{mg}, 0.03 \mathrm{mmol})$, p-chloranil ($147.5 \mathrm{mg}, 0.6 \mathrm{mmol}$) in dry $\mathrm{PhCl}(3.0 \mathrm{~mL})$ in the glove box. The mixture was stirred at $100^{\circ} \mathrm{C}$ under N_{2} for 24 h . Upon completation, the reaction mixture was cooled down to room temperature and purified by column chromatography on silica gel to give product 4 j as pale yellow solid ($78.3 \mathrm{mg}, 71 \%$).

To a test tube were added $\mathbf{3 a}(63.1 \mathrm{mg}, 0.3 \mathrm{mmol})$, ${ }^{\mathrm{H}} \mathrm{BuNC}(169 \mu \mathrm{~L}, 1.5 \mathrm{mmol})$, $\mathrm{AgOTf}(7.8 \mathrm{mg}$, $0.03 \mathrm{mmol})$, DDQ ($139.0 \mathrm{mg}, 0.6 \mathrm{mmol}$), and TEMPO ($93.8 \mathrm{mg}, 0.6 \mathrm{mmol}$) in dry $\mathrm{PhCl}(3.0 \mathrm{~mL})$ in the glove box. The mixture was stirred at $100^{\circ} \mathrm{C}$ under N_{2} for 19 h . Upon completion, the reaction mixture was cooled down to room temperature and was purified by column chromatography on silica gel to give product $\mathbf{4 a}$ as pale yellow oil ($63.3 \mathrm{mg}, 66 \%$). In the absence of the radical scavenger TEMPO, the yield was 68%. These results indicate that the radical pathway can probably been ruled out.

To a test tube were added $3 \mathbf{j}(77.4 \mathrm{mg}, 0.3 \mathrm{mmol})$, ${ }^{\mathrm{E}} \mathrm{BuNC}(169 \mu \mathrm{~L}, 1.5 \mathrm{mmol})$, $\mathrm{AgOTf}(7.9 \mathrm{mg}$, $0.03 \mathrm{mmol})$, DDQ ($139.0 \mathrm{mg}, 0.6 \mathrm{mmol}$), and TEMPO ($93.8 \mathrm{mg}, 0.6 \mathrm{mmol}$) in dry $\mathrm{PhCl}(3.0 \mathrm{~mL})$ in the glove box. The mixture was stirred at $100^{\circ} \mathrm{C}$ under N_{2} for 24 h . Upon completion, the reaction mixture was cooled down to room temperature and was purified by column chromatography on silica gel to give product 4 j as pale yellow oil ($82.0 \mathrm{mg}, \sim 100 \%$). In the absence of the radical scavenger TEMPO, the yield was 98%. These results again indicate that the radical pathway can probably been ruled out.

(E)-N-(tert-Butyl)-1-cyanoisochroman-1-carbimidoyl cyanide (2a'):

To a sealed tube was added $\mathbf{1 a}(40.2 \mathrm{mg}, 0.3 \mathrm{mmol})$, ${ }^{\text {B }}$ BuNC (3.0 equiv), AgOTf ($7.8 \mathrm{mg}, 0.03$ $\mathrm{mmol})$, $\mathrm{DDQ}(139.0 \mathrm{mg}, 0.6 \mathrm{mmol})$ in dry $\mathrm{PhCl}(3.0 \mathrm{~mL})$ in the glove box. The mixture was stirred at $80^{\circ} \mathrm{C}$ under N_{2} for 3 h . Upon completation, the reaction mixture was cooled down to room temperature and purified by silica gel plate to give products $\mathbf{2 a}$ ($36.8 \mathrm{mg}, \mathbf{3 5 \%}$), 2a' (12.8 $\mathrm{mg}, 16 \%$) and $\mathbf{6 a}$ ($13.4 \mathrm{mg}, 28 \%$), respectively. colorless oil; IR (KBr, cm ${ }^{-1}$): 2978, 2220, 1647, 1453, 1367, 1285, 1195, 1101, 1061, 762, 746; $\left.{ }^{1} \mathrm{H} \mathrm{NMR} \mathrm{(CDCl} 3,500 \mathrm{MHz}\right): ~ \delta 7.37$ (td, $J=7.5$, $1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.18-7.17(\mathrm{~m}, 1 \mathrm{H}), 4.43-4.39(\mathrm{~m}$, $1 \mathrm{H}), 4.13$ (td, $J=11.8,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.32-3.25(\mathrm{~m}, 1 \mathrm{H}), 2.75(\mathrm{dd}, J=16.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.48(\mathrm{~s}$, $9 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 125 \mathrm{MHz}$): 136.3, 134.3, 130.0, 129.9, 127.8, 127.7, 126.1, 116.3, 109.4, 80.2, 63.4, 59.7, 29.0, 27.3; LC-MS (ESI) m/z $268[M+H]^{+}$; HRMS (EI) m/z calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{ON}_{3}$ $[\mathrm{M}+\mathrm{H}]^{+} 268.1444$, found 268.1446.

Isochroman-1-carbonitrile (12) (Yan et al., 2014): white solid. M.p. $43-44{ }^{\circ} \mathrm{C}$; $\mathrm{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right)$: 3071, 3030, 2973, 2933, 2866, 2734, 2232, 2093, 1929, 1821, 1603, 1489, 1434, 1289, 1262, 1197, 1099, 992, 956, 892, 751; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.31-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.22-7.17(\mathrm{~m}$, $2 \mathrm{H}), 5.65(\mathrm{~s}, 1 \mathrm{H}), 4.19-4.10(\mathrm{~m}, 2 \mathrm{H}), 3.05-3.01(\mathrm{~m}, 1 \mathrm{H}), 2.77(\mathrm{dt}, J=17.0,3.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 125 \mathrm{MHz}$): 132.9, 129.4, 129.1, 128.7, 127.0, 125.4, 118.1, 65.3, 63.3, 27.2; El-MS m/z (\%): 159 (88) [M] ${ }^{+}$, 131 (42), 129 (100), 102 (35), 77 (23).

(B) Mass Spectrometry, Related to Figure 9.

Experimental conditions

Tandem Mass spectrometry instrument:

The electrospray ionization mass spectrometry (ESI-MS) and the subsequent tandem mass spectrometry (ESI-MS/MS) experiments were performed in Thermo TSQ Quantum Access ${ }^{\text {TM }}$ triple-quadrupole mass spectrometer (Thermo-Fisher Scientific, Waltham, MA, USA). The basic ESI-MS conditions were: spray voltage, 3000 V ; capillary temperature, $275{ }^{\circ} \mathrm{C}$; sheath gas pressure, 2 arb. units; aux gas pressure, 2 arb. units; the collision energy ranged from 5 to 30 eV depending on the dissociation capability of the precursor ions in MS/MS. Data acquisition and analysis were carried out with the Xcalibur software package (Version 2.0, Thermo Fisher Scientific).

General MS experimental conditions:

The concentration of the reaction solution was too high for direct ESI-MS analysis. Therefore, the concentrated reaction solutions in solvent $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were first filtered by $0.5 \mu \mathrm{~m}$ membrane and then were diluted 200 times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ before ESI-MS analysis. The diluted $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution was injected by a $500 \mu \mathrm{~L}$ air-tight syringe with speed of the diluted solution was set to $8 \mu \mathrm{~L} / \mathrm{min}$ to ESI-MS. We carefully monitored the diluted reaction solution by ESI-MS and found some signals of the reactive intermediates. The electrospray ionization tandem mass spectrometry (ESI-MS/MS) method was performed to assign the possible structures of the reactive intermediates observed by ESI-MS.

Mass spectrometric experiment results

The Reaction Solution 1 was prepared by mixing 1a ($39.0 \mu \mathrm{~L}, 0.3 \mathrm{mmol}$), ${ }^{t} \mathrm{BuNC}(170.0 \mu \mathrm{~L}$, 1.5 mmol), AgOTf ($7.8 \mathrm{mg}, 0.03 \mathrm{mmol}$), DDQ ($139.0 \mathrm{mg}, 0.6 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3.0 mL). In order to get better and stable signal in ESI-MS analysis, the solvent PhCl at $80^{\circ} \mathrm{C}$ (Eq. 1 in Scheme S1) was displaced by $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (Eq. 2 in Scheme S1) at room temperature. The synthetic experiments showed that the reaction could also work at such condition. The mixture was stirred at room temperature and ready for measurement in different reaction time.

Scheme S1. The typical reaction condition and the reaction condition for ESI-MS studying by using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as solvent. Related to Figure 9

The corresponding signal of some important ionic reactive species in the early stage of the reaction, such as \mathbf{B} at $m / z 133$, \mathbf{D} at $m / z 299,[\mathbf{E}+\mathrm{H}]^{+}$at $m / z 243$ were observed in the positive ion ESI-MS spectrum of Reaction Solution 1 (Figure S1a). The possible structures of these intermediates were supposed in Scheme S2 and the ESI-MS/MS experiments for these species were performed and shown in Figure S2. Their proposed dissociation pathways supported their proposed structures (Scheme S3).

Scheme S2. The possible process of the cascade insertion reaction. Related to Figure 9.

Scheme S3. The proposed fragmentation patterns of the important ionic reactive intermediate \mathbf{D} at $m / z 299$, which could give rise to $[\mathbf{E}+\mathrm{H}]^{+}$at $m / z 243$ by loss of isobutene. These results supported such structure assignments. Related to Figure 9.

Figure S9. (a) The ESI-MS spectrum in positive ion mode of the diluted Reaction Solution 1 at reaction time of 30 min ; (b) the expanded ESI-MS spectrum in positive ion mode of Reaction Solution 1 at reaction time of 30 min . Related to Figure 9.

Figure S10. The ESI-MS/MS spectra in positive ion mode of ionic species from Reaction Solution 1: (a) at m / z 133; (b) at $m / z 299$; (c) at $m / z 243$. Related to Figure 9.

The corresponding signal of some important ionic reactive species in the early stage of the reaction, such as \mathbf{G} at $m / z 324,\left[\mathbf{2 a}{ }^{\prime}+H\right]^{+}$at $m / z 268$, and \mathbf{H} at $m / z 407$ were observed in the positive ion ESI-MS spectrum of Reaction Solution 1 (Figure S 1). The possible structures of these intermediates were supposed in Scheme S2 and the ESI-MS/MS experiments for these species were performed and shown in Figure S3. Their proposed dissociation pathways supported their proposed structures (Scheme S4).

Figure S11. The ESI-MS/MS spectra in positive ion mode of ionic species from Reaction Solution 1: (a) at $m / z 324$; (b) at $m / z 268$; (c) at $m / z 407$. Related to Figure 9.

Scheme S4. The proposed fragmentation patterns of the important ionic reactive intermediate \mathbf{H} at $\mathrm{m} / \mathrm{z} 407$, which could give rise to signal of the product $[\mathbf{2 a}+\mathrm{H}]^{+}$at $\mathrm{m} / \mathrm{z} 351$ by loss of isobutene. These results supported such structure assignments. Related to Figure 9.

The corresponding signal of some negative ionic species in the reaction, such as $\mathrm{CF}_{3} \mathrm{SO}_{3}{ }^{-}$at $\mathrm{m} / \mathrm{z} 149$, negative radical anion of DDQH^{-}at $\mathrm{m} / \mathrm{z} 226$ were observed in the negative ion ESI-MS spectrum of Reaction Solution 1 (Figure S4a). The ESI-MS/MS experiments of the negative radical anion of DDQH^{-}at $m / z 226$ was performed and shown in Figure S4b, which is proposed structure (Figure S4b).

Figure S12. (a) The ESI-MS spectrum in negative ion mode of the diluted Reaction Solution 1; (b) the ESI-MS/MS spectrum of the negative ion at m / z 226. Related to Figure 9.

Supplemental Figures: ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR Spectra

Figure S13. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{1 c}$. Related to Figure $\mathbf{2}$.

Figure S14. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 1 g . Related to Figure 2.
|
1h ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

CHW-YL-1
PROTON CDC13

NAME	YI. -3
EXPNO	4
PROCNO	- 1
Date_	20160708
Time	11.05
INSTRUM	M spect
PROBHD) 5 mm PATXO 191
PULPROG	G zg 30
TD	65536
SOLVENT	NT CDCl3
NS	16
DS	2
SWH	10330.578 Hz
FIDRES	0.157632 Hz
AQ	3.1720407 sec
RG	203.2
DW	48.400 usec
DE	6.00 usec
TE	295.5 K
D1 I	1.000000000 sec
TD0	1
= =a=me=e	$=$ CHANNEI, $\mathrm{fl}=$
NUCl	1 H
P1	14.24 uscc
PL1	1.00 dB
SFO1	500.1330885 MHz
SI	32768
SF 50	500.1300128 MHz
WDW	no
SSB	0
LB	0.00 Hz
(iB	0
PC	1.00

$\begin{aligned} & \text { CFW-YL- } 3 \\ & \text { C13CZD CDC13 } \end{aligned}$	
NAME	YIL-3
EXPNO	
PROCNO	O 1
Datc-	20160709
Time	13.32
ISSTRUM	M spect
PROBHD	D 5 mmP PAIXO 19F
PLLPROG	G ${ }_{6559 p g} 30$
TD Solvent	65536
SOLVENT	NT CDCl
	1024
DS	4
SWH	30030.029 Hz
FIDRES	0.458222 Ilz
${ }^{\text {AO }}$	1.0912410 sec
${ }^{\text {RG }}$	203.2
DW	16.650 usec
DF	6.00 usec
TE	297.2 K
DI 2.	2.00000000 sce
d11 0	0.03000000 sse
DELIA	1.89999998 sec
TD0	1
CHANNEL	
NUC1	13 C
	9.50 usec
PLI	-0.50 dB
STOI	125.7703643 MIIz
CPDPRG2	G2 walu16
NUC2	1H
PCPD2	80.00 usce
12.	1.00 dB
PL12	15.99 dB
PL13	16.50 dB
SHO2	500.1320005 MHz
St	32768
SF 12	125.7577890 MHz
WDW	EM
SSB	0
L.B	1.00 Hz
GB	0
PC	1.40

Figure S15. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{1 h}$. Related to Figure 2.

$1 \mathbf{i}{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

1i ${ }^{13}$ C NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$1 i$

CHW-YL-
PROTON CDCI3 EXPNO
PROCNO $\begin{array}{lr}\text { Date- } & 201607 \\ \text { Time } & 15.42\end{array}$

 SOLVENT ${ }^{65536}$ $\begin{array}{ll}\mathrm{NS} \\ \text { DS } & 8\end{array}$ $\begin{array}{lc}\text { DS } & 2 \\ \text { SWH } & 10330.578 \mathrm{~Hz}\end{array}$ $\begin{array}{lc}\text { FIDRES } & 0.157632 \mathrm{~Hz} \\ \text { AQ } & 3.1720407 \mathrm{sec} \\ \text { RG } & 64\end{array}$ $\begin{array}{lc}\text { RG } & 64 \\ \text { DW } & 48.400 \text { usec } \\ \text { DE } & 6.00 \text { usec } \\ \text { TE } & 296.5 \mathrm{~K} \\ \text { D1 } & 1.00000000 \mathrm{sec}\end{array}$

	$===$
NUC1	CHNNEI $\mathrm{fl}=$
NUC1	1 H
Pl	14.24 usec
PLI	1.00 dB
SFOI	500.1330885 MHz
S1	32768
SF	500.1300127 MHz
WDW	mo
SSB	0
LB	0.00 Hz
GB	0
PC	1.00

Figure S16. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{1 i}$. Related to Figure 2.

Figure S17. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{1 k}$. Related to Figure 2.

$11{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

88
80
i
$11{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

PROTON CDC13

NAMI:	Y1,-1m
EXPNO	18
PROCNO)
Date_	20161214
Time	15.51
INSTRUM	M spect
PROBHD	5 mm PATXO 19 H
PULPROG	G zg 30
	65536
SOLVENT	$\mathrm{T} \quad \mathrm{CDCl} 3$
NS	16
DS	2
SWH	10330.578 Hz
FIDRES	0.157632 Hz
AQ	3.1720407 sec
RG	90.5
DW	48.400 usec
DE	6.00 usec
TE	296.3 K
D1 1	1.000000000 sec
TD0	1
==men=e=	$=$ CHANNEI f
NUCl	1 H
P1	14.24 uscc
PL1	1.00 dB
SFOI	500.1330885 MHz
SI	32768
SF 50	500.1300125 MHz
WDW	no
SSB	0
LB	0.00 Hz
(iB	0
PC	1.00

Figure S18. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 11. Related to Figure 2.

Figure S19. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 1 m . Related to Figure 2.

Figure S20. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{1 n}$. Related to Figure 2.

$10{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

CFW-Y
PROTON CフC:3
NAME EXPNO $\begin{array}{lr}\text { PROCNO } & 1 \\ \text { Date_ } & 20160712\end{array}$ $\begin{array}{lr}\text { Time } \\ \text { INSTRUM } & 15.26 \\ \text { PSTM }\end{array}$ PROBIID 5 mmPATXO 19 F
PULPROG
PAT $\begin{array}{lr}\text { PULPROG } & \text { 78.30 } \\ \text { TD } & 65536\end{array}$
$\begin{array}{ll}\text { TD } & 6536 \\ \text { SOIVIENT } & \\ \text { CDCI } 3\end{array}$

$\begin{array}{lc}\text { NS } & 16 \\ \text { DS } & 2\end{array}$ | DS | ${ }^{2} 0.58 \mathrm{~Hz}$ |
| :--- | ---: |
| SWHRES | 10330.578 Hz |
| HIDR | 0.157632 Hz | AQ $\quad 3.1720407 \mathrm{sec}$ $\begin{array}{ll}\text { RG } & 203.2 \\ \text { DW } & 48.400 \text { usec } \\ \text { DE } & 6.00 \text { usec }\end{array}$ $\begin{array}{cc}\text { DE } & 6.00 \text { usec } \\ \text { TE } & 297.5 \mathrm{~K} \\ \text { D1 } & 1.00000000 \mathrm{scc}\end{array}$ $======$ CHANNIL $\mathrm{fI}=$

NUC=	CHANNSL $\mathrm{fl}==$
NUC1	1 H
P1	14.24 usec
PL1	1.00 dB
SHO1	500.1330885 MHz
S1	32768
SF	500.1300128 MHz
WDW	no
SSB	0
LB	0.00 Hz
GB	0
PC	1.00

CEW-YL-5 C13C?D CJC13

Figure S21. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 10. Related to Figure 2.

Figure S22. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 1p. Related to Figure 2.

$1 \mathbf{q}{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

1q ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

CHW-1
PROTON CDC13
NAME
EXPNO EXPNO
PROCNO Date_
Time
INSTRUM Time PROBHD 5 mm PATXO 191
PULPROG

$$
\begin{array}{ll}
\text { PULPROG } & 2 g 30 \\
\text { ID } & 65536
\end{array}
$$

$$
\begin{array}{ll}
\text { TD } & 65536 \\
\text { SOLVENI } & \text { CDC13 }
\end{array}
$$

$$
\begin{aligned}
& \text { SOLVENT } \\
& \text { NS } \\
& \text { DS }
\end{aligned}
$$

$$
\begin{aligned}
& \text { DS } \\
& \text { SWII }
\end{aligned}
$$

FIDRES

$$
\begin{array}{lc}
\mathrm{AQ} & 3.1720407 \mathrm{sec} \\
\mathrm{RG} & 161.3 \\
\mathrm{DW} & 48.400 \mathrm{uscc} \\
\mathrm{DE} & 6.00 \mathrm{uscc} \\
\mathrm{TE} & 294.7 \mathrm{~K}
\end{array}
$$

$$
\begin{array}{lr}
\text { DE } & 6.00 \text { usce } \\
\text { TE } & 294.7 \mathrm{~K} \\
\text { D1 } & 1.00000000
\end{array}
$$

$$
\begin{array}{lc}
\text { D1 } & 1.00000000 \mathrm{sec} \\
\text { TD0 } & 1
\end{array}
$$

	CHANNEL $\mathrm{fI}==$
NUCI	1 III
P1	14.24 usec
PLI	1.00 dB
SFO1	500.1330885 MHz
SI	32768
SF	500.1300126 MHz
WDW	0
SSB	0
LB	0.00 Hz
GB	0
PC	1.00

Figure S23. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 1q. Related to Figure 2.

$1 \mathbf{r}{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

1r ${ }^{13}$ C NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Figure S24. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{1 r}$. Related to Figure 2.
3c ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3c ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Figure S25. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{3 c}$. Related to Figure 3.

Figure S26. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{3 f}$. Related to Figure 3.

Figure S27. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{3 g}$. Related to Figure 3.

Figure S28. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 3 h . Related to Figure 3.

Figure S29. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 3j. Related to Figure 3.

Figure S30. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 2a. Related to Table 1.
-7.078
-6.696
$\underbrace{\text { 융응 }}$
2b ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

\qquad
$\begin{array}{lc}\text { SF } & 500.1300129 \mathrm{MHz} \\ \text { WDW } & \text { no } \\ \text { SSB } & 0 \\ \text { LB } & 0.00 \mathrm{~Hz} \\ \text { GB } & 0 \\ \text { PC } & 1.00\end{array}$

Figure S31. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{2 b}$. Related to Figure 2.

CWH-5-36-2
PROTON CDCl 3

Figure S32. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 2c. Related to Figure 2.

CHW-4-143-: ?ROTON CJCZ3	
NAME	4-145-1
EXPNO	3
PROCNO	O
Date_	20160511
Time	9.38
INSTRUM	M spect
PROBHD	D 5 mm PATXO 191
PULPROG	OG 2g30
	65536
SOLVENT	NT CDCl3
NS	8
DS	2
SWII	10330.578 Itz
FIDRES	0.157632 Hz
AQ	3.1720407 sec
RG	161.3
DW	48.400 usec
DE	6.00 usce
TE	295.3 K
D1 1.	1.00000000 sec
TD0	1
=a==e=	$=$ CHANNEL $\mathrm{fl}=$
NUC:	111
P1	14.14 usec
PL1	1.00 dB
SFOI	500.1330885 MHz
ST	32768
ST 50	500.1300127 MHz
WDW	no
SSB	0
LB	0.00 Hz
GB	0
PC	1.00

2d ${ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right)$

Figure S33. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 2d. Related to Figure 2.

Figure S34. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{2 e}$. Related to Figure 2.

夌

$\underbrace{\infty}$
$\stackrel{6}{6}$
$\mathbf{f ~}^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

CAW-4-120

NAME	4-120
EXPNO	11
PROCNO)
Date_	20160309
Time	16.25
INSTRUM	M spect
PROBHD	5 mmPATXO 191
PULPROG	G 2 g 30
	65536
SOLVENI	NT CDCl3
NS	16
DS	2
SWII	10330.578 IIz
FIDRES	0.157632 Hz
AQ	3.1720407 sec
RG	181
DW	48.400 usce
DE	6.00 usce
TE	294.6 K
DI 1	1.00000000 sec
TD0	1
NUCl	$==\underset{\text { CHNEL } \mathrm{III}}{\mathrm{Cl}}=$
PI	14.14 usec
PL1	1.00 dB
SFOI	$500,1330885 \mathrm{MHz}$
SI	32768
SF 50	500.1300130 MHz
WDW	no
SSB	0
LB	0.00 Hz
GB	0
PC	1.00

C13CコD CDC13

Figure S35. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{2 f}$. Related to Figure 2.

2g ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$2 g$

$\mathbf{2 g}{ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right)$

CHW-5-9
PROTON CXC 23
$\begin{array}{lr}\text { NAME } & 5-9 \\ \text { EXPNO } & 21 \\ \text { PROCNO } & 1 \\ \text { Date_- } & 20160509 \\ \text { Time } & 13.03\end{array}$
$\begin{array}{lr}\text { Dime } & 2016.03 \\ \text { Time }\end{array}$
INSTRUM $\begin{aligned} & \text { spcct } \\ & \text { PROBHD } \\ & 5 \mathrm{~mm} \text { PATXO }\end{aligned} 191$
${ }_{10}$ PULPROG ${ }_{65536}{ }^{2 g 30}$
$\begin{array}{ll}\text { 1D } \\ \text { SOLVENT } & 65536 \\ \text { CDC13 }\end{array}$
$\begin{array}{ll}\text { NS } & 8 \\ \text { DS } & 2\end{array}$
$\begin{array}{lc}\text { DS } & 2 \\ \text { SWII } & 10330.578 \mathrm{IIz}\end{array}$ $\begin{array}{ll}\text { FIDRES } & 0.157632 \mathrm{~Hz} \\ \text { AO } & 0.1720407 \mathrm{sec}\end{array}$ $\begin{array}{cc}\Lambda Q & 3.17204 \\ \mathrm{RG} & 90.5\end{array}$ $\begin{array}{lc} & 90.5 \\ \text { RW } & 48.400 \mathrm{uscc} \\ \text { DW } & 6.00 \mathrm{uscc} \\ \text { DE } & 294.5 \mathrm{~K} \\ \text { TE } & 1.00000000 \mathrm{sec} \\ \text { D1 } & \\ \text { ID0 } & 1\end{array}$

	$===$
NUANNEL $\mathrm{CH}=$	
NUC1	111
P1	14.14 usec
PL,	1.00 dB
SFO1	500.1330885 MHz
SI	32768
ST	500.1300126 MHz
WDW	0
SSB	0
LB	0.00 Hz
GB	0
PC	1.00

Figure S36. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{2 g}$. Related to Figure 2.

Figure S37. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{2 h}$. Related to Figure 2.

$\mathbf{2 i}{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

Figure S38. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{2 i}$. Related to Figure 2.

Figure S39. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{2 j}$. Related to Figure 2.

NAME	4-126-2
EXPNO	O
PROCNO	NO
Date_	20160317
Time	9.59
INSTRUM	UM spect
PROBHD	HD 5 mm PATXO 191
PULPROG	ROG 2g30
TD	65536
SOLVENT	ENT CDC13
NS	16
DS	2
SWII	10330.578 Itz
FIDRES	S 0.157632 Hz
AQ	3.1720407 sec
RG	203.2
DW	48.400 usce
DE	6.00 usce
TE	294.1 K
D1 1.	1.00000000 sec
TD0	1
$\begin{aligned} & ======= \\ & \text { NUC1 } \end{aligned}$	$====\underset{111}{\text { CHANNEL } \mathrm{fl}}==$
P1	14.14 usec
PL1	1.00 dB
SFO1 5	500.1330885 MHz
SI	32768
SF 500	500.1300133 MHz
WDW	no
SSB	0
LB	0.00 Hz
GB	0
PC	1.00

Figure S4O. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{2 k}$. Related to Figure $\mathbf{2}$.
$\begin{aligned} & 268^{\circ} 9 \\ & 2069 \\ & 568^{\circ} \mathrm{L} \\ & +0+^{\circ} \mathrm{L}\end{aligned}>$

21 ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$2{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$89^{\circ} 011$ -
gin
in
in

CEW-5-32
PROZOR CDC13

NAME EXPNO $\begin{array}{lr}\text { PROCNO } & 1 \\ \text { Date_ } & 20160510\end{array}$ | Time |
| :--- |
| INSTRUM 9.55 | $\begin{array}{ll}\text { INSTRUM } \\ \text { PROBIID } & \text { spect } \\ \text { Pm PATXO } \\ \text { PO }\end{array}$

$$
\begin{array}{ll}
\text { PULPROG } & 75336 \\
\text { TD } & 650 \\
\hline
\end{array}
$$

$$
\begin{array}{ll}
\text { TD } & 65536 \\
\text { SOLVIENT } & \text { CDCl3 }
\end{array}
$$

$$
\begin{array}{lc}
\text { SOLVIENT } & { }^{\text {CDCL3 }} \\
\text { NS } & 8 \\
\text { DS } & 2 \\
\text { SWH } & 10330.578 \mathrm{~Hz}
\end{array}
$$

$$
\begin{array}{lr}
\text { SWH } & 10330.578 \mathrm{~Hz} \\
\text { HIDRES } & 0.157632 \mathrm{~Hz}
\end{array}
$$

$$
\begin{array}{ll}
\mathrm{AQ} & 3.1720407 \mathrm{sec} \\
\mathrm{RG} & 114
\end{array}
$$

$$
\begin{array}{lc}
\mathrm{RG} & 114 \\
\mathrm{DW} & 48.400 \mathrm{usec} \\
\mathrm{DE} & 6.00 \mathrm{usec} \\
\mathrm{TE} & 294.7 \mathrm{~K}
\end{array}
$$

$$
\begin{aligned}
& 29.75 \mathrm{~K} \\
& 1.0900000000
\end{aligned}
$$

$$
\begin{array}{lc}
\text { TD0 } & 1 \\
\text { NUC1 } & =- \\
\text { CHANNEI. } \mathrm{fl}= \\
\hline 1 \mathrm{H}
\end{array}
$$

$$
\begin{array}{lc}
\text { NUC1 } & 1 \mathrm{H} \\
\text { Pl } & 14.14 \mathrm{usec}
\end{array}
$$

$$
\begin{array}{lc}
\text { PI } & 14.14 \mathrm{usec} \\
\text { PLI } & 1.00 \mathrm{~dB} \\
\text { SHOI } & 500.1330885 \mathrm{M}
\end{array}
$$

$$
\begin{array}{lc}
\text { PLI } & 1.00 \mathrm{~dB} \\
\text { SFOI } & 500.1330885 \mathrm{MHz} \\
\text { SI } & 32768
\end{array}
$$

$$
\begin{array}{lc}
\text { SIO } & 32768 \\
\text { SI } & 500.1300128 \mathrm{MHz} \\
\text { SF } & 50.150 \mathrm{MF} \\
\hline
\end{array}
$$

$$
\begin{array}{lc}
\text { SF } & 500.1300128 \mathrm{MI} \\
\text { SDW } & \mathrm{no}
\end{array}
$$

WDW

\[

\]

Figure S41. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{2 l}$. Related to Figure 2.

CROFOK

Figure S42. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{2 m}$. Related to Figure 2.
(500 MHz, CDCl_{3})
$\left.\begin{array}{lc}c \\ \text { CHW-5-73-1 } \\ \text { PROTON CDCl13 }\end{array}\right]$

Figure S43. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{2 n}$. Related to Figure 2.

Figure S44. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 20. Related to Figure 2.

Figure S45. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{2 p}$. Related to Figure 2.

$2 \mathbf{q}^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

2q ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\begin{array}{lllllllllllllll}150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10\end{array}$
CHW-5-34-3
PROTON CDCl3

Figure S46. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{2 q}$. Related to Figure 2.

2r ${ }^{1} \mathrm{H}$ NMR (500 MHz, CDCl_{3})

CHW-5-33

$\mathbf{2 r}{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Figure S47. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{2 r}$. Related to Figure 2.

2s ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

高 (V)

2s ${ }^{13} \mathrm{C} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

EW-5-19
C13C?D CDC23

Figure S48. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{2 s}$. Related to Figure 2.

Figure S49. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{2 t}$. Related to Figure 2.

2u ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

2u ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\begin{array}{lllllllllllllll}150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10\end{array}$
CHW-5-84 ЭROTON CDC13

Figure S50. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{2 u}$. Related to Figure 2.

CHW-5-95
PROTON CDC13

Figure S51. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 4a. Related to Figure 3.

4b ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

4b ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

CHN-5-31
2ROTON CDCL3

Figure S52. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 4b. Related to Figure 3.

$4 \mathbf{c}^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$4 \mathbf{c}^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

CHW-5-05-1
PROTON CDCl
NAME EXPNO
PROCNO $\begin{array}{ll}\text { PROCNO } \\ \text { Date_ } & \\ \text { Time- } & 201612\end{array}$

Time
INSTRUM 9.57

$\begin{array}{ll}\text { TD } \\ \text { SOLVENT } & 65536 \\ { }^{6} \\ \text { CDCl3 }\end{array}$ $\begin{array}{ll}\text { NS } & 16 \\ \text { DS } & 2\end{array}$ $\begin{array}{lc}\text { DS } & 2 \\ \text { SWH } & 10330.578 \mathrm{~Hz}\end{array}$ HIDRES $\quad 0.157632 \mathrm{~Hz}$ $\begin{array}{ll}\mathrm{AQ} & 3.1720407 \mathrm{sec} \\ \mathrm{RG} & 322.5\end{array}$ $\begin{array}{ll}\text { RG } & 322.5 \\ \text { DW } & 48.400 \text { usec } \\ \text { DE } & 6.00 \text { use }\end{array}$ DE $\quad 6.00$ usec 296.3 K
1.000000000 sec TD0
$===$
CHANNEL f 1
$=$ $\begin{array}{ll}\text { NUC1 } & 1 \mathrm{H} \\ \text { Pl } & 14.24 \text { usec }\end{array}$ $\begin{array}{ll}\text { PLI } & 1.00 \mathrm{~dB}\end{array}$ $\begin{array}{lll}\mathrm{SHOL} & 500.1330885 \mathrm{MHz} \\ \mathrm{Sl} & 32768\end{array}$ $\begin{array}{ll}\text { SI } & 32768 \\ \text { SF } & 500.1300129 \mathrm{MI}\end{array}$ $\begin{array}{lc}\text { SSB } & 0 \\ \text { LB } & 0.00 \mathrm{~Hz} \\ \text { GB } & 0\end{array}$ GB
PC

Figure S53. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{4 c}$. Related to Figure 3.

4d ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\begin{array}{llllllllllllllllllll}16 & 15 & 14 & 13 & 12 & 11 & 10 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1 & 0 & -1 & -2 & \mathrm{ppm}\end{array}$

CHW-5-116
PROTON CDCl

4d ${ }^{13}$ C NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Figure S54. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 4 d . Related to Figure 3.

Figure S55. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{4 e}$. Related to Figure 3.

$4{ }^{1}{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

为
CHW-5-106
PROTON CDCl3
NAME $\begin{array}{lc}\text { EXPNO } & 5-106 \\ \text { PROCNO } & 7 \\ \text { Date_ } & 1 \\ 20160523\end{array}$ $\begin{array}{lr}\text { Date- } & 201605 \\ \text { Time } & 10.22\end{array}$ INSTRUM
PRCct
PROBHD
5 mm PATXO 19F PULPROG ${ }_{65536}{ }^{2 g 30}$
TD
SOLVENT
NS
DS
SWII

SWII $\stackrel{2}{2}$ | FIDRES |
| :--- |
| 4 O |
| 0.15767632 IIz | RG $\quad 3.1720407$ 143.7 48.400 usec

6.00 usec
295.1 K
1.00000000 sec

NUCI	1 H
P1	14.14 usec
PLI	1.00 dB
SFO1	500.1330885 MHz
SI	32768
SF	500.1300133 MHz
WDW	no
SSB	0
LB	0.00 Hz
GB	0
PC	1.00

CEW-5-106
C13C?D CJC13

Figure S56. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 4 . Related to Figure 3.

$4 \mathrm{~g}{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$4 g{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}

$\begin{array}{llllllllllllllll}160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10\end{array} \mathbf{p p m}$

CHW-5-123
PROTON CDC13
NAME EXPNO
PROCNO
$\begin{array}{lr}\text { PROCNO } & 1 \\ \text { Date_ } & 20160525\end{array}$
$\begin{array}{lr}\text { Date_ } & 201605 \\ \text { Time } & 14.26\end{array}$
INSTRUM
PROBIID
spect
Pm PATXO
PR
$\begin{array}{ll}\text { PULPROG } & \text { zg } 30 \\ \text { TD } & 6536\end{array}$
$\begin{array}{ll}\text { TD } & 65536 \\ \text { SOI.VIENT }\end{array}$
$\begin{array}{lc}\text { SOLDENT } & 8^{\text {CDCl3 }} \\ \text { NS } & 2 \\ \text { DS } & 2 \\ \text { SWH } & 10330578 \mathrm{~Hz}\end{array}$
SWH
HIDRES
$\begin{array}{lc}\text { AQ } & 3.172040 \\ \text { RG } & 228.1 \\ \text { DW } & 48.400\end{array}$ $\begin{array}{ll}\text { RG } & 228.1 \\ \text { DW } & 48.400 \text { usec } \\ \text { DE } & 6.00 \text { usec } \\ \text { TE } & 296.7 \mathrm{~K}\end{array}$ $\begin{array}{lr}\text { TE } & 296.7 \mathrm{~K} \\ \text { DI } & 1.00000000\end{array}$ TD0
$======$
NUC1
CHANNEL $\mathrm{fl}==$ $\mathrm{NUCl}_{14.14}^{1 \mathrm{H}}$ PLI $\quad 1.00 \mathrm{~dB}$ ${ }_{S I} \quad 5001.1330885 \mathrm{MHz}$ $\mathrm{SF} \quad 500.1300130 \mathrm{ML}$

Figure S57. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{4 g}$. Related to Figure 3.

4h ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

CHK-5-124
ROION CDC13

N/ME	5-124
EXPNO	3
PROCNO	01
Datc_	20160525
Time	14.22
INSTRUM	M spect
PROBHD	D 5 mmPATXO 19 t
PULPROG	OG zg 30
TD	65536
SOLVENT	$\mathrm{TT} \quad \mathrm{CDCl} 3$
	8
DS	2
SWH	10330.578 Hz
ITDRES	0.157632 Hz .
AQ	3.1720407 sce
RG	181
DW	48.400 usec
DE	6.00 usec
TE	297.5 K
D1 1.	1.00000000 sec
TD0	1
===-e=e=	$=$ CIIANNEL $\mathrm{fl}=$
NUC1	1H
P 1	14.14 usec
PI, 1	1.00 dB
SFO1	500.1330885 MHz
SI	32768
SF 500	500.1300129 MHz
WDW	no
SSB	0
LB	0.00 Hz
GB	0
PC	1.00

Figure S58. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 4 h . Related to Figure 3.

4i ${ }^{1} \mathrm{H}$ NMR（ $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）

等すき家ल

200

CHW－5－105－3

Figure S59．${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 4i．Related to Figure 3.

4j ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

-58.73
$\mathbf{4 j}{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

CHW-5-105-2
PROTON CDS1

Figure S60. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{4 j}$. Related to Figure 3 .

Figure S61. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{4 k}$. Related to Figure 3.

(

Figure S62. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 4I. Related to Figure 3.

Figure S63. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 5 Ca . Related to Figure 4.

Figure S64．${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{5 b}$ ．Related to Figure 4.

Figure S65. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 5 c . Related to Figure 4.

Figure S66. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 5 d . Related to Figure 4.

Figure S67. ${ }^{1} \mathrm{H},{ }^{19} \mathrm{~F}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 5 e . Related to Figure 4.

Figure S68. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 5f. Related to Figure 4.

Figure S69. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{5 g}$. Related to Figure 4.

Figure S70. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{5 h}$. Related to Figure 4.

Figure S71. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 5 i. Related to Figure 4.

Figure S72. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{5 j}$. Related to Figure 4.

Figure S73. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{5 1}$. Related to Figure 4.

Figure S74. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 5 m . Related to Figure 4.

Figure S76. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 50 . Related to Figure 4.

Figure S77. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 5 p . Related to Figure 4.

Figure S78. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{5 q}$. Related to Figure 4.

Figure S80. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $5 \mathbf{t}$. Related to Figure 4.

Figure S81. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{6 a}$. Related to Figure 4.

Figure S82. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{6 b}$. Related to Figure 4.

Figure S83. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{6 c}$. Related to Figure 4.

Figure S84. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 6 d . Related to Figure 4.

Figure S85. ${ }^{1} \mathrm{H},{ }^{19} \mathrm{~F}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 6e. Related to Figure 4.

Figure S86. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 6 f . Related to Figure 4.

Figure S87. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 6 g . Related to Figure 4.

Figure S88. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{6 h}$. Related to Figure 4.

Figure S89. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 6i. Related to Figure 4.

Figure S90. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{6 j}$. Related to Figure 4.

Figure S91. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{6 k}$. Related to Figure 4.

Figure S92. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 61 . Related to Figure 4.

Figure S93. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 6 m . Related to Figure 4.

Figure S94. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{6 n}$. Related to Figure 4.

Figure S95. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{6 0}$. Related to Figure 4.

Figure S96. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{6 p}$. Related to Figure 4.

Figure S97. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{6 q}$. Related to Figure 4.

Figure S98. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 6 r . Related to Figure 4.

Figure S99. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{6 s}$. Related to Figure 4.

Figure S100. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 6 t . Related to Figure 4.

Figure S101. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 6 u . Related to Figure 4.

Figure S102. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $6 \mathrm{u}^{\prime}$. Related to Figure 4.

Figure S103. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{7 b}$. Related to Figure 5.

Figure S104. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{7 c}$. Related to Figure 5.

Figure S105. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{7 d}$. Related to Figure 5.

Figure S106. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 7 e . Related to Figure 5.

Figure S107. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 7f. Related to Figure 5.

Figure S108. ${ }^{1} \mathrm{H},{ }^{19} \mathrm{~F}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{7 g}$. Related to Figure 5.

Figure S109．${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{7 h}$ ．Related to Figure 5.

Figure S110. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 7i. Related to Figure 5.

Figure S111. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 8a. Related to Figure 5.

Figure S112. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{8 b}$. Related to Figure 5.

Figure S113. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 8 c . Related to Figure 5.

Figure S114. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{8 d}$. Related to Figure 5.

Figure S115. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 8 e . Related to Figure 5.

Figure S116. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 8 f . Related to Figure 5.

Figure S117. ${ }^{1} \mathrm{H},{ }^{19} \mathrm{~F}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{8 g}$. Related to Figure 5 .

Figure S118. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{8 h}$. Related to Figure 5.

Figure S119. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 8i. Related to Figure 5.

Figure S120. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 9a. Related to Figure 6.

9b ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
-174.16

9b ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

NAMT:	YY-5-168
EXPNO	8
PROCNO	$0 \quad 1$
Date_	20160623
lime	16.02
INSTRUM	M spect
PROBHD	D 5 mm PATXO 19 F
PULPROG	OG $\quad \mathrm{zg} 30$
TD	65536
SOLVENT	NT CDCl 3
NS	16
DS	2
SWH	10330.578 Hz
FIDRES	0.157632 Hz
AQ	3.1720407 sec
RG	256
DW	48.400 usec
DE	6.00 usec
TE	295.9 K
D1 1.0	1.00000000 sec
TD0	1
$===\sim===$ CHANNEL $\mathrm{fl}==$	
NUC1	1 H
PI	14.24 usce
PL1	1.00 dB
SFO1 5	500.1330885 MHz
SI	32768
SF 500	500.1300125 MHz
WDW	no
SSB	0
LB	0.00 Hz
(iB	0
PC	1.00

[^0]$\begin{array}{lllllllllllllllll}170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 8 p m\end{array}$
2.00000000 sec
2.00000000 sec
2.00000000 sec
0.03000000 sec
2.00000000 sec
0.03000000 sec
0.03000000 sec
1.89999998 sc
0.03000000 sec
1.89999998 sc

$\begin{array}{cc}\text { NUCl } & 13 \mathrm{C} \\ \text { P1 } & 9.50 \text { usec } \\ \text { PL. } & -0.50 \mathrm{~dB}\end{array}$
$\begin{array}{cc}\text { NUCl } & 13 \mathrm{C} \\ \text { P1 } & 9.50 \text { usec } \\ \text { PL. } & -0.50 \mathrm{~dB}\end{array}$

Figure S121. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 9 b . Related to Figure 6.

9c ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

9c ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\begin{array}{llllllllllll}200 & 180 & 160 & 140 & 120 & 100 & 80 & 60 & 40 & 20 & 0 & p p m\end{array}$
CEW-6-2
PROZCN CDC13

Figure S122. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 9c. Related to Figure 6.

Figure S123. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 9 d . Related to Figure 6.

Figure S124. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 9 e . Related to Figure 6.

Figure S125. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 9 . Related to Figure 6.
9g ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\stackrel{\infty}{\infty} \quad \bar{\infty}$

Figure S126. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 9 g . Related to Figure 6.

9h ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Figure S127. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 9 h . Related to Figure 6.

Figure S128. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 9i. Related to Figure 6.

Figure S129. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 9 j . Related to Figure 6.

Figure S130. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 9k. Related to Figure 6.

2a' ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

CHW-1-95-2

Figure S131. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{2 a}{ }^{\prime}$. Related to Figure 8.

Figure S132. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 10. Related to Figure 7.

Figure S133. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 11. Related to Figure 7.

Figure S134. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 12. Related to Figure 8.

Supplemental References

Cheng, X., Yang, B., Hu, X., Xu, Q., and Lu, Z. (2016). Visible-light-promoted metal-free aerobic oxidation of primary amines to acids and lactones. Chem. Eur. J. 22, 17566-17570.

Gawlak, M., and Robbins, R. F. (1964). The peracid oxidation of 4,9-diazapyrene. J. Chem. Soc. 5135-5139.

Gonzalez-de-Castro, A., Robertson, C. M., and Xiao, J. (2014). Dehydrogenative α-oxygenation of ethers with an iron catalyst. J. Am. Chem. Soc. 136, 8350-8360.

Michael, C., Donald, W., Marie, J., Erhu, L., and Fuye, G. Compounds and methods for treating protein folding disorders. US. 2010/0144821[P], 2010-6-10.

Muramatsu and Nakano, K. (2014). Organocatalytic approach for $\mathrm{C}\left(\mathrm{sp}^{3}\right)-\mathrm{H}$ bond arylation, alkylation, and amidation of isochromans under facile conditions. Org. Lett. 16, 2042-2045.

Park, W. K. C., Kennedy, R. M., Larsen, S. D., Miller, S., Roth, B. D., Song, Y., Steinbaugh, B. A., Sun, K., Tait, B. D., Kowala, M. C., Trivedi, B. K., Auerbach, B., Askew, V., Dillon, L., Hanselman, J. C., Lin, Z., Lu, G. H., Robertson, A., and Sekerke, C. (2008). Hepatoselectivity of statins: design and synthesis of 4-sulfamoyl pyrroles as HMG-CoA reductase inhibitors. Bioorg. Med. Chem. Lett. 18, 1151-1156.

Pingaew, R., Worachartcheewan, A., Nantasenamat, C., Prachayasittikul, S., Ruchirawat, S., and Prachayasittikul, V. (2013). Synthesis, cytotoxicity and QSAR study of N-tosyl-1,2,3,4-tetrahydroiso-petrquinoline derivatives. Arch. Pharm. Res. 36, 1066-1077.

Sullivan, S., Doni, E., Tuttle, T., and Murphy, J. (2014). Metal-free reductive cleavage of C-N and $\mathrm{S}-\mathrm{N}$ bonds by photoactivated electron transfer from a neutral organic donor. Angew. Chem. Int. Ed. 53, 474-478.

Xu, S., Huang, X., Hong, X., and Xu, B. (2012). Palladium-assisted regioselective C-H cyanation of heteroarenes using isonitrile as cyanide source. Org. Lett. 14, 4614-4617.

Yan, C., Liu, Y., and Wang, Q. (2014). Mild and highly efficient metal-free oxidative α-cyanation of N-acyl/sulfonyl tetrahydroisoquinolines. RSC Adv. 4, 60075-60078.

Zhou, M., Kong, S., Zhang, L., Zhao, M., Duan, J., Ou-yang, Z., and Wang, M. (2013). CuBr 2 catalyzed bromination/oxidation of isochromans to benzaldehyde derivatives. Tetrahedron Lett. 54, 3962-3964.

[^0]: CFW-5-168
 $\begin{array}{lc}\text { C13C2D } & \text { CDC13 } \\ \text { NAMF } & \text { YY-5-168 } \\ \text { PXPNO } & 19 \\ \text { PROCNO } & 1\end{array}$

 | SOLVENT |
 | :--- | :--- |
 | NS |
 | 2200 |

