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Abstract: Mental fatigue (MF) is a psychobiological state negatively impacting both cognitive and
physical performance. Although recent research implies that some table tennis (TT) performance
outcomes are impaired by MF, open skill sports such as TT require a more detailed overview of
MF-related performance decrements. Moreover, research into MF and sport-specific psychomotor
performance lacks the inclusion of brain-related measurements to identify MF mechanisms. Eleven
experienced TT players participated in this randomized counterbalanced crossover trial. Participants
were either required to perform an individualized Stroop task (MF condition) or watch a documen-
tary (control condition). The primary outcomes were reaction time on a sport-specific visuomotor
task and EEG activity throughout the trial. The subjective feeling of MF was significantly different
between both conditions and confirmed that the MF condition induced the mentally fatigue state of
participants (p < 0.001), though no behavioral indicators (i.e., decrease in performance on Stroop and
flanker task) of MF. MF worsened reaction time on the visuomotor task, while other secondary mea-
surements remained largely ambiguous. Spectral power (i.e., decreases in upper α band and θ band)
was influenced by MF, while ERPs measured during the visuomotor task remained unaltered. The
present study confirms that MF negatively impacts table tennis performance, specifically inhibitory
stimuli during the visuomotor task. These findings also further augment our understanding of the
effects of MF on human performance.

Keywords: mental fatigue; table tennis; electroencephalography; event related potentials;
visuomotor performance

1. Introduction

In elite sport performance, athletes use both advanced cognitive and motor skills to
win games, advance in world rankings and earn trophies. Moreover, in elite athletes, it
is often differences in cognitive skills such as decision making [1], visuomotor reaction
time [2] and attention [3] that decide winning or losing [4,5]. This is especially true in fast
sports such as table tennis (TT), which consist of very specific physiological and physical
demands [6–8] and a high contribution of cognitive resources [9]. These cognitive demands
can be linked to the immense time pressure of the game [9] and the need to stay focused
in an open sport environment [10,11]. Research has also shown that TT athletes display
faster visuomotor reaction times [9,12], a higher level of executive functions [13], better
unconscious response inhibition [11] and greater dual task performance [14] compared
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to non-athletes, novices or even medium-level TT players. However, this important
contribution of cognitive skills is not exclusively beneficial, as this may lead to a higher
mental load on the individual, which can result in a higher risk of suffering decrements
in performance due to mental fatigue (MF) [15]. Therefore, ideal cognitive capacity for
TT athletes is needed to optimally perform, and as such it is of the utmost importance to
identify and counteract MF as quickly as possible [16].

MF can be defined as a psychobiological state that emerges during prolonged demand-
ing cognitive activity and results in an acute feeling of tiredness and/or decreased cognitive
skills [17,18]. Recently, multiple researchers in sport science have directed their attention
towards MF and its effect on multiple types of performance [19]. One study has already
identified reduced TT performance due to MF [16], observing a negative effect of MF on
ball speed, accuracy of the ball, number of faults and total TT performance. This study
gave important insights into the detrimental effects of MF on sport-specific psychomotor
performance, and remains the only study, to the best of our knowledge, that examined
the effect of MF on TT related skills [16,18]. However, even though TT performance is
negatively impacted by MF, some important measures of sport-specific visuomotor per-
formance, such as reaction time, were not assessed by Le Mansec et al. [16]. An approach
to measure reaction time could be the visuomotor test utilised by Van Cutsem et al. [20],
who examined the effect of MF on visuomotor performance in badminton players. The
utilisation of this visuomotor test could provide valuable additional information regarding
the effect of MF on TT performance, since TT and badminton players are subjected to
similar cognitive load while playing [21]. Moreover, and more importantly, the addition
of brain-related measurements when assessing the effect of MF on TT performance could
help explain the mechanisms behind MF-related decrements in sport-specific psychomotor
performance, with the eventual goal of designing specific interventions to counter MF in
elite athletes.

It is well established that MF impairs cognitive skills [22,23] and physical perfor-
mance [17,18,24] in healthy individuals. Based on these decrements, mechanisms have
been proposed to better understand this type of fatigue and to develop possible counter-
measures. Proposed mechanisms include, but are not limited to, an increase in rate of
perceived exertion (RPE) due to adenosine accumulation in the anterior cingulate cortex
(ACC) [17,25] and the ego depletion theory (i.e., decrements in performance due to deple-
tion of a global self-control resource [24]). However, these mechanisms of the negative
effects of MF on performance remain mostly theoretical, as most sport science MF studies
use circumstantial evidence (i.e., peripheral physiological and subjective outcomes) and fail
to incorporate objective measures of the brain, such as electroencephalography (EEG) [18].
Particular EEG outcomes of interest include event-related potentials (ERPs) [26,27] and
spectral power analysis (SPA) [28]. Regarding SPA, a recent review already showed the
impact on theta and alfa activity due to MF, which are linked to decreased inhibition control
and alertness [28]. Since alertness states have the potential to predict cognitive performance
parameters, it could be argued that these changes in alertness are one of the drivers of the
effect of MF on human performance [29]. The study of Van Cutsem et al. [30], detailing the
influence of a caffeine-maltodextrine mouth rinse on MF effects, investigated the effect of
ERPs on MF and found a decreased amplitude of the P2 component. This component is
theorized to be a measure of, among other things, the allocation of attentional resources,
a mechanism frequently associated with MF effects [30,31]. Other ERPs of interest in MF
research include P3b [26], N2 [32,33] and N1 [32–34], with all of them connected to specific
mechanisms of MF. However, the addition of EEG measures in MF research remains in
its infancy, and studies investigating these measures during motor tasks are also rare [18].
Further investigating EEG outcomes under conditions of mental fatigue can give us valu-
able information on the possible mechanisms behind the effects of MF on sport-specific
psychomotor performance [18].

Therefore, the primary aim of the present study was to investigate whether MF impairs
sport-specific visuomotor performance in TT players. We hypothesised that MF would
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worsen reaction time, based on knowledge gathered by similar studies [16,20]. A secondary
aim was to attribute possible differences in EEG activity between the MF and control
condition to possible decreases in visuomotor performance. Our hypothesis was that MF
would increase theta and alpha activity [28] while also decreasing the amplitude of ERPs of
interest (i.e., N1, N2, P2 and P3b) during both the cognitive tasks and the TT performance
task [26,27].

2. Materials and Methods
2.1. Participants

A total of 11 experienced table tennis players (4 ♀/ 7 ♂; age: 24 ± 2 yrs; height:
178 ± 10 cm; weight: 70 ± 10 kg; training volume: 7 ± 4 h/week) were included in
this experiment. The table tennis level of participants ranged between A3 (elite) and C4
(trained). Participants were required to sleep a similar amount of time before each trial
(at least 7 h), refrain from the consumption of caffeine and/or alcohol, and to avoid any
vigorous physical activity the day before and the day of each visit. In addition, participants
were asked to have a similar meal on the morning of each trial. The use of any kind of
medicinal products during and between the trials was prohibited. If participants could
not meet these standards, they were excluded from the study. Each subject gave written
informed consent prior to the study. The present study protocol and its procedures were
approved by the Research Council of the Vrije Universiteit Brussel.

2.2. Experimental Procedure

The study employs a randomized counterbalanced cross-over trial. Participants
reported for the study on three separate occasions (familiarization, experimental condition
and control condition) on the same time of day (in the morning) and with a minimum of
three days between sessions. Measurements were conducted in thermoneutral conditions
(20 ◦C, humidity 45%) and every trial took about two hours to complete. It was not
specified to participants which was the control, and which was the experimental procedure.
Participants were told that the goal of the study was to examine the effect of two different
cognitive tasks on their TT specific reaction time and where, as such, blinded for our
predefined hypotheses.

2.2.1. Familiarization Trial

Participants were first invited to a familiarization trial where they had the chance
to become acquainted with the different questionnaires (i.e., pre-test checklist, Mental
Visual Analogue Scale (M-VAS), Matthews motivation scale, rating of perceived exertion
(RPE), and National Aeronautics and Space Administration Task Load Index (Nasa-TLX)),
the visuomotor task, and the experimental task (i.e., a Stroop task). The participants
familiarized themselves with the experimental condition by performing a Stroop max
test, which was designed to individualize the difficulty level of the Stroop test during the
experimental trial. The circumference of the head was also measured for fitting the EEG
cap during the experimental and control condition.

In the Stroop max task, four coloured words (“red”, “blue”, “green” and “yellow”)
were presented one at a time on a computer screen. The participants were required
to indicate the colour of the word, ignoring the meaning of the word itself. If the ink
colour was red, the button to be pressed was the button linked to the real meaning of
the word. The presented word and its ink colour were randomly selected by the com-
puter (100% incongruent), with all incongruent word–colour combinations being equally
common. The Stroop max test of the familiarization trial consisted of 108 stimuli in total,
divided into three cycles of 36 stimuli with an average interstimulus time of 1500 ms. The
level of difficulty on this test changed depending on the stimulus presentation time (i.e.,
the total amount of time a stimulus was on screen), ranging from 1200 ms to 500 ms with
a difference between levels of 100 ms. Before the actual max test, subjects performed a
warm-up to get acquainted with the cognitive task. Afterwards, participants commenced
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the Stroop max test at the 1200-ms level. If the participant was more or equal to 85%
accurate (i.e., 85% of stimuli were correctly interpreted), they were allowed to proceed to
the next level. If participants were less than 85% accurate, they had to repeat this level.
Participants were allowed three attempts at a level and five attempts in total (in the case of
multiple retries across levels). If a participant exceeded the amount of retries, the max test
was concluded and the last level where the participant was able to meet the 85%-threshold
was selected as their maximal cognitive performance level and was applied within the
experimental trial.

2.2.2. Experimental and Control Trial

The experimental and control trial proceeded in a similar manner, with the only differ-
ence being the intervention task in the middle of the trial. At the beginning of each trial
the EEG device and heart rate monitor were attached, and a baseline EEG measurement
was performed while the participant remained seated. Following the baseline EEG mea-
surement, participants performed the visuomotor task and the flanker task. Participants
were then instructed to perform either the intervention or the control procedure. Imme-
diately afterwards the flanker task and visuomotor task were again performed. Through-
out the measurements, participants were required to fill in a number of questionnaires
(see Figure 1).

Figure 1. Schematic representation of the experimental and control trial.

Flanker task: Participants were instructed to respond as quickly and accurately as
possible to the direction of a target arrow while ignoring the direction of the other arrows
on each side (e.g., < < > < <). Each array of arrows was focally presented in white text
(font size 34) for 200 ms on a black background with a variable interstimulus interval of
1000, 1200, 1400, or 1600 ms. A total of 120 stimuli were given (15 cycles of 8 stimuli)
with both right and left arrows appearing with equal probability. The total duration of
the task was approximately 5 min. To assess performance on the flanker task accuracy
and reaction time were collected. The aim of the flanker task was to make sure that
participants were adequately familiarized and not already fatigued before the start of the
intervention/control task [35].

Intervention procedure: The Stroop task was chosen to induce MF in the participants
of the present trial. The instructions of the task were the same as the ones given when
performing the Stroop max task. The differences between this task and the Stroop max
task were the duration and the task specifications. The Stroop task of the intervention
procedure had a duration of 60 min, which translates to 1500 stimuli that were divided
into four blocks, with 360 stimuli every block and 90 stimuli for every colour. The time
that the stimuli were presented was based on the achieved level on the Stroop max task.
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In between the four blocks, 15 stimuli were not taken into account for the performance
analysis. This allowed the researchers to pose the question: “how mentally fatigued do you
feel on a scale from 0 to a 100, where 0 means not fatigued at all and 100 means extremely
mentally fatigued?”. The participants had no knowledge of the existence of the four blocks
and received no feedback relating to performance or time during the task.

Control procedure: The control procedure consisted of watching a documentary of
the same duration as the intervention task. Participants had the choice between all parts of
Planet Earth, the complete collection (BBC worldwide, 2006). These documentaries were
chosen based on their emotionally neutral yet engaging content. Every 15 min the level of
MF was assessed verbally.

2.3. Data Collection
2.3.1. Visuomotor Task

The visuomotor task was designed in accordance to Van Cutsem et al. (2019) [20].
A specific setting and sequence were designed using Fitlight hardware and software
(https://www.fitlighttraining.com/, accessed on 5 October 2020), consisting of eight LED
lights. Six of these lights were installed on a table tennis table in a specific manner, while
one light was placed behind the participant on the preferred hand site (see Figure 2). The
last light was placed in a dark box with a light sensor which was synchronized with the
EEG data. The participant was instructed to stand in front of the table and to extinguish
one of the six lights by passing a table tennis paddle within 5 cm of the light when it
illuminated in either a green, red or yellow color (i.e., simple stimuli). However, when
the light turned blue, participants were instructed to ignore the light in front of them and
to extinguish the light on their preferred hand site (i.e., complex stimuli). Each color was
presented 16 times, for a total of 64 stimuli. The sequence and location in which the colors
appeared was programmed randomly (www.randomization.com, accessed on 16 October
2020). The inter-stimulus time of the task varied between 3–6 s, with each time randomly
chosen for a total of 16 times. Total task duration was approximately 6 min. Accuracy (i.e.,
the amount of correct responses) and response time (RT; i.e., the time it took to extinguish
the light) for each stimulus type (complex vs. simple stimuli) were calculated based on the
data (i.e., a list of accuracy and RT on each stimulus in the visuomotor task) collected by
the respective software. Because of the motor simplicity of the present task as opposed to
Van Cutsem et al. [20], the accuracy outcome was primarily used to assess inclusion and
exclusion of visuomotor RT data, as we expected that missing a certain amount of stimuli
can only be linked to an error in stimuli detection. Therefore, if participants missed more
than 25% of stimuli, the total data of the participants on the visuomotor task was excluded
from further analysis.

2.3.2. EEG Recordings

For EEG recording and data preparation, brain activity was continuously measured
throughout the entire duration of the experimental protocol; 32 active gel-based Ag/AgCl
electrodes (actiCAP, LiveAMP, Brain Products, Munich, Germany) were attached to the
heads of the participants, conforming to the international 10–20 system [36]. Sampling rate
was set at 500 Hz and electrode impedance was always kept lower than 10 kΩ throughout
the experiment. The beginning of the trial consisted of baseline measurements with 2 min
eyes open, and 2 min eyes closed. The program BrainVision Analyzer (Brain Products
GmbH, Munich, Germany) was utilised to pre-process the EEG data. The sampling rate
was first downsampled to 256 Hz, filtered (high pass: 0.1 Hz (order 8), low pass: 45 Hz
(order 8) and Notch: 50 Hz, slope 48 dB/oct) using a Butterworth filter design and re-
referenced to an average. EEG data was then divided into specific data sets based on
marker positioning (Eyes open, Eyes closed, Fitlight PRE, flanker PRE, flanker POST and
Fitlight POST). Artifacts were manually removed using raw data inspection and level
triggers were placed based on the specific stimuli of the tasks (i.e., illumination of lights
during the Fitlight task, and Flanker task stimuli). An independent component analysis

https://www.fitlighttraining.com/
www.randomization.com
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(ICA) and reverse ICA were employed to further reduce periodically recurring artifacts of
each specific data set.

Figure 2. Overview of the setting and design of the visuomotor task.

For ERP analysis, the N1, P2, N2, and P3b ERPs were assessed across all task data seg-
ments (i.e., Stroop, flanker and Fitlight). All information concerning definitions, suspected
latencies and electrode locations based on regions of interests (ROI) of the measured ERPs
can be found in Table 1. All expected ERPs were visually confirmed. N1 was measured
because of its proven susceptibility to MF, association with early visual processing originat-
ing from the visual cortex and involvement in spatial attention [31,34,37]. Both P2 and N2
have also been shown to be impacted by MF, and are also believed to originate from the
ACC, an area that has been assumed to be the physiological basis of the effect of MF on
human performance [25,26,31,32,34]. The P2 is a visual sensory ERP which has been pro-
posed to represent salience detection, the recall of task rules, and allocation of attentional
resources [30,31,38]. N2 is an anteriorly located ERP and represents processes of cogni-
tive control, such as conflict monitoring, response inhibition, and error monitoring [32,37].
Lastly, P3b has frequently been connected to (among other cognitive processes) atten-
tional resources, decision making, executive functions and motoric functions, which are all
processes that are negatively impacted by MF [18,26,39].

Spectral power analysis: Following the inverse ICA for the continuous EEG data set
of interest, segments with a length of 4 s and with an overlap of 2 s were extracted [40].
The resulting data segments were tapered with a Hanning window with 10% of the total
segment length. Fast Fourier transform (FFT) power spectra were used to extract power
spectral data, with a spectral resolution of 0.25 Hz. These segments were then averaged
to stabilize the spectral content. The spectral bands utilized in this study along with their
frequency and ROI can be found in Table 1.
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Table 1. Definitions, localisations and suspected latencies of Spectral power and ERPs of interest.

Event Related Potentials

Variable Definition
Suspected

Latency
Regions of Interest

DLPC PC PMC IOC AG FG SAC

N1 First negative going
peak 90–150 ms X X X

P2 Second positive
going peak 80–260 ms X X

N2 Second negative
going peak 200–315 ms X X

P3b Third and largest
positive going peak 280–450 ms X X X

Spectral Bands

Symbol Name Frequency
Regions of Interest

DLPC PC PMC IOC AG FG SAC

Uα Upper alfa 4–<8 Hz X X X X X X X
Lα Lower alfa 8–<10 Hz X X X X X X X
θ Theta 10–<13 Hz X X X X X X X

DLPC = dorsolateral prefrontal cortex (Fz, F3 and F4), PC = premotor cortex (FC1 and FC2), PMC = primary motor cortex (Cz, C3
and C4), IOC = inferior/orbitofrontal cortex (F7), AG = angular gyrus (P3 and P4), FG = fusiform gyrus (P7, P8, PO9 and PO10),
SAC = somatosensory association cortex (Pz).

2.3.3. Subjective and Physiological Secondary Outcome Measures

Multiple subjective outcome measures were administered to the participants. A pre-
test checklist was evaluated at the beginning of each trial to check for any abnormalities
which warranted exclusion (e.g., “Did you ingest any beverages containing caffeine this
morning?”). The M-VAS was used as a subjective manipulation check. This VAS scale
consisted of a 10-cm line which was labelled at one end with ‘not at all mentally fatigued’
and at the other with ‘extremely mentally fatigued’ [41]. Participants were instructed to fill
in this questionnaire as they felt at that specific moment. The M-VAS was administered
throughout the trial, with nine measurement points (see Figure 1). Additional subjective
psychological assessments included the success and intrinsic motivation scales developed
by Matthews et al. (2001) [42] and the NASA-TLX [43]. Lastly, RPE was measured using
the 15-point (6–20) scale developed by Borg et al. (1982) [44] each time after performing
the visuomotor task. Throughout the entire experiment, the heart rate (HR) was measured
using a polar SR 400 watch.

2.4. Statistical Analysis

All statistical tests were conducted using the Statistical Package for the Social Sciences,
version 24 (SPSS Inc., Chicago, IL, USA). All data are presented as means ± standard
deviation (SD). Normality was checked using the Shapiro–Wilk test and visually confirmed
with histograms. If data were not normally distributed, non-parametrical equivalents were
used instead. Mauchly’s test was used to verify for sphericity. However, if sphericity could
not be assumed, the Greenhouse–Geisser procedure corrected the significance of F-values.
Two-way repeated measures (RM) (2 × 2) effect ANOVAs were conducted to assess the
effect of condition (MF vs. CON) and time (PRE vs. POST) on RPE, Matthews intrinsic and
success motivation scores, and accuracy and reaction time on the flanker task. A two-way
RM (2 × 3) ANOVA was used to assess the effect of condition and time (first to third
measurement) on the different subscales of the NASA-TLX. Another two-way RM (2 × 4)
ANOVA was used to assess the effect of time (first to fourth block) and stimuli (meaning
vs. color) on reaction time and accuracy of the Stroop task. A two-way RM (2 × 9) ANOVA
was employed to investigated the effect of condition and time (first to ninth measurement)
on the M-VAS and HR measurements. A three-way RM (2 × 2 × 2) effect ANOVA was
used to analyse the effect of condition, time and stimuli (simple vs. complex) on the RT



Int. J. Environ. Res. Public Health 2021, 18, 12906 8 of 20

of the visuomotor task. A three-way RM ANOVA was adopted to assess the effect of
condition, time and ROI on the amplitude and latency of the investigated ERP values
during the flanker and Fitlight tasks. By including ROI as a factor, the amount of statistical
testing required is significantly reduced. The effect of ROI was not added to the result
section in order to reduce irrelevant information, as we were only interested in ROI effects
if significant interaction effects were present. The effects of condition, time and ROI on
transformed spectral power of theta (θ), lower alfa (α) and upper α bands during the flanker
and Fitlight task were investigated using a three-way (2× 2× 7) RM ANOVA. If interaction
effects between the investigated factors were seen in the three or two-way mixed ANOVAs,
subsequent two-way mixed ANOVAs or paired sample t-tests, respectively, were employed
to elucidate the main effects of condition and time. If no interaction effect was present, the
main effects of condition and time were immediately interpreted using the aforementioned
statistical tests and Bonferroni corrections. Partial eta square (ηp

2) and Cohen’s d (d) were
used as effect sizes. Ranges used for ηp

2 were small = 0.01; medium = 0.06; large = 0.14.
Ranges used for d were <0.2 = trivial; 0.2–0.6 = small; 0.6–1.2 = moderate; 1.2–2.0 = large;
>2.0 = very large. The significance level was set at 0.05.

3. Results
3.1. Effect of MF on Visuomotor Performance

A 2 × 2 × 2 RM ANOVA was conducted to assess the effect of condition, time and
stimuli on Fitlight task performance. This analysis showed a significant interaction effect
between time and condition (F(1,7) = 5.607, p = 0.050, ηp

2 = 0.445). Subsequent post hoc
tests showed a significantly slower visuomotor reaction time from pre- (713 ± 23 ms) to
post (764± 19 ms) in the MF condition (F(1,7) = 14.899, p = 0.006, ηp

2 = 0.680) for all stimuli;
specifically, in the inhibitory stimuli (t(7) = 5.199, p = 0.001, d = 1.84), a significantly slower
visuomotor reaction time post-task in MF (816± 111 ms) compared to CON (745 ± 112 ms).
Figure 3 displays the effects of condition and time on visuomotor performance.

3.2. Visuomotor Task EEG Outcomes
3.2.1. ERP Analysis

There were no effects of time or condition on amplitude or latency of the N2, P3b, P2
and N1 variable during the visuomotor task.

3.2.2. Spectral Band Analysis

Upper α band: There was a significant interaction effect between time and ROI
(F(1.4,12.5) = 5.825, p = 0.024, ηp

2 = 0.393). Post-hoc analysis showed a significant interac-
tion between time and condition in the Cz, C3 and C4 electrodes (F(1,9) = 15.789, p = 0.003,
ηp

2 = 0.637) and the fusiform gyrus (F(1,9) = 6.556, p = 0.031, ηp
2 = 0.421), while also show-

ing a general effect of time (F(1,9) = 6.632, p = 0.030, ηp
2 = 0.424) in the inferior/orbitofrontal

cortex, with the pre-task energy (1.03 ± 0.49 µV2) being higher than the post-task energy
(0.68 ± 0.12 µV2). Paired sample t-tests showed a decrease in energy between pre-task
(0.65 ± 0.54 µV2) and post-task (0.28± 0.18 µV2) in the MF condition (t(9) = 2.712, p = 0.024,
d = 0.94) in the P7, P8, PO9 and PO10 electrodes only.

Lower α band: an interaction effect between time and ROI was observed
(F(1.2,10.6) = 1.828, p = 0.026, ηp

2 = 0.411). Additional analysis of the different ROIs
showed an effect of time (F(1,9) = 6.348, p = 0.033, ηp

2 = 0.414), with a higher power
pre-test (1.14 ± 0.26 µV2) compared to post-test (0.74 ± 0.15 µV2) in the F7 electrode, inde-
pendent of condition.

θ band: a significant interaction effect between time and ROI was found
(F(1.1,10.1) = 10.735, p = 0.007, ηp

2 = 0.544). Distinct post-hoc tests examining all ROIs showed
a significant effect of time (F(1,9) = 11.430, p = 0.008, ηp

2 = 0.559; PRE = 1.91 ± 0.35 µV2;
POST = 1.19 ± 0.27 µV2) in the F7 electrode, and an effect of condition (F(1,9) = 6.592,
p = 0.030, ηp

2 = 0.423; MF = 0.29 ± 0.04 µV2; CON = 0.38 ± 0.06 µV2) in the Fz, F3 and
F4 electrodes.
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Figure 3. Reaction time on the visuomotor task comparing both conditions pre- and post-experimental/control task in all
individuals: (a) all stimuli types; (b) simple stimuli (red, green and yellow); and (c) complex stimuli (blue) (* = significant
difference between pre and post in the MF condition; ˆ = significant difference between conditions post task; grey lines
represent individual responses, bold lines represent means ± SE).

3.3. Secondary Outcome Measures
3.3.1. NASA-TLX

Table 2 shows the effects of both condition and time on the different subscales of the
NASA-TLX. Regarding condition, there was only a significant difference in frustration
in the second time point (p = 0.007), with MF causing a higher frustration compared to
CON. The effects of time are also presented in the table, with an additional effect of time
on frustration in the MF condition.
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Table 2. Effects of condition and time on the different subscales of the NASA-TLX.

Scale Mean ± SD Effect of
Condition Effect of Time Post Hoc Time

Time 1 Time 2 Time 3 1↔ 2 2↔ 3 1↔ 3

Mental Workload
MF 40 ± 24 69 ± 28 52 ± 28 p = 0.120 p = 0.004 * p = 0.028 * p = 0.039 * p = 0.549

CON 39 ± 28 53 ± 26 44 ± 22 ηp
2 = 0.224 ηp

2 = 0.418

Physical Workload MF 11 ± 10 7 ± 5 14 ± 7 p = 0.093 p = 0.002 * p = 0.096 p = 0.004 * p = 0.420
CON 15 ± 12 7 ± 6 21 ± 17 ηp

2 = 0.256 ηp
2 = 0.469

Tempo MF 34 ± 25 56 ± 21 43 ± 24 p = 0.054 p = 0.005 * p = 0.023 * p = 0.170 p = 0.360
CON 31 ± 22 49 ± 31 35 ± 25 ηp

2 = 0.323 ηp
2 = 0.410

Performance
MF 41 ± 16 44 ± 14 41 ± 12 p = 0.057 p = 0.904

/ / /CON 35 ± 9 36 ± 16 37 ± 12 ηp
2 = 0.316 ηp

2 = 0.010

Effort
MF 36 ± 14 58 ± 22 42 ± 22 p = 0.394 p = 0.007 * p = 0.023 * p = 0.076 p = 1.000

CON 37 ± 22 47 ± 25 40 ± 13 ηp
2 = 0.074 ηp

2 = 0.388

Frustration
MF 11 ± 9 51 ± 23 36 ± 21

1: p = 0.160
d = −0.457

2: p = 0.007 *
d = 1.008

3: p = 0.423
d = 0.847

MF: p < 0.001 *
ηp

2 = 0.562
CON: p = 0.276
ηp

2 = 0.121

p = 0.002 * p = 0.196 p = 0.039 *

CON 17 ± 10 23 ± 23 27 ± 24 / / /

* = significant difference (p < 0.05).

3.3.2. Motivation

A significant interaction effect (F(1,10) = 12.692, p = 0.005, ηp
2 = 0.559) between

condition and time in the intrinsic motivation scale was observed. Post hoc paired sample
t-tests showed a significant difference between pre (22.09 ± 2.17) to post (19.27 ± 2.94) in
the MF condition (t(10) = 3.492, p = 0.006, d = 1.05) and between MF and CON (19.55± 3.08)
in the pre-task time interval (t(10) = 3.088, p = 0.011, d = 0.93). There were no significant
effects for either time or condition on the success motivation scale.

3.3.3. Rate of Perceived Exertion

A 2 × 2 RM ANOVA showed a significant effect of time (F(1,10) = 8.711, p = 0.014,
ηp

2 = 0.466) and condition (F(1,10) = 11.011, p = 0.008, ηp
2 = 0.524) in RPE measures, without

a significant interaction effect. Post hoc Bonferonni tests showed a significant increase from
pre (8.36 ± 0.50) to post (M ± SD = 9.55 ± 0.58; p = 0.014) experimental/control task, and a
significantly higher value for RPE in the control condition (9.59 ± 0.56) compared to the
MF condition (8.32 ± 0.51).

3.3.4. Heart Rate

Analysis of HR values showed no significant effect of condition. However, there was
a significant effect of time (F(8,56) = 5.106, p < 0.001, ηp

2 = 0.422), with post hoc analysis
showing that these significant effects can be contributed to the significant drop in HR in
measures 4, 5, 6, 7 (during and right after the Stroop task) and 8 (right after the post-flanker
task) compared to the first time point (at the beginning of the experiment).

3.4. Manipulation Checks
3.4.1. Subjective (M-VAS)

A significant interaction effect between condition and time (F(3,30) = 263.402, p < 0.001,
ηp

2 = 0.701) was present. This interaction indicated that, in terms of the effect of time,
the subjective experience of MF increased in both the MF (F(3,26) = 42.970, p < 0.001,
ηp

2 = 0.811) and the CON (F(3,33) = 13.497, p < 0.001, ηp
2 = 0.574) condition. MF signifi-

cantly increased during the Stroop task (from M-VAS 4 onward (first M-VAS administered
during the Stroop task)), and also significantly decreased afterwards (comparison between
M-VAS 7 (M-VAS administered immediately after the Stroop task) and 8 (M-VAS admin-
istered immediately after the post-flanker task)) (Table 3). In the control condition, the
increased MF occurs more slowly (only significant in comparison between M-VAS 1 and
8/9) and there is no significant decrease in MF sensation afterwards. Paired sample t-tests



Int. J. Environ. Res. Public Health 2021, 18, 12906 11 of 20

at every time point showed that there was a significant difference in MF from M-VAS 4
onward between the MF and CON condition (Figure 4/Table 4).

Table 3. Effect of time on the M-VAS measurements in both conditions.

Mental Fatigue Control

M-VAS Mean Diff. 95% CI p M-VAS Mean Diff. 95% CI p

1↔ 2 −5.0 [−18.4; 8.6] 1.000 1↔ 2 −1.2 [−17.0; 14.6] 1.000
1↔ 3 −7.2 [−25.0; 10.6] 1.000 1↔ 3 −7.4 [−30.1; 15.4] 1.000
1↔ 4 −34.3 [−57.0; −11.6] 0.002 * 1↔ 4 −3.3 [−24.8; 18.3] 1.000
1↔ 5 −45.6 [−67.8; −23.5] <0.001 * 1↔ 5 −6.3 [−28.4; 15.8] 1.000
1↔ 6 −55.0 [−78.4; −31.6] <0.001 * 1↔ 6 −12.8 [−30.3; 4.7] 0.340
1↔ 7 −61.5 [−83.7; −39.2] <0.001 * 1↔ 7 −17.5 [−36.7; 1.8] 0.094
1↔ 8 −47.4 [−73.8; −20.9] 0.001 * 1↔ 8 −20.8 [−40.9; −0.8] 0.038 *
1↔ 9 −38.9 [−66.8; −11.1] 0.004 * 1↔ 9 −24.8 [−49.5; −0.1] 0.049 *

* = significant difference between time point 1 and the present time point.

Figure 4. Graph of the M-VAS measurements across conditions (graph lines represent means ± SE;* = significant difference
between the conditions).

Table 4. M-Vas values across time point in both conditions with statistical comparison.

M-Vas 1 2 3 4 5 6 7 8 9

MF 18 ± 10 24 ± 15 26 ± 15 53 ± 17 64 ± 13 73 ± 13 80 ± 11 66 ± 17 58 ± 16
CON 20 ± 17 21 ± 13 27 ± 16 23 ± 16 26 ± 17 33 ± 18 37 ± 17 41 ± 18 45 ± 18

p 0.807 0.612 0.756 0.001 * <0.001 * <0.001 * <0.001 * 0.003 * 0.021 *

* = significant difference between the conditions; M-VAS 1= baseline; M-VAS 2= right after the first Fitlight task; M-VAS 3 = right after the
first flanker task, just before the start of the Stroop task; M-VAS-4,5,6 = throughout the Stroop task; M-VAS 7 = at the end of the Stroop task;
M-VAS 8 = right after the second flanker task; M-VAS 9 = at the end of the second Fitlight task.3.4.2. Behavioural (Stroop and Flanker).

Analysis of reaction time on the different blocks of the Stroop task showed no effect of
time (F(1,13) = 0.422, p = 0.587, ηp

2 = 0.040) or stimuli (F(1,10) = 2.562, p = 0.141, ηp
2 = 0.204).

For accuracy variables, two Friedmann tests showed no effect of time regardless of type
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of stimuli. Four Wilcoxon signed rank tests (one for every block) showed significant
differences in all four blocks between the type of stimuli, with a significantly higher
accuracy when performing the simple stimuli compared to the complex stimuli.

There was no effect of condition or time on flanker reaction time (see Figure 5). There
was also no effect of condition on flanker accuracy. There was, however, an effect of time
on the accuracy of the flanker task (F(1,9) = 5.299, p = 0.047, ηp

2 = 0.371), with the accuracy
post-task (96 ± 1%) being higher than pre-task (95 ± 1%).

Figure 5. Reaction time and accuracy of the flanker task comparing both conditions pre- and post-experimental/control
task in all individuals: (a) reaction time (ms); and (b) accuracy (%) (grey lines represent individual responses, bold lines
represent means ± SE).

3.4.2. Physiological (EEG)

SPA: There was no effect of time or condition on upper and lower α and θ frequency
band during the flanker task.

ERP: There was a significant effect of condition on the amplitude of the N1 ERP
(F(1,7) = 6.724, p = 0.036, ηp

2 = 0.490), with the amplitude of the MF condition (−1.05 ± 0.21 µV)
being lower than the amplitude of the control condition (−1.29 ± 0.26 µV). No effects were
found on the latency of the N1 variable. The opposite was true for the P2 ERP, showing an
effect of time on latency (F(1,7) = 8.018, p = 0.025, ηp

2 = 0.534), but no effects on amplitude.
This effect of time consisted of a shorter latency pre-task (157± 4 ms) compared to post-task
(161 ± 4 ms). Due to a significant three-way interaction effect between time, condition and
ROI on amplitude of P3b (F(1.1,7.7) = 9.306, p = 0.015, ηp

2 = 0.571), subsequent post hoc tests
were carried out. These tests revealed a significant interaction effect between time and ROI
within the MF condition (F(2,14) = 13.061, p = 0.001, ηp

2 = 0.651) and a significant interaction
effect between condition and ROI pre-task (F(1.1,7.8) = 6.318, p = 0.034, ηp

2 = 0.474). Paired
sample t-tests pointed to decreases in amplitude between pre-task (3.75 ± 1.99 µV) and
post-task (1.40 ± 2.13 µV) in the MF condition (t(7) = 3.607, p = 0.009, d = 1.14) and between
conditions (CON = 1.73 ± 1.52 µV) pre-task (t(7) = 2.743, p = 0.029, d = 1.14), with both
effects only present in the fusiform gyrus. There were no effects of time or condition on
P3b latency. There were no effects of time or condition on amplitude and latency of N2.

4. Discussion
4.1. Summary of the Findings

The results of the present study show that MF negatively affects the reaction time of
visuomotor performance, especially inhibitory responses. Meanwhile, the visuomotor task
showed differences in EEG outcomes due to MF exclusively related to frequency bands,
and no effects of MF on ERPs during the visuomotor task were observed. The differences
in frequency bands amount to overall decreases in brain activity in the MF condition.
Secondary outcome measures remained mostly uninfluenced.
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4.2. Effect of Mental Fatigue on Visuomotor Performance in Trained Table Tennis Players

An increase in reaction time was observed from pre-Stroop to post-Stroop in the
MF condition. Moreover, there was a significant difference in reaction time between
both conditions (post-Stroop/documentary) when examining the inhibitory stimuli, with
subjects who experienced MF having a higher reaction time compared to the control
condition. These results are in line with the previous study of Van Cutsem et al. [20], on
which the visuomotor task of the present study is primarily based. Specifically, an increase
in reaction time of 7% was found when comparing the data of the inhibitory stimuli pre-
and post-Stroop task in the MF condition [20]; in comparison, the present study noted an
increase of 9%. As the authors [20] mentioned, this is to be expected, as the effects of MF
on cognitive performance are attributed to a decrease in executive control and attention,
which makes it more difficult to deviate from automatic responses and focus on the task at
hand [45,46]. This study, therefore, further adds to the theories of Baumeister et al. [47],
who suggested that prolonged mental demand exhausts self-control resources, which
impairs executive functions, inhibiting specific processes and functional connectivity in the
brain [48]. More specifically, MF might decrease allocation of neural resources to specific
areas responsible for stimuli processing, fabricating slower reaction times [27]. Therefore,
the effect of MF on the reaction time of inhibitory stimuli is consistent with the literature
and confirms accepted knowledge of theoretical MF mechanisms.

Research has suggested that elite athletes might have superior inhibitory control,
which could provide them with a higher resistance to MF and its detrimental effects on
performance [49]. Moreover, table tennis players exhibit greater cognitive skills such
as executive control, which can theoretically be linked to MF-resistance [9,13]. The lack
of effect on the behavioral manipulation checks in the present study appear to confirm
this statement. Nonetheless, the present study still showed a decrement in visuomotor
performance because of MF, despite the training level of the included subjects. Recent
research suggests that the supposed resistance to MF that trained athletes exhibit is vague
at best, and different subsequent studies imply that this might differ between athletes [20].
A suggestion for this is that athletes are perhaps more resistant, but not immune to MF [20].
Indeed, research has already suggested that there are interindividual differences in the
response to MF [50], and that specific subgroups can be constructed based on susceptibility
of MF [51]. It is, however, grossly simplistic to imply that these differences are solely the
result of training level; other factors such as task representativeness [18], age [52], and
genetics [53] could influence the effects of MF on human performance. The confidence
intervals of the present study also show that there were widely differing responses to MF,
which underlines the importance of interindividual responses to MF. To summarize, the
observed effects of MF on visuomotor task reaction time indicate that trained athletes can
be affected by MF, and that other factors influence the interindividual responses to MF.
These factors certainly remain interesting to consider for further investigation. However, it
should still be noted that MF impaired the general reaction time and the reaction time on
the inhibitory stimuli post-task, and therefore impaired performance.

4.3. Underlying Mechanisms of the Effect of Mental Fatigue on Visuomotor Performance
4.3.1. Neurophysiological

The present study investigated two major EEG outcomes, SPA (i.e., transformation of
EEG data into spectral power [28]) and ERPs (i.e., differences in amplitude and latencies
potential related to certain events [37]). A recent review by Tran et al. [28] investigating MF
using SPA showed that MF generally increases brain activity. More specifically, increases
are observed in theta activity in frontal, central and posterior sites and alpha activity in
central and posterior sites [28]. These frequencies can be linked to inhibition control and
decreased alertness, which indicates that MF makes it more difficult to maintain focus on
the task at hand, which contributes to less efficient performance [28,29,54]. Tran et al. [28]
concluded that an increase in theta wave activity can be seen as a valid and definite
neurophysiological marker for MF. However, the SPA in the present study provided us
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with unexpected results: a decrease in power over time for the F7 electrode across all
bands (PRE > POST in upper and lower α, and PRE < POST in θ), an effect of time in the
upper α band across all ROIs (PRE > POST) in the MF condition, and an effect of condition
in the Fz, F3 and F4 electrodes (MF < CON) for θ activity. Overall, a decrease in power
was found both in the MF condition and generally over time. These reductions in power
are consistent with EEG in motion literature, where these decreases reflect an overload
of incoming stimuli and a general state of cortical desynchronization during complex
movements [55]. This further reduction between tasks might indicate that MF increases
this desynchronization between brain regions. Moreover, recent research points out that
the increases in power due to MF are often found in task-unrelated intervals, and that
there are decreases in specific power bands during task-related activity [56]. The review of
Tran et al. [28] only mentions effects of MF within the same task, and does not provide any
results of the trade-off between tasks. Lastly, since boredom might play a role in the results,
this could have affected the overall power of the specific bands, especially the ones showing
a general effect of time, since boredom decreases frequencies in SPA [57]. Therefore, the
results could also suggest that MF caused less task engagement when performing the
visuomotor task, leading to a decrease in performance. Moreover, within θ power, the Fz,
F3 and F4 electrodes were implicated in a decrease in energy. These electrodes are located
near the dorsolateral prefrontal cortex, further adding to the literature implicating this
region in MF and its effects [25,58].

A drawback of the SPA technique is that the analysis provides only an average change
in frequency over a given time period, which fails to utilise the most important benefit of
EEG measurements, namely an excellent temporal resolution [59]. Studies investigating
the effect of MF on ERP values are scarce, but are possibly more important in the search
for explanations behind MF mechanisms as ERPs represent an immediate change in brain
activity due to a task stimulus [37]. These types of analyses make use of the temporal
properties of EEG, meaning that a change in latency and amplitude of ERPs due to MF
can be connected to behavioural indices of MF, which might provide an explanation for
these changes in behaviour. There are different types of ERPs based on different cognitive
processes, such as N2 (conflict monitoring) and P3b (attentional resources), and preliminary
research suggests a decrease in amplitude due to MF, meaning less activation of these
specific processes [26,27]. The influence of MF on ERPs could, however, go either way in
the presence of performance measures [26,33]. Lower amplitude means less activation of
cognitive processes and can be linked to decrements in performance [26]. Meanwhile, a
higher amplitude might also be possible, certainly if performance remains unaltered, as this
might indicate an increase in cognitive resource division to maintain performance when
vigilance decreases [33]. Unfortunately, no significant differences were found regarding the
ERPs during the visuomotor task. This could be attributed to the nature of the utilised task.
The primary difference between the mentioned studies showing a decrease in amplitude
due to MF and the present study is that these declines were observed during the prolonged
cognitive task. The high-intensity nature of the visuomotor task resulted in a remarkable
increase in the difficulty of identifying ERP values, which resulted in less data to clearly
identify. This is further confirmed by the fact that there were significant differences in
ERP values in the flanker task. The decreases in amplitude (N1 and P3b) there could be
contributed to a decrease in vigilance due to the nature of the employed tasks [33]. Another
explanation regarding the non-effects of ERPs can possibly be found in the inability to
divide the ERPs based on stimulus type, since we failed to distinguish between the different
types of stimuli using the light sensor. Since the inhibitory stimuli were primarily impacted
in the visuomotor task, it could be argued that an effect could have been observed in these
specific ERPs.

4.3.2. Subjective

Several authors also connect the effects of MF on performance to a decrease in motiva-
tion. MF causes decreased motivation, which in turn leads to less attention, and responses
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that are not automatic are therefore impaired [60,61]. Studies show that if motivation is
altered under a mentally fatigued state, performance can be better maintained [60]. This
might also be indicated in the present study, as in the MF condition subjects experienced a
decrease in intrinsic motivation from pre to post. However, recent research suggests that
motivation might not be as closely related to MF as previously thought [62]. Brain related
measures point out that subjective MF is not associated with the motivational network of
the brain, but rather with a decrease in activation of task-specific circuits [62]. Motivation
is also subject to variability, as shown by the significant difference between conditions
at the start of the experiments. The reason for performance decrements might therefore
lie elsewhere.

A last measure frequently associated with MF is RPE, since an increase in RPE due to
MF was seen in the original review by Van Cutsem et al. [17]. This increase in RPE is linked
to performance deteriorations under MF: participants perceive the task as more effortful,
and will therefore more easily forfeit the task [17]. Most studies examining sport-specific
performance and MF effects also asses RPE after physical tasks [18]. The present study also
investigated RPE, and found an increase over time, independent of condition, and an oppo-
site than expected effect of condition, where the control group indicated a higher RPE value
than the MF group. This effect of time can be explained by the fact that the perception of MF
also increased in the control group and that participants in that group already perceived the
Fitlight task as more effortful before the experimental/control condition (which could be
attributed to day-to-day variability). The review of Habay et al. [18] already showed that
the influence of RPE within the effect of MF on sport-specific psychomotor performance
remains ambiguous. Moreover, recent research on RPE within MF and open skilled sports
suggests that there might not be any effect of MF on RPE in individual sport sessions [63].
Therefore, these results seem to indicate that RPE might play a smaller role in acute MF
effects than previously assumed.

4.4. Results and Importance of Manipulation Checks

An interesting observation of this study was the increase in subjective feelings of MF
in the control task over time. Mangin et al. [64] recently emphasized the importance of
a good control task, showing that unsuited tasks increase the MF/ego depletion effect,
which in turn might cause an insignificant effect of condition in different studies. The
results of the present study show that the documentary increased the subjective MF experi-
ence, while there was no detectable effect of condition on the behavioural manipulation
checks, and there were no significant differences in mental workload between the different
conditions after the experimental/control task. As O’Keeffe et al. [65] mentioned, arousal
and boredom are two very important aspects that must be considered when choosing a
mentally fatiguing/control task. Both impact performance in healthy individuals [65],
therefore the intervention task should not be too boring, and the control task should be
emotionally neutral. When Smith et al. [41] compared three different tasks and their effect
on indicators of MF, they found that increasing challenge, as opposed to monotony, might
result in higher task engagement and thus higher levels of MF. With this in mind, the
individualised Stroop task of the present study was designed to challenge individuals
and keep arousal high. However, the observed increase in frustration suggests that more
alterations to the task may be required. The findings mentioned above emphasize that the
choice of both experimental and control task is of utmost importance when designing a MF
study. Nevertheless, even if the employed tasks have some flaws, we still conclude that our
subjects were more mentally fatigued in the MF condition, based on the M-VAS increases
over time in this condition and the significant differences between conditions from the
onset of the intervention. The fact that behavioural checks were unaffected in this study
might be linked to the training level and/or inter-individual variability in subjects [41].
Moreover, research shows that the M-VAS remains the most sensitive way to assess MF [41].

Definitive evidence of the mentally fatigued state of participants can be found in the
physiological manipulation checks, showing a decrease in N1 and P3b amplitude (for P3b,
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only in the P7 electrode) due to condition effects. These results are consistent with the
literature [34]. As Jacquet et al. [34] point out, the overall decrease in N1 amplitude reflects
an increase in mental workload and can be used as an indicator of MF. Moreover, the fact
that the P3b amplitude only decreased in the fusiform gyrus might also give an indication
of the reason behind the behavioural performance maintenance under MF. P3b is often
implicated in attention circuits, and a decrease in amplitude is often connected to MF
performance decrements [33,34,66]. The fact that this decrease in amplitude only occurs in
one ROI (as opposed to the other 6) might indicate that cognitive resources were utilised to
maintain task performance in the other brain regions while countering the effects of MF on
behavioural performance in the flanker task [34].

As a last confirmation of the mentally fatigued state, the performance of the different
subjects was still negatively impacted by MF, as seen by the effects on the visuomotor
task. Therefore, it can be concluded that MF was successfully induced. This study further
emphasizes the necessary implementation of the three different types of manipulation
checks (i.e., subjective, behavioural and (neuro)physiological) in future MF studies [18].

4.5. Limitations and Future Directions

Some limitations concerning the present study should be mentioned. Some data were
lost in the visuomotor task. This loss in data could have impacted the results, and should
be taken into consideration when interpreting the present data. However, the confirmation
that MF affects visuomotor performance, also determined by other studies [20], seems to
indicate that this influence was minimal. The discussion surrounding the tasks employed
in the present study and the decreases in spectral power mention that boredom and arousal
play an essential role in MF. Measures of boredom (such as a Boredom-VAS) and arousal
(such as the Brunel Mood scale) were not employed, and therefore no definitive conclusion
surrounding these facts can be made. Lastly, the ability to divide the ERPs based on
stimulus type might have allowed us to further comment on the mechanisms surrounding
the declines in visuomotor performance due to MF. However, despite these limitations,
the present study provides further confirmation that MF negatively affects sport-specific
visuomotor performance.

As mentioned before [18], more studies, especially testing fundamental theories,
should attempt to include EEG in their experimental protocol when assessing effects of MF
in order to further elucidate the mechanisms of this complex phenomenon.

The present study provides further proof that the current visuomotor task is a valid
way to assess visuomotor performance decrements due to MF. As Van Cutsem et al. [20]
mentioned, this kind of task might provide coaches with a more practical tool (as opposed
to purely cognitive tasks) to evaluated possible MF-related resistance in their athletes.

4.6. Practical Implications

The present study provides new proof that MF affects sport-specific psychomotor
performance in healthy athletes, as shown in the review of Habay et al. [18]. Specifically for
TT athletes, we now know that MF impairs not only technical [16] but also sport-specific
visuomotor performance. Since TT is a sport with high mental and physical demands,
different countermeasures such as caffeine [30] and creatine [67] could be used to combat
acute MF during practice and competitions. Moreover, research also points out that training
might make individuals more resistant to MF [68]. Other ways to combat MF might have
more to do with competition organisation, such as travel [69]. Coaches, trainers and players
employed and participating in TT need to be aware of the definition and effects of and
countermeasures against MF in order to better protect the performance of their athletes.
Future studies should try to examine the benefits of specific training or countermeasures to
combat MF in open skill sports [70].
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5. Conclusions

The present study provides clear evidence that the visuomotor performance of trained
TT players is negatively impacted by MF, further adding to knowledge regarding the effects
of MF on visuomotor performance [18,20]. Specifically, MF worsened reaction time in the
inhibitory stimuli, while the spectral analysis pointed to an increased desynchronization
of brain regions. These findings further prove the impact of MF on TT-specific perfor-
mance [16], suggesting that coaches and other personnel employed in this sport should
be aware of MF, its effects, and possible ways to counteract it. Future research should
build on these findings while including EEG measurements in analysis of the data and
providing clear proof of the mentally fatigued state of participants by using multiple valid
manipulation checks.
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