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2Universidad Politécnica de Durango, C.P. 34300, Durango, DGO, Mexico
3Servicios de Salud del Estado de Durango, Hospital General 450, C.P. 34206, Durango, DGO, Mexico
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Clinical evaluation of the patellar reflex is one of the most frequent diagnostic methods used by physicians and medical specialists.
However, this test is usually elicited and diagnosed manually. In this work, we develop a device specifically designed to induce the
patellar reflex and measure the angle and angular velocity of the leg during the course of the reflex test. We have recorded the
response of 106 volunteers with the aim of finding a recognizable pattern in the responses that can allow us to classify each reflex
according to the scale of the National Institute of Neurological Disorders and Stroke (NINDS). In order to elicit the patellar reflex,
a hammer is attached to a specially designed pendulum, with a controlled impact force. All volunteer test subjects sit at a specific
height, performing the Jendrassik maneuver during the test, and the medical staff evaluates the response in accordance with the
NINDS scale.,e data acquisition system is integrated by using a tapping sensor, an inertial measurement unit, a control unit, and
a graphical user interface (GUI).,eGUI displays the sensor behavior in real time.,e sample rate is 5 kHz, and the control unit is
configured for a continuous sample mode. ,e measured signals are processed and filtered to reduce high-frequency noise and
digitally stored. After analyzing the signals, several domain-specific features are proposed to allow us to differentiate between
various NINDS groups using machine learning classifiers. ,e results show that it is possible to automatically classify the patellar
reflex into a NINDS scale using the proposed biomechanical measurements and features.

1. Introduction

,e observation of the patellar reflex is one of the clinical
trials performed most frequently for neurological tests,
making it an essential tool for the diagnosis of many neu-
romuscular diseases [1].

,e patellar reflex is a deep tendon reflex, mediated by
the spinal nerves from the levels L2, L3, and L4 in the spinal
cord, predominantly in the root L4. ,e patellar reflex test is
performed to determine the integrity of the neurological
function, which is accomplished by hitting the patellar
tendon below the knee cap with a test hammer [2].

,e patellar reflex occurs when an abrupt change arises
in muscle length; in this case, it is produced by the tendon

stretching, which is caused when the hammer stroke is
applied [3, 4]. ,e normal response must be a sudden leg
extension. A reduction or exaggeration of the response is
indicators of damage or interruption in the innervation of
the quadriceps muscle [5].

,e result of the test is commonly rated using the scales
of the National Institute of Neurological Disorders and
Stroke (NINDS) and the Mayo Clinic [6]; in this work, we
use the former one. ,is scale measures the response
magnitude assigning a different number of “crosses” (+),
whereby zero crosses (0+) indicate an exam with no visible
answer; one cross (1+) corresponds to a slight reflex; two
crosses (2+) indicate a reflex in the lower half of the normal
range; three crosses (3+) are a reflex in the upper half of the
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normal range; and four crosses (4+) mean the reflex is
significantly enhanced [6].

An alteration of the patellar reflex response may be
caused by several different factors, which can range from
tumors in the spinal cord [7] to diseases, such as the
Guillain–Barre syndrome [8] that affects the peripheral
nervous system [9]. Likewise, there are other factors that can
disturb the test result, such as the intensity of the stroke [10],
the nervousness that the patient may experiment during the
test, and the age of the patient [11].

,e development of an objective quantification for the
test is a goal that has arisen in recent years [10, 12–14]. Some
work has attempted to quantify the test by performing
motion analysis [15] in cerebral palsy children [16] and also
proposed a new iPhone application to measure the reflex
response [17]. Other studies have attempted to model the
patellar reflex as a response from a theoretical second-order
system [18].

In a previous work, this research team designed a
device to measure, digitally store, and display the patellar
reflex response [19], capturing the relation between ve-
locity and the magnitude of the response [20]. ,e aim of
this study is to analyze the captured biomechanical var-
iables, including the angle of the knee, the velocity of the
knee movement, the applied force, and the magnitude of
the reflex response, in order to develop an automatic
classification algorithm using digital signal processing and
machine learning algorithms.

2. Materials and Methods

2.1. Setup of the Measurement System. According to the
previous works of Salazar-Muñoz et al. [19, 20] andMoreno-
Estrada et al. [21], the designed device uses an impact sensor
as the start time marker of the test and an inertial mea-
surement unit (IMU) to measure both the angular velocity
and angular position of the leg after it receives the hammer
stroke on the tendon. ,e measurement system consists of
the following two parts.

2.1.1. Mechanical Controlled Force System. ,e mechanical
controlled force system consists of a hammer designed as a
Charpy pendulum. ,e mechanical system consists of an
aluminium pendulum rubber tip attached to a toothed gear
angle with an adjustable height for the hammer initial po-
sition, which allows you to select the impact force on the
patellar tendon as a function of the elevation angle of the
pendulum.,e tip is the same as the clinical hammer used by
a physician. ,e physician shall place the arm in the desired
position and release it manually. ,e force applied will be the
same for all test subjects to generate their own flexion. ,e
prototype was designed such that the elevation angle can
increase from 30° to 165° in steps of 15°. In these experiments,
the hammer arm was elevated to 135° and the hammer mass
was 195 gr, resulting in an impact force of 0.82N, which was
validated by the Charpy pendulum equation at the me-
chanical engineering laboratory [21].

2.1.2. Data Acquisition System (DAS). ,eDAS is composed
of the following elements:

(i) Tapping Sensor. ,e LDT0-028K piezoelectric sen-
sor manufactured by Measurement Specialities was
used, connected to a charge amplifier circuit and an
instrumentation amplifier to obtain a 5V pulse, thus
detecting the instant of impact on the tendon to
synchronize the other measured variables.

(ii) Angular Displacement and Rate Sensor. ,e
Sparkfun IMU number SEN-11072 was used, which
has 5 degrees of freedom. It contains IDG500 2-axis
gyroscope with the sensitivity set to 2mV/°/s and
ADXL335 3-axis accelerometer.

(iii) Control Unit. ,e signals from the sensors are
captured by the NI USB6009 acquisition board,
using two analogue channels and a power source of
5V for the electronic system.

(iv) Graphical User Interface (GUI). ,e GUI was
designed in LabView to display the sensor readings
in real time and save the captured signals of each test
in an lvm file. Each new test generates a new file that
is then imported into Matlab for later analysis. ,e
selected sample rate is 5 kHz, and the board is
configured for a continuous sample mode. ,e GUI
shows the following indicators in real time: the
angular displacement, the angular velocity, and the
moment of impact on the tendon.

2.2. Volunteer Selection. In this work, we use a group of 106
healthy volunteers to evaluate our proposed system. All of
them are students from the Faculty of Medicine at the
“Universidad Juárez del Estado de Durango,” and they in-
clude both men and women.,emean age, height, and body
mass for subjects were 21.5± 1.2 years, 1.73± 0.09m, and
72± 13 kg, respectively. A volunteer is considered to be
healthy for this study if he is not suffering from any di-
agnosed neurological or neuromuscular disease when the
test is realized [22]. ,e clinical trial was carried out under
the direction of the Neurology Department of the “Hospital
General 450” of Durango City, Mexico. ,e study was ap-
proved by the Ethics and Research Committee from the
hospital.

2.3. Measurement Procedure. Experimental tests were per-
formed under the supervision of the physician. Two reflex
tests are applied to every volunteer to develop an automatic
classification algorithm using digital signal processing and
machine learning algorithms. We compare the NINDS scale
with the biomechanical variables registered by the designed
measurement system.,e volunteer must be seated in a high
chair, this way his right foot never touches the floor. In order
to get a high relaxation of the quadriceps muscle, the vol-
unteer is requested to perform the Jendrassik maneuver [23].
All the tests were performed under the same conditions.

(i) Test A. A physician gives a sharp tap on the patellar
tendon with a standard clinical hammer. ,e
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physician evaluates the reflex response using the
NINDS scale. Dafkin et al. [10] established using
stepwise multiple regression analysis that different
groups of subjective raters all relied on the change
of the knee angle to assess the reflex. ,erefore,
the trained physician was asked to focus on this
feature to provide his rating for the analyzed
patients.

(ii) Test B. After Test A, the sensors are placed on the leg
of the volunteer as shown in Figure 1, and the
procedure is as follows: (a) the taping sensor
(impact sensor) is adhered to the patellar tendon
with tape, below the patella to avoid any undesired
movements and (b) the IMU is placed on the ankle
using a belt.,e distance between the knee centre of
rotation and location of the sensor in all subjects
was maintained small following the reference [24].
,e IMU must be positioned parallel to the leg and
perpendicular to the floor. ,e controlled force
system hits the patellar tendon.,e data acquisition
system stores all sensor readings using the GUI that
was designed for this experiment. After this pro-
cedure, the measurement system is withdrawn from
the leg.,is test was performed under the physician
who verifies that the reflex response was equivalent
to Test A. No test was rejected because it ranked
differently from the Test A.

2.4. Data Treatment and Features. ,e data stored by the
system contain three time series. ,e first one is the impact
signal, whichmarks the exactmoment when the pendulumhits
the tendon, denoted by to.,e second time series is the angular
position signal, which measures the angle of the leg during the
reflex response. ,e third time series is the angular velocity of
the legmovement during the test. All the signals are trimmed to
only extract the 4 seconds following the hammer impact, after
to, because the signal power has decreased by 97% and all the
vector lengths were equal. A low pass 3rd degree Chebyshev
filter with a cutoff frequency of 100Hz was used to eliminate
high-frequency noise.

Afterward, the signals of the angular position and an-
gular velocity are characterized by extracting the following
set of descriptive features. ,e extracted features are sum-
marized in Figure 2 for the angular position and in Figure 3
for the angular velocity, each case showing a typical signal
captured by the system for each measurement.

From the angular position signal, the extracted features
are as follows. First, Δa represents the difference between the
maximum andminimum peaks of the signal. Second, Δ1/3 is
the ratio between the first (P1) and third peak (P3) of the
signal. ,ird, Δt1 is the time interval between the maximum
and the minimum peaks. Fourth, Δt2 is the time interval
between the first peak and the third peak of the signal.
Finally, Ts is the settling time, which is the moment when the
signal power has decreased by 97%.

In the case of the angular velocity, a single feature is
extracted called Vmax, which is the maximum value of the
signal, shown in Figure 3 as the highest peak.

2.5. Classification. To achieve the classification of the re-
alized patellar reflex tests based on the number of crossings
in the NINDS scale, basic pattern recognition and machine
learning methods are used [25, 26]. Specifically, the fol-
lowing four classifiers are used:

(i) Naive Bayes
(ii) Tree BAGGER
(iii) k-nearest neighbors (KNN)
(iv) Support vector machine (SVM)

Classifiers are tested with different combinations of the
extracted features. Because the size of the dataset is relatively
small, each classifier is tested using leave-one-out cross
validation. Moreover, the data are preprocessed for feature
reduction using principal component analysis (PCA).

3. Results and Discussion

According to the assessment given by the hospital staff at the
“Hospital General 450,” the collected samples are distributed
in the NINDS scale as follows: 8 samples belong to the 0+
level, 20 samples were from 1+ level, 48 samples from 2+
level, and 30 samples belong to 3+ level. ,e 4+ level is
omitted because none of the volunteers exhibited such a
response.

First, we analyze the recorded signals from each response
level, to determine if there are any general similarities be-
tween them. In Figures 4 and 5, we can see the average
angular position and angular velocity, grouped based on the
corresponding NINDS levels.

Figure 4 shows that the movement of the leg after the
impact has a wavelike behavior, which decreases with time
until it stabilizes to the rest position. ,e maximum am-
plitude reached by the corresponding average signal of the
3+ group is 47 degrees. ,is peak corresponds to the
maximum elevation of the leg. ,e minimum average value
of the same group is −37.85 degrees, corresponding to the
retraction of the leg after the lift. ,is value, which is the Δa
feature, is decreased by 36% in the corresponding average
signal of the 2+ group, by 74% in the corresponding mean
signal of the 1+ group, and by 97% in the corresponding
mean signal of 0+ group, with respect to the mean signal of
the 3+ group.

In Figure 5, the maximum value reached by the average
of the velocity signals of 3+ is 38 degrees per second. ,is
value is the Vmax feature and is attenuated by 31% in the
mean signal of the 2+ group, by 76% for the 1+ group, and by
95% for the 0+ group [20].

In Table 1, we can observe the mean and standard
deviation of the grouped features according to the NINDS
scale.

To make sure the separation between groups is sig-
nificant, the Kruskal–Wallis statistical test is applied to
every feature. ,e test is chosen because the data distri-
bution is not Gaussian. ,e test gives a p value <<0.05 in
every test, allowing us to reject the null hypothesis that all
samples share the same median. Figure 6 shows the box-
plots for each NINDS level for the Δa feature, and Figure 7
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shows the same box plot for Vmax feature.,ese features are
the ones that show the most separation between all the
NINDS groups.

Different combinations of features are selected based on
the statistical results and used as the input data for the
machine learning classifiers. ,e tests are carried out using
leave-one-out cross validation (LOO CV), given the rela-
tively low number of samples in the database. Table 2 shows
all of the tested combinations and the classification accuracy
of each classifier. In each case, principal component analysis
(PCA) is applied to the input features to perform feature
transformation (but results are only shown for the case in
which PCA improved the performance of at least one
classifier). Best performance is achieved when using the Δa
and Vmax features with the naive Bayes classifier without
PCA, with only 11 of 106 misclassifications, representing a
classification accuracy of 89.62%.
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Figure 1: Schematic representation of the experimental system to obtain the patellar reflex response, showing the physical setup and sensor
locations.
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Figure 2: Features extracted from the angular position signal.
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Figure 3: Feature extracted from the angular velocity signal.
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Figure 4: Mean signals of each NINDS group for angular position
readings.
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Figure 8 shows all of the data samples plotted in the Δa
and Vmax feature space. ,e points are labeled to show the
correctly classified sample from each group, using a different
mark for each NINDS level and the misclassified samples as
well. Notice that most of the classification errors can be
found on the boundary between the 2+ and 3+ groups.
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Figure 5: Mean signals of each NINDS group for angular velocity readings.

Table 1: Mean and standard deviation (mean± std) of the features for each NINDS group.

NINDS scale Δa Δ1/3 Δt1 (ms) Δt2 (ms) Ts (sec) Vmax

0+ 3.45± 1.93 0.82± 0.3 108± 71 1.78± 0.244 0.89± 0.318 2.73± 1.96
1+ 24.52± 8.4 0.144± 0.12 354± 68 1.57± 0.164 1.97± 0.766 10.34± 5.06
2+ 59.57± 12.41 0.156± 0.16 414± 64 1.73± 0.173 2.41± 0.785 26.97± 9.66
3+ 93.83± 18.39 0.135± 0.16 440± 52 1.79± 0.222 2.53± 0.773 38.71± 9.53
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Figure 6: Boxplots of the Δa feature for each NINDS group.
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Figure 7: Boxplots of the Vmax feature for each NINDS group.

Table 2: Classification accuracy for different feature combinations,
showing the LOO CV testing performance.

Naive
Bayes
(%)

Tree
BAGGER

(%)

KNN
(%)

SVM
(%)

Δa, Vmax 89.62 82.07 86.79 67.92
Δa, Vmax (with PCA) 88.64 83.96 86.79 66.98
Δa, Vmax, Δ1/3 84.9 86.79 83.96 69.81
Δa, Ts 86.79 84.9 35.84 71.69
Δ1/3, Δt1, Δt2 40.56 53.77 53.77 34.9
Δ1/3, Δt1, Δt2
(with PCA) 57.54 55.66 52.86 40.56
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Figure 8: Δa and Vmax feature space, showing all the samples
collected in the dataset. ,e dark round markers shows mis-
classified tests by naive Bayes classifier, and all other points were
correctly classified into their respective groups.
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4. Conclusion

,e dynamic behavior of the leg during the patellar reflex
createsmovement patterns that can be automatically classified
in the NINDS scale with a useful degree of accuracy. ,is is
shown to be possible using a straightforward feature ex-
traction procedure and pattern recognition techniques. ,e
classification methods used in this study achieved a LOO CV
test accuracy of 89.62% in the best case, using only two feature
dimensions and the naive Bayes classifier. However, despite
the good performance by the proposed system, discordance
between clinical measurements and the current measure-
ments might still be considered high in some scenarios.
Moreover, the proposed approach should be verified using
observations from different neurologists to determine how
well this approach generalized across experts. Nonetheless,
the proposed system might lead to the full automatization of
this test by integrating these future improvements, along with
other promising technical enhancements, such as wireless
sensors to increase a patient’s comfort or edge computing to
simplify the data processing and transmission process.
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