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Abstract

Normal variation in gene expression due to regulatory polymorphisms is often masked by biological and experimental
noise. In addition, some regulatory polymorphisms may become apparent only in specific tissues. We derived human
induced pluripotent stem (iPS) cells from adult skin primary fibroblasts and attempted to detect tissue-specific cis-regulatory
variants using in vitro cell differentiation. We used padlock probes and high-throughput sequencing for digital RNA
allelotyping and measured allele-specific gene expression in primary fibroblasts, lymphoblastoid cells, iPS cells, and their
differentiated derivatives. We show that allele-specific expression is both cell type and genotype-dependent, but the
majority of detectable allele-specific expression loci remains consistent despite large changes in the cell type or the
experimental condition following iPS reprogramming, except on the X-chromosome. We show that our approach to
mapping cis-regulatory variants reduces in vitro experimental noise and reveals additional tissue-specific variants using skin-
derived human iPS cells.
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Introduction

The recent advances in whole genome association studies

(GWAS) have uncovered multiple genetic loci linked to common

human diseases and traits. In addition to the more interpretable

coding sequence changes, a large number of identified loci are in

the non-coding region, suggesting that inheritable regulatory

polymorphisms may play an important role [1–3]. Expression

quantitative trait loci (eQTL) studies can reveal both cis- and trans-

regulatory variants that can be mapped to a specific genetic region

[4,5]. However, it requires a large sample size to reach the

statistical power necessary to observe subtle changes in gene

expression due to noise, ‘batch effects’ and other confounding

factors [1,6]. Current mapped eQTL loci account for only a small

fraction of the overall genetic risk for a given trait, suggesting that

the weak effects from multiple genetic loci may play an important

role.

Although eQTL loci in different tissues can overlap [7–11], the

range of cell types available for study still poses a problem since

many regulatory pathways are tissue-specific [1,12]. Given the

potential of eQTL for elucidating genetic causes of complex traits

and diseases, an ambitious effort has been launched to collect

various tissue types from a large number of individuals (i.e.

Genotype-Tissue Expression project). However, the existing

approaches to tissue sampling, including the use of surgical and

tumor specimens, are complicated by social, medical and legal

issues in addition to artifacts associated with tissue collection and

processing [1]. In addition, it is difficult to follow up with a

functional assay in the same individual and evaluate the biological

effect of regulatory variants in the absence of a viable experimental

system (i.e. cell lines).

Induced pluripotent stem cells [13–16] can be derived from

skin, hair or blood [17,18], using transduction of reprogramming

factors (i.e. OCT4, SOX2, KLF4 and MYC). They can be used to

derive a number of tissues and cell types in vitro without resorting to

invasive biopsy, and differentiation of iPS cells can theoretically

allow for tissue-specific eQTL studies. However, the difficulty in

observing pure and/or consistent in vitro differentiation can result

in significant experimental variability and mask subtle regulatory

variants given the practical limits on the sample size. An

alternative approach may be to compare the expression level

between two heterozygotic parental genes using ‘reporter’ SNPs

(expression SNPs) in the exon [19–26]. Allele-specific gene

expression (ASE) results from cis-regulatory differences in tran-
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scription (i.e. upstream activating sequences, DNA methylation,

core promoters) or processing (i.e. alternative splicing, miRNA)

[27,28]. As such, the ASE ratio can control for the effect of

experimental variations on gene expression, which function

predominantly in trans [29,30].

Here, we used padlock probes and high-throughput sequencing

for digital RNA allelotyping to map tissue-specific expression

regulatory variants in human iPS cells and their derivatives and

showed that allele-specific expression analysis could overcome

experimental noise and artifacts. Current approach will allow in

vitro experiments on individualized iPS cell lines to map additional

tissue-specific and context-dependent regulatory variants.

Results

Derivation of iPS cells from Personal Genome Project
volunteer skin fibroblasts

The Personal Genome Project (PGP) is a repository for pre-

consented phenotype and genetic data as well as cell lines,

including iPS cells. We derived primary skin fibroblast lines from

two participants in the Personal Genome Project (PGP), using two

partial depth skin biopsy samples obtained from both arms (Bx1

and Bx2). Clonal populations of PGP1 and PGP9 primary skin

fibroblasts (named PGP1Bx1F and PGP9Bx1F) were isolated by

routine subcloning. Non-clonal populations of primary fibroblasts

(named PGP1Bx2F and PGP9Bx2F) were derived from a second

biopsy site. The PGP1 and PGP9 fibroblast populations were

transduced with retrovirus expressing pluripotency reprogram-

ming factors (OCT4, SOX2, KLF4 and MYC) [31]. The isolated

iPS clones expressed pluripotency markers (Figure 1A) and formed

tetratomas containing normal derivatives of all three germ layers

(Figure 1B), confirming their functional pluripotency.

Padlock probes enable accurate and quantitative
discrimination of alleles

In order to harness the accuracy of high-throughput sequencing

for quantitative allele-specific RNA analysis, we designed padlock

probes targeting 27,000 common exonic SNPs (minor allele

frequency . 0.07), representing 10,345 unique genes, based on

the hg18 annotation (UCSC Genome Browser) (Table S1). The

padlock probes were synthesized on an Agilent array in a

massively parallel manner, and they were then PCR amplified

and processed to generate single-stranded DNA molecules [19,32].

The pool of single-stranded padlock probes was annealed to the

double-stranded cDNA and/or the genomic DNA, followed by a

9-bp fill-in and ligation reaction to circularize the annealed probes

[33,34]. The circularized products containing the captured

sequence were amplified and sequenced on Illumina GAII. On

average, we obtained 6.462.0 million sequencing reads per

sample, and we were able to map 69.8617.2% of the reads against

the RefSeq sequences used for the padlock probe design (Table 1).

Approximately 19,000 (70.4%) out of 27,000 SNPs were covered

at least 20 times with a mean coverage of 250 reads for each SNP,

of which 25% were heterozygous calls (Table 2). Genotyping calls

made using Affymetrix 500K and digital allelotyping showed a

concordance rate of 98% for .20x coverage and 99% for .50x

coverage (Table 3). Among the heterozygous SNPs, the ratio

between reference and alternative alleles was symmetrically

distributed around 0.51 (Figure 2A), and the distribution of

sequencing reads was nearly identical between the two alleles

(Figure 2B), suggesting little or no bias in capturing and mapping

the reads.

Allele-specific expression measurement from the cDNA
using padlock probes

For RNA allelotyping, we amplified the singled stranded cDNA

from 50 ng total RNA using linear displacement amplification

(NuGen) and generated the double stranded cDNA using random

hexamer priming (Invitrogen). We confirmed that the padlock

probes captured both + and - strands with a similar efficiency,

51.6% and 48.4% respectively (Table 4). Typically, we observed

,1,300 (25%) heterozygous expression SNPs out of ,5,200 total

expression SNPs. As expected, large ASE deviations were

associated with SNPs having a small number of reads (,100),

indicating the presence of biological and/or technical noise

(Figure 3A). However, the allele-specific expression ratio was

highly reproducible between the total RNA replicates (R2 = 0.7994

with ,100 reads and R2 = 0.905 with .100 reads) (Figure 3C and

3D). In order to validate our method, we compared digital RNA

allelotyping to quantitative Sanger sequencing, which showed a

high correlation between the two methods among the 12

heterozygous expression SNPs in PGP1 samples (R2 = 0.825)

(Figure 3B).

We then asked whether the total number of reads for each SNP

might reflect the gene expression level. We compared the mean

number of sequencing reads from probes targeting the same

transcript and normalized the values against the number of

sequencing reads from the genomic DNA. We then compared

these values against the relative gene expression levels as measured

by Illumina BeadChip Human Ref-8, revealing only a weak

correlation (R2 = 0.1684) (Figure 4A). We also asked whether we

were capturing only those genes that were highly expressed. When

we compared a list of genes captured using our method and

compared it to their relative gene expression level, 159 out of 1124

(14%) captured SNPs were associated with the genes below the

detection limit on the BeadChip platform (Figure 4B). These

results suggested that digital RNA allelotyping was capable of

detecting rare transcripts and that the absolute read counts did

not necessarily reflect the overall gene expression level, possibly

due to differences in probe hybridization, abundance and/or

amplification.

Individual- and tissue-specificity of allele-specific
expression

In our previous study, we showed that human fibroblasts,

lymphoblastoid cell lines and primary keratinocytes all demon-

strated tissue-specific ASE (4.3–8.5% of heterozygous SNPs), using

a different probe library design (CES22k-3.2) [19]. When adjusted

for the false discovery rate in biological replicates, the percentage

of SNPs with tissue-specific ASE was between 2.3–6.5%. Using a

Author Summary

Most complex traits likely result from a combination of
genetic polymorphisms. The normal variation in gene
expression is thought to be an important contributor. In
order to examine a wide range of personalized tissue types
from a given individual, we developed a robust method for
detecting regulatory variants genome-wide in human
induced pluripotent stem (iPS) cells. By having a platform
capable of mapping regulatory variants despite large
biological and experimental noise, and by being able to
use in vitro differentiation to derive multiple human tissue
types, our approach should enable the identification of
large numbers of regulatory variants genome-wide using
minimally invasive skin biopsies from a large number of
human subjects.

Mapping cis-Regulatory Variants in Human iPS Cells
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new probe design (CES27k-9bpV3), we looked for tissue-specific

ASE in PGP1 fibroblasts and lymphoblastoid cell lines (Dataset S1

and Dataset S2). We observed that 3.8% (31/807) of the SNPs

showed tissue-specific ASE reproducibly in both replicates.

Between iPS clones and primary fibroblasts, the number of

reproducible tissue-specific ASE loci increased to 9.8% (107/

1091), while it was 6.9% (71/1036) between iPS cells and

embryoid bodies (EBs) (Table 5). These findings suggested that

up to 10% of ASE showed reproducible tissue-specificity and that

they were more numerous in complex and/or heterogeneous tissue

samples.

Figure 1. PGP induced pluripotent stem cells. (A) We derived 2–3 iPS cell lines from two biopsy sites in each individual. iPS cells expressed
molecular pluripotency markers (SSEA4, SSEA3, Tra1-60, Tra1-81, NANOG and OCT4) and stained for the alkaline phosphatase activity. (B) When
injected into immune-deficient mice, iPS cells formed a teratoma, containing normal tissues from all three germ layers, including respiratory
epithelium (endoderm), bone (mesoderm) and neuroectoderm (ectoderm).
doi:10.1371/journal.pgen.1000718.g001

Table 1. Illumina GA sequencing summary.

N = 25 runs Mean STD

Sequencing reads 6,405,521 1,983,217

Mapped reads 4,528,960 1,916,467

% mapped 69.8% 17.2%

doi:10.1371/journal.pgen.1000718.t001

Table 2. Padlock capture statistics.

SNP calling PGP1 genomic DNA PGP9 genomic DNA

Sequencing reads 6,891,462 6,473,738

Mapped reads 3,114,422 4,677,151

% mapped 45.2% 72.2%

SNPs called 19,013 19,175

Unique genes 8,708 8,844

Mean SNP coverage 255 251

Heterozygous SNPs 4,721 (24.8%) 4,829 (25.2%)

doi:10.1371/journal.pgen.1000718.t002

Mapping cis-Regulatory Variants in Human iPS Cells
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In order to explore the relationship of ASE ratios across a wide

range of tissue types, we used 186 expression SNPs that were

universally present in multiple cell types from PGP1 and 9 and

hierarchically clustered them using un-normalized ASE ratios

directly (Figure 5). The sample correlation between the biological

replicates was 0.983 (PGP1Bx2 F1 and F2) and 0.987 (PGP1Bx1

iPS1a and iPS1c), while the correlation between primary

fibroblasts and lymphoblastoid cells was 0.980 (PGP1Bx2

fibroblasts versus lymphocytes). The differentiated PGP1Bx1

iPS1 derivatives were related to each other with a lower

correlation of 0.969. In contrast, the ASE ratio between PGP1

and PGP9 samples had a correlation of only 0.542. We have

shown previously that genetic similarity was highly correlated with

allelic ratio similarity (R2 = 0.91) [19], and the current result

confirmed this conclusion and further suggested that allele-specific

expression from human iPS cells were remarkably similar to other

cell types from the same individual, despite differences in their

epigenetic states [35].

We then normalized direct allelic ratios from the cDNA with

those from the genomic DNA in order to reduce probe-specific

effects on ASE measurements. To correct for a normalization bias,

we calculated the mean ASE ratio across all the samples and used

the distance from the mean for hierarchical clustering (Figure 6).

Using the relative change in the ASE ratio across multiple cell

types, we observed a consistent correlation between fibroblasts

(0.31 correlation), lymphocytes (0.39 correlation) and iPS cells

(0.24 correlation), while the sample correlation of fibroblasts versus

lymphocytes and iPS cells was 0.27 and 20.0093, respectively.

Finally, the correlation coefficient between the PGP1 and PGP9

samples was 20.26, indicating a significant difference between the

two individuals. From these results, we concluded that the

structure of cis-regulatory variants was largely genotype-dependent

and that the allelic architecture in gene expression changed to a

much smaller degree from cell type to cell type.

Defining discrete ASE loci associated with regulatory
variants

Strictly speaking, the ASE ratio was a quantitative measure that

reflected the relative abundance of different RNA alleles.

However, any detectable differences in ASE alone could also be

used as an indicator of functional regulatory variants nearby. In

order to assign a confidence score to ASE-mapped genes, we used

a chi-squared test (cDNA-to-genomic DNA alleles; x2.6.64).

Since miniscule ASE could be called ‘significant’ solely due to the

large number of sequencing reads, we required that the ASE ratio

be .0.60 or ,0.40. Therefore, our digital ASE calls addressed

whether a cis-regulatory variant could be confidently mapped to a

gene locus, not whether ASE showed a biologically meaningful

allelic imbalance. When examining 427 digital ASE-positive SNPs

out of 1822 total SNPs in technical replicates, the correlation

coefficient of ASE ratios increased from 0.8672 to 0.9766

(Figure 7A), suggesting that much of the measurement noise had

been eliminated due to a large number of observations. Using

technical replicates, we also estimated the false discovery rate of

Figure 2. Distribution of heterozygous genotyping calls. (A) Padlock probes were used to capture approximately 19,000 SNPs from the
genomic DNA. The number of mapped heterozygous reads (1.2 million) was then used to calculate the allelic ratio (reference:alternative) in 4,721
SNPs. The observed distribution of ASE ratios was symmetrically distributed around a mean of 0.51, suggesting little sequencing and/or mapping
bias. (B) The heterozygous sequencing reads for both reference and alternative alleles were binned according to the observation counts. Their
distribution probability was then plotted against the sequencing read counts, showing a nearly identical distribution pattern.
doi:10.1371/journal.pgen.1000718.g002

Table 3. Genotyping concordancy.

SNP coverage
(# of SNPs examined)

Affy 500K
Concordancy
PGP1

Affy 500K
Concordancy
PGP9

All (n = 3,527) 96.5% 96.3%

.20 reads (n = 2,905) 97.9% 98.3%

.50 reads (n = 2,288) 98.6% 99.1%

.100 reads (n = 1,671) 99.1% 99.3%

.150 reads (n = 1,266) 99.2% 99.6%

doi:10.1371/journal.pgen.1000718.t003

Mapping cis-Regulatory Variants in Human iPS Cells
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digital ASE calls to be 1.6% (Figure 7B), and when all the samples

were adjusted for the false discovery rate, 2764.7% of the

heterozygous expression SNPs were ‘confidently’ mapped in any

given sample (Table 6). In order to show that digital ASE calls did

not depend solely on the number of observations, we compared

digital ASE-positive and negative calls and looked at the number

of cDNA and genomic DNA reads as well as the average ASE

deviation. We observed that the number of cDNA and genomic

DNA reads were ,45% higher, whereas the average allelic ratio

deviation was ,250% higher in the ASE-positive calls (Table 7).

We also examined the ASE calls between PGP1 and PGP9 in

order to see if they reflected the difference in allele-specific

expression (Dataset S1 and Dataset S2). While the allelic deviation

was ,90% higher in the ASE-positive calls, the number of

genomic DNA reads was also ,120% higher. These results

indicated that our method for mapping ASE-associated regions

was influenced by all three parameters, as expected.

Figure 3. Noise and reproducibility in padlock-based ASE measurements. (A) The ASE ratio measurement from the PGP1 fibroblast cDNA
(1,021 SNPs) was plotted as a function of the total number of mapped reads (reference + alternative alleles), demonstrating a relationship between the
ASE ratio variance and the read count. (B) Twelve random SNPs were examined in PGP1 fibroblasts and lymphocytes using quantitative Sanger
sequencing, in which the height of each sequencing trace was used to calculate the allelic ratio in the cDNA. These values were then compared against
the ASE ratio determined using padlock probes. (C) The correlation among the ASE ratios with less than 100 observations remained high (R2 = 0.799) in
technical replicates (PGP1 EB7b and EB7c). (D) Among the ASE ratios with more than 100 observations, the correlation improved to R2 = 0.905.
doi:10.1371/journal.pgen.1000718.g003

Table 4. Strand-specific padlock capture efficiency.

Strand Targeted SNPs (gDNA) SNPs (cDNA)

2 13,425 (49.7%) 9,346 (49.2%) 2,974 (48.4%)

+ 13,575 (50.3%) 9,668 (50.8%) 3,168 (51.6%)

Total 27,000 19,014 6,142

doi:10.1371/journal.pgen.1000718.t004

Mapping cis-Regulatory Variants in Human iPS Cells
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In order to visualize tissue-specific ASE loci associated with high

confidence scores, we examined 1522 heterozygous expression

SNPs in 20 PGP1 and PGP9 samples, out of which 317 SNPs were

shared among at least 80% of the samples. When these digital ASE

calls were hierarchical clustered, there were able to discriminate

different tissue types and individuals (Figure 8A). A possible

explanation of why digital ASE calls reflected tissue-specificity was

that higher tissue-specific expression resulted in higher cDNA

observation counts. However, we previously demonstrated that

there was no appreciable difference in the number of cDNA reads

between ASE-positive and -negative calls in a variety of tissues

(Table 7). In addition, the average number of sequencing reads

correlated poorly with the absolute gene expression level (Figure 4A),

suggesting that the differences in read counts alone did not explain

tissue-specific ASE mapping. We also examined individual-specific

ASE-positive clusters with the sample correlation of 0.7223 in PGP1

(29/317). Interestingly, a large fraction of PGP1-specific clusters

were characterized by consistent ASE calls across all cell types

(Figure 8B), indicating that approximately 1/3–1/2 of the mapped

cis-regulatory variants were cell type and context-independent.

Figure 4. Effect of the gene expression level on ASE. (A) We
examined 1,124 genes in PGP1 fibroblast cDNA shared between
Illumina’s BeadChip Ref-8 V3 and our padlock probe set. To normalize
for the probe-specific differences in capture, the cDNA capture reads
were divided by the number of reads obtained from the genomic DNA.
For those genes that were targeted by padlock probes more than once,
we averaged the number of normalized reads from each probe. We
generated a plot of the relative gene expression from BeadChip versus
the normalized average capture counts, demonstrating only a weak
correlation between the level of gene expression and the frequency of
padlock capture. (B) We then examined the distribution of the gene
expression level detected on BeadChip (green) versus those captured
by padlock probes (red). Of the 18,630 genes, approximately 50% did
not reach the detection criteria (p-value ,0.01) on BeadChip. On the
other hand, 14% of all digital RNA allelotyping calls were made using
these ‘undetectable’ rare transcripts.
doi:10.1371/journal.pgen.1000718.g004

Table 5. Tissue-specific ASE calls (x2.6.64).

Cell type comparison replicates Shared hetSNPs tsASE calls (%)

PGP1bx2F1:PGP1L2 808 14.4%

PGP1bx2F2:PGP1L3 1307 16.8%

Overlap 807 3.8%

PGP1bx2F1:PGP1bx2_iPS1 1186 31.5%

PGP1bx2F2:PGP1bx2_iPS6 1174 24.9%

Overlap 1091 9.8%

PGP1bx1_iPS1a:EB7 1049 26.2%

PGP1bx1_iPS1c:EB7 1309 19.2%

Overlap 1036 6.9%

doi:10.1371/journal.pgen.1000718.t005

Figure 5. The ASE ratio alone reveals tissue- and person-
specificity of regulatory differences. Of the 695 heterozygous
expression SNPs commonly shared between PGP1 and PGP9, we
selected 186 expression SNPs that were detectable in 17 out of 17 cDNA
samples (three samples with a very low sequencing depth were
excluded). Using log2-transformed ASE ratios derived directly from the
sequencing counts, we performed hierarchical clustering of samples
and expression SNPs (green: reference allele; red: alternative allele). We
identified highly individual-specific clusters from the ASE ratio alone in
the absence of any genotyping data. In addition, most tissue-specificity
relationships were determined correctly from the ASE ratio.
doi:10.1371/journal.pgen.1000718.g005

Mapping cis-Regulatory Variants in Human iPS Cells
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Mapping tissue-restricted ASE loci using iPS cells
So far, we attempted to map cis-regulatory variants using the

gene transcripts that were universally present among various cell

types and found that up to 10% of the genes might be influenced

by tissue-specific regulatory variants. However, we expected that

other cis-regulatory variants would only be detected using tissue-

specific transcripts. In order to capture these variants, we

compared different cell types with a similar sequencing depth

(5.3–7.4 million reads) and counted the number of ASE-positive

calls that were specific to that tissue. We were able to examine

between 1,500 to 1,900 heterozygous expression SNPs in primary

fibroblasts, immortalized B-lymphocytes, iPS cells and iPS-derived

embryoid bodies (EBs) from PGP1 (Table 8). The number of

expression SNPs unique to each cell type was 34 (2.2%) and 49

(3.2%) for fibroblasts and lymphocytes, respectively. In contrast,

we observed 126 (7.8%) and 287 (14.9%) tissue-restricted

expression SNPs in iPS cells and EBs, respectively. This suggested

that iPS cells and EBs expressed many transcripts absent in

primary cell lines. In addition, we found that the percentage of

ASE-positive SNPs was generally lower in fibroblast- and

lymphocyte-specific transcripts (,24%) as compared to iPS and

EB-specific transcripts (,38%). Overall, the number of ASE-

positive loci mapped using primary fibroblasts alone was 391,

which increased to 562 (44% increase) using iPS cells and limited

in vitro differentiation. We estimated that more than 12% of all

heterozygous SNPs were associated with ‘mappable’ functional

regulatory variants using our approach. We expect this number to

increase when other differentiated cell types are examined.

iPS reprogramming shows the inversion of ASE on the X
chromosome

Dosage compensation in mammalian somatic cells is achieved

by randomly silencing one of the transcriptionally active X-

chromosomes [36]. Random X-inactivation in mouse ES cells is

tightly coupled to cell differentiation and the silenced X-

chromosome can be re-activated by somatic nuclear transfer

[37]. In order to determine how ASE might be affected by re-

activation of the silenced X-chromosome after iPS reprogram-

ming, we used a clonal population of female primary fibroblasts to

generate two iPS cell lines (PGP9Bx1 iPS1 and PGP9Bx1 iPS2).

We then examined 66 heterozygous expression SNPs that were

present on the X-chromosome. We observed 14 genes (21%) that

were expressed and captured in the two iPS cell lines from PGP9.

The ASE ratios of these genes were highly reproducible

(R2 = 0.98), including 6 out of 14 SNPs (42%) showing a near

mono-allelic preference (Figure 9A). We also observed that eight

X-chromosomal expression SNPs were shared between PGP9Bx1

F1 and PGP9Bx1 iPS2. Surprisingly, their ASE ratios were

proportionately reversed with a negative linear correlation of

R2 = 0.52 (Figure 9B). In contrast, the autosomal ASE ratios in the

same pair of cell lines demonstrated a positive linear correlation

(R2 = 0.63) (Figure 9C). When we examined a polyclonal

population of primary fibroblasts (PGP9Bx2F1), their X-chromo-

somal ASE ratios were near 0.5, likely due to the population

averaging of random X-chromosomal inactivation (Figure 9D).

These results indicated that both complete and partial inversions

of X-chromosomal ASE ratios occurred during iPS reprogram-

ming and that our method was sensitive and robust enough to

detect true changes in allele-specific expression due to reasons

other than cis-regulatory polymorphisms.

In vitro iPS differentiation reveals the inversion of
autosomal ASE

We then examined ASE in undifferentiated and differentiating

iPS cells. When considering only the ASE-positive SNPs, we

observed that the correlation between iPS biological replicates

(R2 = 0.94) was similar to that of technical replicates (R2 = 0.98)

(Figure 10A). When iPS cells were treated with 100-mM trans-

retinoic acid for 12 hours, the ASE ratio showed a reduction in

correlation between replicates (R2 = 0.62), likely due to the

heterogeneity of the colony size and the differentiation environ-

ment (Figure 10B) [38]. When the iPS cells were further

differentiated into embryoid bodies (EBs) for 7 days, we similarly

observed a reduction of correlation between replicates (R2 = 0.59)

(Figure 10C). We also found that up to 5–13% of the ASE-positive

expression SNPs switched the allelic preference during transient

and long-term iPS differentiation (Figure 11A), indicating that

parental isoforms could be alternately expressed during develop-

mental transitions. While this phenomenon could be due to

random stochastic noise, we showed that the ASE ratio was highly

reproducible between biological and technical replicates, even

among the rare gene transcripts falling below the traditional

detection limit. This suggested that ASE switching was due to the

biological heterogeneity of stem cell differentiation and not

random measurement noise alone. Finally, changes in autosomal

ASE did not affect all chromosomes equally during iPS

differentiation (N = 6 samples). We observed that Chromosome 6

displayed lower ASE variance that was statistically significant

Figure 6. Normalized tissue-specific variations in ASE. The 186
expression SNPs were then normalized to reduce both genotyping and
probe-specific biases. First, direct allelic ratios from the cDNA were
normalized by those from the genomic DNA. Second, we calculated the
mean ASE ratio across all samples derived from each individual and
used the distance from the mean for hierarchical clustering. The
normalized ASE predicted the sample relationship and the tissue-
specificity with high accuracy, confirming the presence of tissue-specific
regulatory expression variants.
doi:10.1371/journal.pgen.1000718.g006

Mapping cis-Regulatory Variants in Human iPS Cells
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(p-value: 0.022), possibly due to the amount of stable gene

imprinting present on Chromosome 6 (Figure 11B). This

observation also supported the idea that the variability in ASE

during iPS differentiation was not solely due to random noise.

Discussion

Studying subtle and/or normal variations in gene regulation

requires a sensitive and robust method for measuring true genetic

effects. Such effects should be measured in a wide range of human

tissues, whether by using human tissue samples or in vitro cell culture,

both of which can introduce many confounding factors and

experimental artifacts. By combining alleles-specific expression

analysis together with human pluripotent stem cell reprogramming,

we were able to achieve both objectives with high sensitivity and

reproducibility. Despite extreme variations in the cell types, the

epigenetic status, cell derivation and reprogramming methods and

cell differentiation protocols, we were able to detect a subtle allelic

imbalance as small as 60:40 and map approximately 27% of the

expression SNPs in a given cell line, of which 3–10% were tissue-

specific. We also demonstrated that 1/3–1/2 of mappable ASE loci

were reproducible regardless of the cell type used and that they were

Figure 7. Estimation of the error rate in ASE mapping. In order to call a specific locus as being associated with a potential cis-regulatory
variant, we used a x2 -test to select the expression SNPs showing greater than a 60:40 allelic imbalance as well as having relatively higher read counts.
(A) After making such confidence calls (‘mapping’) for each SNP, the reproducibility of ASE ratio measurements increased to R2 = 0.9802. (B) We
prepared two sequencing libraries from the same pool of total RNA (technical replicates). In order to estimate the error rate in ASE calling/mapping
overall, we compared the ASE ratio in these replicate libraries using a x2 -test. We found that 1.6% of the statistically significant ASE calls were due to
the sample processing and/or measurement error.
doi:10.1371/journal.pgen.1000718.g007
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strongly dependent upon the genotype. We also showed that

differentiated iPS cells expressed .40% more transcripts associated

with ASE and that more should now be mappable using directed in

vitro differentiation. Finally, xwe demonstrated two examples of

dramatic ASE changes during X-chromosomal inactivation and

during iPS differentiation, showing that our approach can successfully

detect global changes in allele-specific gene regulation during

development.

The reproducibility of ASE loci across many different cell types

was reassuring, but it also pointed to the possibility of having a

systematic bias throughout all the samples. Thus, we asked whether

we could find an example of ASE changes that was both expected

and biologically interpretable. We found that the X-linked ASE ratio

was proportionately inversed after iPS reprogramming, including

those that were partially silenced. It was known that up to 25% of the

X-linked genes could escape X inactivation in human cell lines [39],

and indeed, we observed 7/23 and 4/16 X-linked SNPs that were

only partially silenced in PGP9 iPS cells and fibroblasts, respectively.

Our study demonstrated that these genes were still influenced by X

inactivation and that the effect remained proportionately similar even

after random chromosomal silencing. While nuclear reprogramming

has been reported to reset random X-inactivation in cloned mouse

embryos [37] and in mouse iPS cells [40], it was not known whether

human iPS cells reached an embryonic ground state. However, we

showed that human iPS cells from clonal primary fibroblasts

possessed an inverted X-chromosome inactivation pattern, suggesting

that human iPS reprogramming can indeed completely erase the

somatic X-inactivation memory, a property associated with the

embryonic ground state.

Conceptually, allele-specific expression is a direct result of

functional cis-regulatory mutations or variations. However, it is

also caused by random stochastic events [41,42] and gene

imprinting/silencing [43] as well as allele-specific methylation

[22]. Because iPS reprogramming is accompanied by a high

degree of cell clonality and epigenetic changes, it offered us an

unprecedented opportunity to study how allele-specific expression

was affected by such factors. Using a genome-wide allele-specific

expression analysis on multiple cell types derived from the same

individual, our study conclusively showed that the mappable ASE

loci were not dramatically affected by the cell clonality, the

methylation status and/or the pluripotency reprogramming and that

they were highly individual-specific. It indicated that allele-specific

expression might be a good surrogate for indicating the presence of

functional cis-regulatory variants. The next logical step will be to

determine whether this mappable ASE loci are in fact inheritable and

that they can combine in the offspring to produce a gene expression

phenotype that is much more dramatic and biologically significant.

While it is tempting to use the ASE ratio as a quantitative trait

for association mapping, most ASE loci may not produce a strong

phenotype in heterozygous individuals. However, allele-specific

Table 6. Summary of ASE mapping calls.

Exp. Samples # reads # mapped % mapped # het SNPs # ASE adj % ASE

1 PGP1 iPS1a 2949194 1506422 51.08% 1,125 293 24.5%

PGP1 iPS1b 5315304 407556 7.67% 398 78 18.0%

PGP1 iPS1c 5554985 2356156 42.42% 1,513 359 22.1%

2 PGP1 EBa 6510425 3518434 54.00% 1,495 545 34.9%

PGP1 RAa 6850424 4603542 67.20% 1,691 523 29.3%

PGP1 Ebb 7248277 5850697 80.70% 1,932 623 30.7%

PGP1 RAb 5577200 3779730 67.80% 1,589 520 31.1%

PGP1 EBc 7063120 5365076 76.00% 1,849 546 27.9%

PGP1 RAc 4877544 2743289 56.20% 1,310 448 32.6%

3 PGP1 L2 3925506 3239704 82.53% 816 183 20.8%

PGP9bx1 F1 2333798 1898168 81.33% 1,021 297 27.5%

PGP9bx1 iPS1 3785125 3192330 84.34% 1,100 262 22.2%

PGP9bx1 iPS2 3307449 2751313 83.19% 1,117 259 21.6%

PGP1bx2 F1 8214253 6325717 77.01% 1,519 391 24.2%

PGP1bx2 iPS1 8022045 6196964 77.25% 1,611 584 34.7%

PGP1bx2 iPS6 7107819 5859125 82.43% 1,629 500 29.1%

PGP9bx1 F2 9717319 7747988 79.73% 1,368 420 29.1%

PGP9 L1 9299960 7160842 77.00% 1,199 314 24.6%

PGP9 L2 8774562 6576997 74.96% 1,439 451 29.8%

4 PGP1bx2 F2 7390237 5390680 72.94% 1,420 344 22.6%

PGP1 L3 6153115 4774427 77.59% 1,518 472 29.5%

(x2 .6.64; .60% allelic imbalance. Estimated false discovery rate = 1.6%)
doi:10.1371/journal.pgen.1000718.t006

Table 7. Observation frequency and ASE calling.

PGP1
‘‘ASE = 1’’
(n = 468)

‘‘ASE = 0’’
(n = 1,468)

Average cDNA count per probe 747.8 729.3

Average gDNA count per probe 498.6 295.9

Ave. deviation from bi-allelic exp 0.2569 0.1087

doi:10.1371/journal.pgen.1000718.t007
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Figure 8. Visualizing the mapped ASE loci in multiple tissue types. (A) In order to see if mappable ASE loci depended on the tissue type
being examined, we examined 317 expression SNPs present in at least 16 out of 20 samples. Mapped ASE loci (red), unmapped ASE loci (black) and
missing ASE loci (gray) were hierarchical clustered to reveal tissue-specific sample clustering. (B) When one of the most significant cluster mapping
nodes (0.72 correlation) were examined, we found 29 expression SNPs that were consistently mapped in .80% of the cell types derived from PGP1.
doi:10.1371/journal.pgen.1000718.g008

Table 8. ASE-associated with tissue-restricted transcripts.

Samples Mapped reads hetSNP
Tissue-restricted
hetSNP

Tissue-restricted
ASE

%ASE in tissue-specific
transcripts

Fibroblast 6,003,854 1,519 34 8 23.5%

Lymphocytes 7,381,108 1,518 49 12 24.5%

iPS 5,818,957 1,611 126 48 38.1%

EB 5,343,178 1,932 287 111 38.7%

doi:10.1371/journal.pgen.1000718.t008
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expression may exert a more direct influence when combined with

other functional variants to generate a mixture of functionally

altered protein isoforms. With full diploid genome sequencing, it

may now be possible to measure the frequency of allelic

combinations that may produce measurable effects on the protein

function as well as the signaling and/or transcriptional pathways

in an allele-specific manner. Our study showed that as many as 5–

13% of the mapped ASE loci changed their preference of parent-

specific gene expression during early iPS differentiation and

development. It will be fascinating to examine whether alternating

patterns of parent-specific gene expression associated with

functional coding variants can give arise to subtle variations in

parent-specific cellular and tissue organization during different

phases of the human development.

While the most straightforward cause of allele-specific expres-

sion is differential transcription factor binding on the promoter,

other mechanisms such as alternative splicing and methylation-

mediated repression may also play an important role. We are

currently developing technologies for examining additional

molecular features beyond gene transcription to explore allele-

specific processes during gene expression and processing. While

functional haploid cells and organisms have greatly enhanced our

understanding of various molecular pathways in simple organisms,

especially in conjunction with mutagensis screening, such

approaches are not possible in higher eukaryotes such as mice

and humans. However, an allele-specific readout such as ASE

allows one to study the effect of haploid elements and variations in

fully functional cell lines, enabling one to design experiments to

dissect the phenotypic consequence using family of cell lines with

different genetic combinations. Therefore, the real power of ASE

and other analyses may not necessarily reside in their ability to

map of regulatory variants, but to determine the mechanism of

allelic combinations that can contribute to the development of a

complex inheritable phenotype.

Figure 9. Changes in ASE reflects X-chromosomal silencing during iPS reprogramming. (A) In the two iPS clones derived from PGP9, the
X-chromosomal ASE ratio was highly reproducible, in which 7 out of 14 SNPs escaped complete silencing (R2 = 0.9833). (B) When compared to their
parental primary fibroblasts (clonally derived PGP9Bx1F1), we observed that the X-chromosomal ASE ratio was now inversely proportional
(R2 = 0.5199), strongly suggesting the re-activation of the random silencing mechanism. (C) Autosomal genes in the same pair showed a positive
correlation (R2 = 0.6343). (D) When PGP9Bx1F1 (clonally derived) was compared to PGP9Bx2F1 (non-clonal), the X-chromosomal ASE ratio confirmed
the clonality of PGP9Bx1F1 used for iPS reprogramming.
doi:10.1371/journal.pgen.1000718.g009
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While the use of iPS cells and allele-specific expression analysis

for expression trait mapping shows much promise, there are

limitations to this approach. The iPS reprogramming, and the

propagation and differentiation of iPS cells can be laborious and

do not scale up easily. It also does not distinguish among various

possible mechanisms for allele-specific expression (i.e. promoter

activation, alternative splicing, sequence-specific degradation). In

order to bypass these bottlenecks, we are engaged in an effort to

automate cell immortalization/iPS reprogramming as well as

allele-specific expression assays in order to examine a large

population of human volunteers with extensive phenotype and

genotype data (Personal Genome Project). Leveraging the

power of full genome sequencing technology, our approach of

using padlock probes will enable one to examine thousands of

samples simultaneously, providing a way to explore cis-

regulatory variants in many different tissues in thousands of

living study volunteers cost-effectively. We are currently also

targeting potential regulatory variants using zinc finger

Figure 10. Variations in the mappable ASE loci with in vitro iPS differentiation. iPS cells (A), retinoic acid (RA)-treated iPS cells (B), and
embryoid bodies (C) were compared to another iPS clone from the same individual pair-wise. Two different types of statistical threshold were used to
categorize ‘mappable’ ASE loci. Mono-allelic expression is defined as having an allelic preference of .90%. N is the number of observation from cDNA
samples. Retinoic acid was added directly to newly suspended iPS colonies growing on a low-attachment plate for 12 hours. Embryoid bodies were
cultured the same way without retinoic acid for 7 days.
doi:10.1371/journal.pgen.1000718.g010
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nuclease-mediated homologous recombination in iPS cells to

alter their ASE profile and the gene expression level. This and

other similar efforts to map and understand numerous

functional variants in the vast stretches in the non-coding

region and integrating it with experimental biology in a high-

throughput manner will likely yield a potent insight into the

person-specific regulation in gene expression, cellular biology

and ultimately, personalized medicine.

Figure 11. Changes in ASE during iPS differentiation. (A) A biological replicate of PGP1Bx1 iPS1 cells were used for in vitro differentiation,
using 100-mM trans-retinoic acid for 12 hours or embryoid body formation for 7 days. ASE loci with high confidence scores are shown. The expression
SNPs in the upper left and the lower right quadrant represent those that have significantly altered their preference of parental alleles (5–13%). (B)
Variations in ASE across six differentiated samples (3 RA-induced and 3 EBs) were analyzed according to their chromosomal locations. The ASE ratio
variance from Chromosome 6 was compared to the ASE ratio variance from all other chromosomes.
doi:10.1371/journal.pgen.1000718.g011
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Materials and Methods

Ethics statement
Personal Genome Project (PGP) obtained informed consent from

human volunteers who have agreed to release both genetic and

tissue samples to the research community. All protocols relating to

the collection and processing of human data and samples have been

approved by Harvard Institutional Review Board (IRB).

Cell lines and tissue culture
The primary fibroblasts were maintained in 15% NCS

(Hyclone) D-MEM/F12 (Gibco) supplemented with 10 ng/ml

hEGF (R&D Systems), non-essential amino acid (Gibco), Pen/

Strep and L-Glutamine (Gibco). The iPS cells were maintained in

20% KO-Serum (Invitrogen) KO-DMEM (Invitrogen) supple-

mented with 4 ng/ml bFGF (BD Biosciences), b-ME (Gibco), non-

essential amino acid, Pen/Strep and L-Glutamine on a c-

irradiated MEF layer (GlobalStem).

Generation of human induced pluripotent stem cells [31]
Briefly, pMIG containing OCT4, SOX2, KLF4 and MYC along

with VSV-G and Gag-Pol vectors were transiently transfected into

293T cells. We collected retrovirus-containing medium and passed

through a 0.45-micron filter unit, followed by ultracentrifugation.

We added each virus at multiplicity of infection (MOI) of 5 to

human primary fibroblasts (passage number ,8). We found that

clonally derived PGP1Bx1 fibroblasts were more difficult to

reprogram, and it required SV40 large T and NANOG to achieve

functional pluripotency [13]. By day 21–30 post-infection, hES cell-

like flat colonies started to appear, and they were picked manually

and propagated on a freshly prepared MEF layer.

RNA isolation and amplification
The total RNA was prepared using RNeasy (Qiagen). The RNA

sample was then linearly amplified and synthesized into a single-

strand cDNA using a whole transcriptome amplification method

(NuGen). The linearly amplified single-stranded cDNA is then

converted into double-stranded cDNA fragments using random

hexamers and E. coli DNA polymerase at 16uC for 2.5 hours. Of

note, we did not observe a significant difference in read counts

between the first strand and the second strand (Table 4).

SNP capture and sequencing
Circularization was performed in 20-ul reactions containing

400 ng genomic DNA or 200 ng ds-cDNA, 0.5 pmole padlock

probes (total concentration), 2U AmpLigase (Epicenter), 2U

AmpliTaq Stoffel fragment (Applied Biosystems), 0.1 mM dNTP

in 1x AmpLigase buffer. The reactions were incubated at 95uC for

5 minutes, 60uC for 48 hours. The reactions were then denatured

at 94uC for 1 minutes, cooled down to 37uC, then digested with

Exonuclease I (10U) and Exonuclease III (100U) for 2 hours at

37uC, and finally heat inactivated at 94uC for 5 minutes. Post-

capturing PCR reactions were performed in 100-ul reactions

including 10-ul circularization products, 0.4x SYBR Green I,

0.4 mM forward and reverse PCR primers in 1x iProof PCR

master mix. The parameter for real-time PCR was 98uC 30

seconds; followed by 3 cycles of 98uC 15 seconds, 53uC 20

seconds, 72uC 10 seconds; then ,15 cycles of 98uC 15 seconds

and 72uC 20 seconds. We terminated the reactions when the

amplification curves went up close to the plateau stage. The 154-

bp amplicon was purified with a 6% TBE polyacrylamide gel

(Invitrogen), and sequenced with Illumina Genome Analyzer II.

Data analysis
We designed the padlock probes to ensure that the captured

sequences are uniquely mappable to the genome using UCSC

BLAT. We mapped sequencing reads (25–41 bp) to the sequences

by NCBI BLAST using the word size of 8–12 depending on the

read length, considering the variant site as degenerate (NCBI

Short Read Archive #SRA008291.1). For any sequences that had

more than one hit, we required that the second hit had an e-value

5-fold higher than the top hit. In contrast, Maq-based mapping

could not handle degenerate sequences, and it was consistently

biased towards the reference allele. We made genotyping calls

using the ‘‘best-P’’ method on SNPs that were sampled at least 20

times. For each SNP we performed both the test of homozygosity

(assuming the allelic ratio of (1-e)/e where e is the sequencing error)

and the test of heterozygosity (assuming 50:50 allelic ratio), and

determined the genotype based on the one that giving a higher p-

value. We used chi-squared test to identify expressed SNPs that

exhibit RNA allelic ratios significantly different from the genomic

allelic ratios (see Table S1, Dataset S1, Dataset S2). Hierarchical

clustering and image viewing were done on Cluster and TreeView.

Supporting Information

Table S1 CES27k-9bpV3 padlock probe annotation file.

Found at: doi:10.1371/journal.pgen.1000718.s001 (16.77 MB

XLS)

Dataset S1 PGP1 normalized digital allele-specific expression

dataset.

Found at: doi:10.1371/journal.pgen.1000718.s002 (2.35 MB

XLS)

Dataset S2 PGP9 normalized digital allele-specific expression

dataset.

Found at: doi:10.1371/journal.pgen.1000718.s003 (1.45 MB

XLS)
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