
Frontiers in Oncology

OPEN ACCESS

EDITED BY

Shaoquan Zheng,
The First Affiliated Hospital of
Sun Yat-sen University, China

REVIEWED BY

Ouyang Chen,
Duke University, United States
Jing Mu,
Shenzhen Hospital, Peking
University, China

*CORRESPONDENCE

Demeng Xia
demengxia@163.com
Tianlin He
skyrainhe@163.com

†These authors have contributed
equally to this work

SPECIALTY SECTION

This article was submitted to
Molecular and Cellular Oncology,
a section of the journal
Frontiers in Oncology

RECEIVED 05 June 2022

ACCEPTED 01 September 2022
PUBLISHED 23 September 2022

CITATION

Chen G, Wu K, Li H, Xia D and He T
(2022) Role of Hypoxia in the
Tumor Microenvironment
and Targeted Therapy.
Front. Oncol. 12:961637.
doi: 10.3389/fonc.2022.961637

COPYRIGHT

© 2022 Chen, Wu, Li, Xia and He. This is
an open-access article distributed under
the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use,
distribution or reproduction is
permitted which does not comply with
these terms.

TYPE Mini Review
PUBLISHED 23 September 2022

DOI 10.3389/fonc.2022.961637
Role of hypoxia in the tumor
microenvironment and
targeted therapy

Gaoqi Chen1†, Kaiwen Wu2†, Hao Li3, Demeng Xia4*

and Tianlin He1*

1Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Second Military Medical
University (Naval Medical University), Shanghai, China, 2Department of Gastroenterology, The Third
People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu,
China, 3Deparment of Neurology, Affiliated Hospital of Jiangsu University, Jiang Su University,
Zhenjiang, China, 4Luodian Clinical Drug Research Center, Shanghai Baoshan Luodian Hospital,
Shanghai University, Shanghai, China
Tumormicroenvironment (TME), which is characterized by hypoxia, widely exists

in solid tumors. As a current research hotspot in the TME, hypoxia is expected to

become a key element to break through the bottleneck of tumor treatment.

More and more research results show that a variety of biological behaviors of

tumor cells are affected by many factors in TME which are closely related to

hypoxia. In order to inhibiting the immune response in TME, hypoxia plays an

important role in tumor cell metabolism and anti-apoptosis. Therefore, exploring

the molecular mechanism of hypoxia mediated malignant tumor behavior and

therapeutic targets is expected to provide new ideas for anti-tumor therapy. In

this review, we discussed the effects of hypoxia on tumor behavior and its

interaction with TME from the perspectives of immune cells, cell metabolism,

oxidative stress and hypoxia inducible factor (HIF), and listed the therapeutic

targets or signal pathways found so far. Finally, we summarize the current

therapies targeting hypoxia, such as glycolysis inhibitors, anti-angiogenesis

drugs, HIF inhibitors, hypoxia-activated prodrugs, and hyperbaric medicine.
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macrophages; IFN-g, interferon-gamma; DCs, dendritic cells; MHC, Major histocompatibility complex; IL-

6, interleukin-6; IL-10, interleukin-10; VEGF, vascular endothelial growth factor; HIF-1a, hypoxia-

inducible factor-alpha; BNIP3, BCL2 and adenovirus E1B19 kDa interacting protein 3; PI3K,

phosphatidylinositol 3 kinase; MMP10, metalloproteinase 10; VISTA, V-domain Ig suppressor of T cell

activation; HLA-G, Human leukocyte antigen G; CAFs, Cancer-associated fibroblasts; TGF-b, tumor

growth factor-beta; MDSCs, marrow-derived suppressor cells; Tregs, regulatory T cells; Foxp3, forkhead

box P3; ROS, reactive oxygen species; HIFs, Hypoxia-Inducible Factors; PHD, prolyl hydroxylase; HRE,

hypoxia response element; P-gp, p-glycoprotein; ETC, electron transport chain; HBO, Hyperbaric oxygen;

HK2, Hexokinase 2; 3-BP, 3-bromopyruvic acid; CDT, chemical dynamic therapy; LDHA, lactate

dehydrogenase A; aKGDH, a- Ketoglutarate dehydrogenase; ctDNA, circulating tumor DNA; PET-CT,

positron emission tomography and computed tomography; ADC, antibody drug conjugate; NSCLC, non-

small cell lung cancer.
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Introduction

A recent study shows that the global cancer burden is

increasing (1). The research on the molecular mechanism and

target of the occurrence and development of malignant tumors

may be a breakthrough to solve this problem. Recently, it has

been proved that TME is a key factor in the occurrence and

development of malignant tumors, which is being the well-

known hotspot. However, due to the influence of tumor cells

and abnormal vascular structure, TME often shows the

characteristics of hypoxia, especially in solid tumors.

Under the condition of hypoxia, the expression of HIF

increases, and a series of changes have taken place in the

metabolic mode and immune function of TME. In order to

adapt to the influence of hypoxia, tumor cells have changed their

metabolic mode and obtained energy through glycolysis.

Meanwhile, immune cells are regulated by hypoxia and have

different effects. Among them, the function of immune cells that

play an anti-tumor role is inhibited, such as cytotoxic T cells, B

cells, and natural killer (NK) cells. However, the expression of

immunosuppressive cells such as marrow-derived suppressor

cells (MDSC) and regulatory (Treg) T cells is up-regulated. The

changes of metabolism and immune effect provide an excellent

living environment for tumor cells and hinder the effect of anti-

tumor treatment. In addition, while providing survival

conditions for tumor cells, TME under hypoxia obstructs the

effect of antitumor drugs by hindering drug delivery (2–4).

Therefore, traditional chemotherapy and single dose

immunotherapy cannot achieve satisfactory results, which

makes the treatment of malignant tumors challenging (5, 6).

In conclusion, hypoxia, as an independent prognostic

indicator related to poor survival rate of cancer patients, is

expected to become an effective target for fighting tumor and

alleviating drug resistance (7). After summarizing, we found that

people are increasingly interested in the field of hypoxia in TME,

and hundreds of relevant academic papers in this field have been

published (8). Among the published studies, research targeting

metabolic enzymes, HIF, and angiogenesis related factors have

made breakthroughs to varying degrees. Currently, what’s exciting

is more than 500 clinical trials have been adopt. In this review, we

describe the effects of hypoxia on the proliferation, metastasis, and

drug resistance of tumor cells in the TME from the perspectives of

immunity, metabolism and HIF, and summarize the different

treatment strategies targeting hypoxia. Finally, we summarized the

current measures to combat drug resistance and the prospects for

future research in this field.
Effects of hypoxia on TME

TME is a cellular environment that harbors the tumor,

composed of tumor cells, fibroblasts, immune cells (T cells, B
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cells, natural killer (NK) cells, and tumor-associated

macrophages (TAMs)), blood vessels, signaling molecules, and

extracellular matrix (9, 10). Hypoxia is ubiquitous property in

the TME, especially in solid tumors. Abnormal blood vessels in

the tumor tissue cannot meet the excessive oxygen and nutrient

demand for its rapid growth, leading to uneven hypoxia. Thus,

the area away from the blood vessels was anoxic, while the

adjacent tumor tissue was hyper-oxygenated. A recent study

suggested that hypoxia affects the immune microenvironment

and makes tumor cells escape from immune monitoring and

killing (11). As shown in Figure 1, the anoxic area in tumor

tissue hinders the infiltration of immune cells and promotes the

growth of tumor cells (12).
Hypoxia inhibits the function of
immune cells

Effector T cells are the main components of immune

response in the tumor immune microenvironment, for

example, the proliferation and differentiation of T cells

determine the strength of the antitumor immune response.

Several studies have confirmed that hypoxia is a major

regulatory factor that inhibits the function and proliferation of

T cells (11, 13). A2A receptor (A2AR) is a kind of G protein

coupled receptor with high affinity for adenosine, which is

expressed on T cells, NK cells, macrophages, and other

immune cells (14). Tumor cells can inhibit the response of

immune cells through adenosine-a2ar pathway and promote

tumor cells to escape immune surveillance (14). Under hypoxic

conditions, tumor cells exploit the glycolytic process to

accumulate metabolites, such as lactic acid and adenosine, in

the TME. The accumulation of lactic acid and adenosine inhibits

T cell effector function and proliferation by blocking the

Sirolimus pathway and interacting with the A2AR on the T

cell surface (15, 16). On the other hand, hypoxia promotes the

apoptosis of T lymphocytes, delays the differentiation of effector

cells, and reduces the production of effector T cells and

interferon-gamma (IFN-g) (17). In order to inhibit T cell

proliferation, differentiation, and other functional cells, such as

dendritic cells (DCs) that present antigens to T cells and activate

the Hapten response, which also affected by hypoxia.

B cells, as the main carrier of humoral immunity, play a key role

in the production of antibodies. Therefore, the functional defect of B

cells will lead to the decline of immune effect. In the hypoxic tumor

microenvironment, the transcription and metabolism of B cells are

mainly affected by hypoxia inducible factor-alpha (HIF-1a) and
myelocytomatosis virus oncogene cellular homolog (MYC) (18, 19).

Myc gene specifically regulates the growth and metabolism of these

various types of cells and has the potential to cause cancer (19, 20).

To meet the energy demand of proliferation, B cells with malignant

tendency show high metabolic behavior different from normal cells
frontiersin.org
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and show a vicious cycle. However, this differential performance still

needs further research, and may become a treatment strategy in the

future (19).

DCs are immune cells that capture and present antigens

through major histocompat ibi l i ty complex (MHC)

glycoproteins. Many studies have shown that interleukin-6 (IL-

6), IL-10, vascular endothelial growth factor (VEGF), and the

other cytokines are upregulated by hypoxia, which inhibits the

differentiation and maturation of DCs and T cell function (21, 22).

BCL2 gene, as a key gene regulating apoptosis, is up-regulated in

tumor cells. The BCL2 encoded protein can achieve programmed

cell death by regulating proteolytic caspase activation (23, 24).

Immature DCs express high levels of HIF-1a and upregulated

BCL2 and adenovirus E1B19 kDa interacting protein 3 (BNIP3),

inducing programmed cell death in captured cells (25). Yang et al.

found that the phagocytic capacity of DCs was lower than normal

under hypoxia (26). In addition, hypoxia-stimulated DCs induce

the differentiation of naive T cells into the Th2 phenotype, which

in turn inhibits T cell proliferation (27). Hypoxia affects the

function and differentiation ability of DCs, indicating that the

activation ability of DCs to T cells. After that, the effect of T cell

immunity on tumor cells is reduced, promoting the immune

escape of tumor cells (26, 28).

NK cells constitute a class of naturally occurring cytotoxic

lymphocytes. The ability of NK cells to kill tumor cells is inhibited

under hypoxia (29) via the activated phosphatidylinositol 3 kinase
Frontiers in Oncology 03
(PI3K)-mTOR signaling pathway. In addition, hypoxia decreases

the expression of the tumor cell surface recognition molecule

MICA by upregulating the expression of metalloproteinase 10

(MMP10), thus downregulating the expression of NK and Natural

killer group 2 member D (NKG2D) on T cells and inducing the

immune escape of tumor cells (30). NKG2D is an activated

receptor of immune cells such as T cells and NK cells, which

could turn on the immune effect function. The upregulation of its

ligand MCIA/MCIB on the surface of tumor cells is conducive to

the continuous development of anti-tumor immunity (31).

Therefore, the NKG2D ligand (NKG2DL) as a therapeutic

target has become a research hotspot in recent years, in which

the research progress in the fields of tumor vaccines has made

exciting results (32, 33).

Immune checkpoint refers to the ligand-receptor pairs that

stimulate or inhibit the immune response, which also affected by

hypoxia (34). Hypoxia modulates PD-L1, human leukocyte

antigen g (HLA-G), CD47, and the immune checkpoint V-

domain IG suppressor of T cell activation (VISTA) to form an

inhibitory immune microenvironment, promoting immune

escape of tumor cells. PD-1 is widely distributed on the

surface of lymphocytes. Under hypoxic conditions, the level of

PD-L1 protein on the tumor cell surface is enhanced, and it

combines with the PD-1 receptor on the activated T cell surface

to produce the immunosuppressive effect (28, 35). Presently,

antibodies against PD-1 and PD-L1 have achieved preliminary
FIGURE 1

Hypoxia inhibits the immune response by inhibiting immune cells, recruiting immunosuppressive cells, regulating CAFs, promoting tumor cell
growth, and mediating immune escape. (A) Anoxic metabolites, lactic acid, and adenosine inhibit T cell effector function and proliferation by
blocking the mTOR pathway and interacting with the A2A receptor on the T cell surface. Hypoxia promotes T cell apoptosis and directly inhibits
T cell proliferation and differentiation. Hypoxia upregulates IL-10, VEGF, and other cytokines through HIF-1a and inhibits the differentiation and
maturation of DCs, leading to the inhibition of T cell function. Moreover, hypoxia-induced high levels of HIF-1a and BNIP3 promote
programmed cell death in tumor cells captured by DC. In addition, hypoxia inhibits NK cell function by activating the PI3K/mTOR signaling
pathway. (B) Hypoxia induced the mRNA expression of TGF-b, VEGF, IL-6, IL-10, and PD-L1 and promoted CAF participation in the recruitment
of MDSCs, Tregs, and type 2 TAMs to maintain the immunosuppressive state of the microenvironment, promoting tumor cells to evade immune
surveillance. (C) Hypoxia upregulates the expression of MMP adam10 and induces the immune escape of tumor cells.
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success in the clinic (36). Human leukocyte antigen G (HLA-G)

is another checkpoint molecule involved in tumor immune

escape and is strongly associated with increased tumor

invasiveness and suppression of immune cell function (37, 38).

In addition, the immune checkpoint molecules involved in the

inhibition of T cell proliferation and activity under hypoxia

conditions include VISTA (11).
Hypoxia modulates immunosuppression

Cancer-associated fibroblasts (CAFs) are similar to

inflammation-associated fibroblasts, and participate in tumor

cell progression and immune cell regulation during the

antitumor immune response (39). Ziani et al. demonstrated

that the mRNA expression of CAF-related immunosuppressive

modulators, such as tumor growth factor-beta (TGF-b), VEGF,
IL6, IL10, and PD-L1 increased significantly under hypoxia (40).

CAFs are involved in the collection and differentiation

of marrow-derived suppressor cells (MDSCs), regulatory

T cells (Tregs), and type 2 TAMs in TME (41, 42). In addition

to the recruitment of immunosuppressive cells, CAFs inhibit

T cell immune response and enhance the tumor cell

immunosuppressive response in the TME, which might be

related to the inhibition of CAF, DC, and NK cell functions

(43, 44). Under hypoxia, CD4+ T cells differentiate into Tregs by

promoting Foxp3 transcription. Tregs are a subset of CD4 T cells

and contribute to immunosuppression and tumor tolerance by

producing TGF-b and suppressive effector T cells (21). MDSCs

are immature myeloid cells that directly inihibit T cells, NK cells,

and dendritic cells and promote angiogenesis in tumor tissue

(45, 46). Chiu et al. demonstrated that under the influence of

hypoxia, the differentiation of MDSCs was inhibited, but its

immunosuppressive function was maintained (47). TAM is a

major component of the solid TME (48). The two phenotypes of

TAMs are M1-like and M2-like phenotypes (48). Type M2

TAMs are detected in anoxic regions and associated with

immunosuppression, angiogenesis, tumor cell activation, and

metastasis (49). Another study showed that prostaglandin E2,

TGF-b, VEGF, IL-4, IL-6, and reactive oxygen species (ROS)

were the major factors that induced TAMs to M2-type TAMs

(29). In addition, hypoxia-mediated lactic acid accumulation

under HIF-1a regulation increases the expression of VEGF

and M2-like polarization of TAMs to maintain the

immunosuppressive status of the TME (47, 50).
Changes in tumor metabolism
caused by hypoxia

Hypoxia affects the TME and alters the tumor and the

surrounding tissue metabolism. With the progress of TME
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studies, metabolic reprogramming has been recognized as a

hallmark behavior of malignant tumors. As shown in Figure 2,

metabolic reprogramming is the metabolic modification of

tumor cells to maintain growth and resist treatment. This

reprogramming includes aerobic glycolysis and L-glutamine

metabolism et al (51). Thus, it could be deduced that hypoxia

inhibits the apoptosis of tumor cells by promoting the metabolic

reprogramming of tumor cells.
Glucose metabolism

Under aerobic conditions, cells produce pyruvic acid through

the glycolytic process, which is oxidized in the mitochondria to

produce energy. Under anoxic conditions, the energy of normal

cells is mainly provided by glycolysis. However, most tumor cells

tend to produce energy by glycolysis even under aerobic conditions.

This phenomenon is known as the “Warburg effect” (52, 53).

Through this phenomenon, tumor cells use glycolysis for energy

and produce lactic acid. The lactic acid accumulates outside the

tumor cell via activated monocarboxylic acid transporters, causing a

low pH in the extracellular matrix. Some studies have shown that a

low pH environment enhances the invasiveness of tumor cells and

inhibits the cytotoxicity and proliferation of lymphocytes, which

inhibits the functioning of immune effector cells in the TME (54).

Nonetheless, as the acidic environment is corrected, the T cell

effector function is restored (55). In addition, tumor cells use

glycolytic metabolic intermediates to synthesize fats and proteins.

The metabolic way of aerobic glycolysis weans the tumor cells off

oxygen dependence, which is beneficial to the growth and

proliferation of tumor cells in a hypoxic environment (56). Also,

the multidrug resistance of tumor cells is closely related to the

reprogramming of glucose metabolism. A current study suggested

that this process is influenced by a combination of mechanisms,

including “ion capture,” decreased apoptotic potential, gene changes

(such as p53 mutation), and increased activity of P-gp, a

multidrug transporter.
Glutamine metabolism

Except for glycolysis, cancer cells under hypoxic conditions

tend to choose an alternative substrate for energy metabolism, such

as L-glutamine. Some studies have shown the critical role of L-

glutamine plays in tumor cell proliferation as an alternative energy

source for tumor metabolism (57). L-Glutamine is synthesized as

glutamate, which is then converted into a-ketoglutaric acid through
transamination and into the tricarboxylic acid cycle for energy

metabolism to compensate for the reduced energy production from

glycolysis (58, 59). In addition, glutamate provides nitrogen and

carbon sources for tumor cells and participates in the synthesis of

amino acids and nucleotides, which promotes the development of
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malignant tumors (60). On the other hand, L-glutamine could be

used to synthesize glutathione, a crucial antioxidant that maintains

the redox balance and prevents oxidative damage to cells (61, 62).

Friesen et al. suggested that glutathione, a metabolite of L-

glutamine, is involved in mediating drug resistance and anti-

apoptosis in cancer cells which may be related to the antioxidant

capacity of glutathione. Strikingly, when glutathione levels are

decreased, drug and apoptosis resistance of tumor cells is

restored (63).
Fatty acid metabolism

The synthesis of biomembranes and signaling molecules

is essential for the rapid proliferation and growth of tumor

cells. Fatty acid is a critical raw material. Therefore, tumor

cells have high levels of fatty acid synthesis. On the other

hand, the synthesis consumes pyruvic acid, which slows the

synthesis of lactic acid and prevents the excessive build-up of

lactic acid. In addition, the decomposition of fatty acids

provides energy for tumor cells and the free fatty acids of

metabolic products act as signal molecules that activate

various signaling pathways (64, 65). Hypoxia and fatty acid
Frontiers in Oncology 05
metabolism studies have shown that the occurrence of tumors

is closely related to b-oxidation. The enzymes FASN, ACC,

and ACLY involved in fatty acid metabolism are upregulated

in tumors (66, 67). Another study showed that the efficacy of

immunotherapy, T cell longevity, and antitumor effects are

also affected by lipid metabolism (68).
The role of HIF

HIF is a major factor that mediates tumor cells to adapt to

hypoxia (69). HIF-1a transcription factor directly targets VEGF,

TGF-b, IL-10, and PD-L1 genes and regulates the tumor

immunosuppressive response to CAFs (70–72). HIF is a

heterodimer helical-loop protein consisting of an O2-sensitive

a-subunit (including HIF-1a, HIF-2a, and HIF-3a) and a

constitutive b-subunit (16). HIF-1a plays a key role in several

steps of hypoxia induction (73). In case of hypoxia, HIF-1a
breakdown is reduced and transferred to the nucleus when the

function of prolyl hydroxylase (PHD-RRB is inhibited. In the

cell nucleus, HIF-1a binds to HIF-1b to form heterodimers.

HIF-1a/1b heterodimer activates the HIF target gene and

promotes HIF expression by combining the HIF-1a/1b
FIGURE 2

Hypoxia induces metabolic reprogramming of tumor cells, which provides energy and substrates for tumor cell growth and promotes drug
resistance. I. Glucose provides energy to the tumor cells in the form of glycolysis, of which the metabolite Lac is transported to the outside of
tumor cells through MCT, effectuating low pH and suppressing the immune effects. The intermediate products in glycolysis contribute to the
synthesis of fatty acids and promote the growth and proliferation of tumor cells. II. Gln is broken down into a-KG in tumor cells to provide energy
through the TCA cycle or raw materials to synthesize amino acids and nucleic acids in tumor cells. In addition, GLN expresses antioxidant ability by
synthesizing GSH, which promotes drug resistance and anti-apoptosis in tumor cells. III. Fatty acids provide materials for the synthesis of
biomembranes to meet the growth needs of tumor cells. The synthesis of fatty acids consumes PEP, which relieves the build-up of Lac from
glycolysis. The breakdown of fatty acids produces large amounts of ATP, which provides energy for the growth and proliferation of tumor cells. IV.
ROS induces drug resistance in tumor cells, associated with the P-gp.
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heterodimer with p300/CBP and hypoxia response element

(HRE), thus regulating various biological processes of tumor

cells, including metabolic reprogramming, immunoregulation,

angiogenesis, tumor cell invasion, and drug resistance (74, 75).

Among them, HIF could inhibit the immune response by

promoting the up regulation of immune checkpoints, apoptosis

of cytotoxic T cells and blocking phagocytosis, which is

conducive to the occurrence and development of tumor cells.

Studies have reported that the up-regulated immune checkpoint

PD-L1 in tumor cells presents HIF-1a dependence, promote the

apoptosis of cytotoxic T cells, and participate in the immune

escape of tumor cells (76, 77). Similarly, the expression of CD47

protein on the surface of tumor cells is also affected by HIF-1a,
and hinder the phagocytic ability of phagocytes to tumor cells

through phosphorylation of signal regulatory proteins on the

surface of macrophages a (SIRP a) (78). In recent years, the

research results of CD47 protein showed that the expression of

CD47 protein also inhibited the function of cytotoxic T cells and

NK cells. Therefore, a series of clinical studies targeting CD47

protein are expected to bring new hope to the field of tumor

therapy (79, 80). In addition, vascular endothelial growth factor

(VEGF) is up-regulated affected by HIF-1a, which could

promote metastasis and immune escape by inducing tumor

angiogenesis. It is believed that the disorder of TGF-b is

related to the occurrence and development of tumors, and

enhances the invasive ability of tumor cells by inducing

epithelial to mesenchymal transition (EMT) (81, 82). The

research of Huang et al. showed that the HIF-1a regulate the

function of TGF-b by forming Smad-HIF-1a complex under

hypoxia, and then regulate the progress of tumor cells (83).

In addition to the inhibition of immune effects in TME, HIF-1

activates or inhibits the genes of key proteins in glycolysis pathway

to regulate the metabolic process of tumor cells in hypoxic

environment. Proteins or genes involved in the regulation of

glycolysis pathway and regulated by HIF-1 include those involved

in encoding glucose transporters (GLUT1 and GLUT3),

hexokinases (HK1 and hK2), lactate dehydrogenase A (LDHA),

etc (84–88). At the same time, oxidative phosphorylation related

genes and proteins are negatively regulated by HIF-1. The

differential regulation of proteins or genes relating glycolysis and

oxidative phosphorylation by HIF-1 is conducive to the adaptation

of tumor cells to achieve glucose metabolism reorganization. In

addition, tumor cells reprogrammed by glucose metabolism have

higher “competitiveness” to glucose in the microenvironment, so T

cell apoptosis is induced by inhibition of energy metabolism, which

aggravates the inhibition of T cell function. Except the glycolysis,

HIF, as a major regulator, is involved in regulating glutamine

metabolism in tumor cells (89). Under the condition of hypoxia,

HIF-2a causes the change in SLC1A5 gene encoding neutral amino

acid transporter, which mediates the reprogramming of glutamine
Frontiers in Oncology 06
metabolism and the resistance to gemcitabine in tumor cells (90).

Moreover, HIF inhibit a- Ketoglutarate participates in the

tricarboxylic acid cycle by promoting a- Ketoglutarate

dehydrogenase (aKGDH) degradation (91). In addition, HIF is

also involved in regulating many metabolic pathways, such as fatty

acids, pentose phosphate and adenosine, so as to provide a

metabolic basis for the progression and metastasis of tumor cells.

In summary, the important role of HIF in tumor progression

and its potential mechanism have been widely concerned by

researchers. Further research in this field in the future is

expected to help us have a deeper understanding of hypoxic

TME, and bring new hope to the research of tumor targeted

therapy (92).
Effect of hypoxia on tumor
oxidative stress

ROS are the main molecules produced by oxidative stress

and have been considered major factors in the tumor

occurrence, development, and recurrence. The ROS in tumor

cells originate from mitochondria (93). Under the influence of

hypoxia, the oxygen utilization efficiency of tumor cells is

decreased. Therefore, electron transport efficiency through the

mitochondrial complexes in the electron transport chain (ETC)

is reduced, resulting in abundant ROS in cells (94, 95). Notably,

various concentrations of ROS exert different effects on tumor

cell production (96). High concentrations of ROS disrupt the

proteins and nucleic acids and induce apoptosis of tumor cells

through oxidative stress (97). A low concentration of ROS can

promote the development and metastasis of tumor cells (98). In

addition, the concentration of ROS affects the sensitivity and

resistance of tumor cells to chemotherapeutic drugs, which

might be related to the level of p-glycoprotein (P-gp) in drug

resistance (99) (Figure 2).

Effect of hypoxia on drug resistance
of tumor

To date, chemotherapy is the cornerstone of cancer

treatment. Anoxic metabolic disorders and changes in the

microenvironment severely inhibit the efficacy of drugs such

as Bleomycin. This could be because the oxygen-dependent

chemotherapy drugs are more active when oxygen is available

(100), while hypoxia directly inhibits the antitumor function of

oxygen-dependent chemotherapeutic drugs (101). In addition,

hypoxia indirectly reduces the efficacy of the drugs by interfering

with the cell cycle, promoting DNA repair, and reducing the

sensitivity of p53-mediated apoptosis (29, 102). Intriguingly,
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immunotherapy has developed rapidly in the past decade and

has produced significant clinical results. However, the current

studies have suggested that hypoxic stimulation significantly

limits the effectiveness of immunotherapy (21, 103, 104). About

33% of patients who responded to immunotherapy suffered

resistance again (6). Hypoxia effectuates metabolic changes in

tumor cells, including low pH, high ROS, abnormal blood

vessels, and proliferating fibrous tissue. These changes are

beneficial to tumor cell survival, provide anti-apoptosis

advantages, inhibit drug penetration, and promote the

development of cancer and drug resistance (105).

To confront the challenge of drug resistance, the main

methods include early diagnosis, combined multi drug

therapy, and adaptive therapy (106). Effective evaluation

molecules could provide a good reference for the early

diagnosis and progress of malignant tumors. Quantitative

monitoring of circulating tumor DNA (ctDNA) is expected to

become an important means of early diagnosis and dynamic

monitoring of cancer, which will help to improve the overall

survival rate and guide individualized treatment (107).

Combined with positron emission tomography and computed

tomography (PET-CT) imaging results, evaluate the curative

effect. And then adjust the drugs, so as to avoid the emergence of

drug resistance and achieve better curative effect (108).

Meanwhile, precise drug delivery methods such as antibody

drug conjugate (ADC) could increase the curative effect by

increasing the local drug concentration (109). In addition,

multi drug combination therapy is still an effective measure to

combat drug resistance at present. The research of Niu et al.

shows that the combined application of vibostolimab (anti-

TIGIT humanized IgG1 monoclonal antibody) and
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pembrolizumab can significantly inhibit and improve the drug

resistance of non-small cell lung cancer (NSCLC) (110).
Strategies for targeting hypoxic
microenvironments

Bibliometric research published on Frontiers in oncology

shows that researchers’ interest in the research of tumor

microenvironment is continuously rising from 2011 to 2021

(8). Moreover, the current research hotspot in this field focuses

on the energy metabolism, oxidative phosphorylation, liposomes

and other new drug delivery routes in TME (8). Therefore, in

order to facilitate readers to understand the progress in this field,

we summarize the treatment strategies that targeted at hypoxia.

It is gratifying that several potential anti-tumor targets have been

found (Table 1), including targeting hypoxia, glycolytic drugs,

abnormal angiogenesis, and HIF drugs.

The energy metabolism of tumor microenvironment is a

current research hotspot, and researchers have carried out a series

of studies with it. A current study showed that glycolytic inhibitors

effectively kill tumor cells that are not sensitive to chemotherapy

drugs, even when they were present in multiple drug resistance cells

(161, 162). Hexokinase 2 (HK2) plays a critical role in regulating

aerobic glycolysis in tumor cells and has become one of the main

targets of tumor therapy. A previous study showed that HK2

inhibitor 3-bromopyruvic acid (3-BP) significantly inhibits the

progression and proliferation of tumor cells in HK2- expressing

colorectal cancer. Moreover, apoptosis of tumor cells was induced

by the signaling pathway of mitochondrial apoptosis (163). In

recent years, the emergence of chemical dynamic therapy (CDT)
TABLE 1 Target drugs for metabolism, HIF, and other pathways.

Category Pathway/Target Drugs Reference

HIF HIF-1a/VEGF PKM2, benzofuran, derivatives, BITC, VHH212, P-AscH, Alpha-solanine, TX-2098 (111–117)

Others USP25 (118)

Metabolism Glycolysis MIR210HG, UHRF1,2-deoxyglucose (2-DG),3-bromopyruvate (3-BP), UBR5, MTAP, CPI-613,
ERO1L, BZW1

(119–127)

Glutamine metabolism CB-839 mTORC1, EGFR-Pak, SUCLA2, SLC1A5 (128–132)

Pentose phosphate pathway PRLR, p16, KRT6A (133–135)

Hexosamine biosynthesis pathway GFAT1, PMG3, NAGK, NF-kB (136–139)

Branched chain amino acid (BCAA)
metabolism

BCAT2, BCKDHA, BCAT1 (140–142)

OXPHOS UQCRC1, metformin, 64 (DX3-234), ONC212, Phenformin (143–147)

Others Autophagy Hydroxychloroquine, BML-275, MEKINIST, SEMA3A (148–151)

Antiangiogenic agents Sunitinib, ceritinib, EndoTAG-1, bevacizumab (152–155)

Hypoxia-activated prodrug TH-302, Evofosfamide, YME1L, HMGCR inhibitors, SQLE (155–160)
fro
Summary of the current therapeutic pathway and targets related to hypoxia, such as HIF and metabolism, and the drugs corresponding to each approach and target.
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has provided a new solution for cancer treatment (164).

Interestingly, the amount of glutathione in the tumor cells

directly affects the efficacy of chemotherapy. Glycolytic inhibitors

could reduce the tumor’s glycolytic process and enhance CDT

selectivity to tumor cells, thereby exploiting metabolic differences to

achieve the specific treatment for tumor cells (165). In addition,

OXPHOS inhibitors, such as metformin, improve hypoxia in the

microenvironment by inhibiting the mitochondrial complex I,

which reduces oxygen consumption in cells and corrects the

hypoxic TME. Besides, OXPHOS also inhibits the upregulation of

cancer subtypes, such as ovarian cancer, prostate cancer, and

thyroid cancer (166, 167).

Abnormal tumor blood vessels are major factors in the

continuous hypoxia of TME that hinder drug delivery (168).

In the hypoxic TME, angiogenesis-promoting cytokines, such as

VEGF and TGF-b, impede the differentiation and maturation of

endothelial cells in neovascularization. As a result, malformed

and poorly permeable new blood vessels aggravate the anoxic

state of the tumor, making it difficult to deliver drugs effectively

to the tumor (169). Antiangiogenic drugs, such as anti-VEGF

antibodies, correct the abnormal blood vessels and promote the

normalization of tumor blood vessels, which in turn alleviates

hypoxia and improves the efficacy of conventional antitumor

drugs (170, 171). However, angiogenesis inhibitors alone do not

receive ideal therapeutic results, which might be related to the

complex mechanisms of angiogenesis compensation (172).

Therefore, VEGF inhibitors need to be used in combination

with chemotherapy or immunotherapy, which has achieved

satisfactory results in solid tumors, such as ovarian and breast

cancer (173, 174).

HIF activity is mainly dependent on HIF-1a and plays a

critical role in the regulation of hypoxic TME. Presently, studies

on targeting HIF-1a are being widely carried out. Targeting the

HIF-1a signaling pathway is effective in the treatment of solid

tumors, such as pancreatic cancer (175, 176). Ubiquitin carboxy-

terminal hydrolase L 1(UCHL1) is a ubiquitin-free enzyme that

stabilizes its a-subunit (HIF-1a). UCHL1 inhibitors promote

the degradation of HIF-1a and inhibit the activity of its

downstream genes. Li et al. showed that the inhibition of the

UCHL1-HIF-1 pathway decreases the expression of malignant

tumor-related factors and eliminates UCHL1-mediated tumor

cell proliferation and metastasis (177). In addition, Nelson et al.

found that in the hypoxic microenvironment of pancreatic

cancer, downregulation of USP25 reduced the transcriptional

activity of HIF-1a, leading to cell death in the hypoxic core of

the tumor without normal tissue affected (118). In another

mouse model of pancreatic cancer, Xu et al. demonstrated that

the Benzofuran derivative inhibited tumor growth by acting on

the HIF-1a/VEGF pathway under hypoxia (111). In addition,

the combination of the HIF-1a inhibitor px-478 and the

immune-checkpoint inhibitor enhances the cytotoxicity of T
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cells against tumor cells, which might be related to the blocking

of the HIF-1a/LOXL2 signaling pathway (178). Currently,

clinical trials of combined therapy with HIF-1a inhibitors are

underway. Thus, HIF-1a inhibitors seem to be a promising

cancer therapy in the future.

Of note, the selective is not negligible for drug development,

anoxic prodrug is an inactive compound that could be activated

automatically in a specific anoxic region. This exploits the

selective metabolism of precursor drugs in an anoxic

environment, diffuses the killing compounds to the whole

TME, and realizes the selective killing of tumor cells (179). A

randomized controlled trial for the treatment of advanced

pancreatic cancer showed that hypoxia-activated prodrug TH-

302 combined with GissiTabine drug yields promising results;

the combination group achieved more median progression-free

survival than the single Gissi treatment group (180). In addition,

TH-302 combined immune checkpoint blocking therapy cured

>80% of the tumors in a mouse model of prostate cancer, which

prolongs the suppression of bone MDSCs and relieves the

inhibition of T cell proliferation (181). Another study showed

that CP-506, an anoxic prodrug of nitrogen mustard, also

yielded satisfactory effects in tumor tissue (182).

Hyperbaric medicine improves hypoxia in the TME by

increasing the amount of dissolved oxygen in the blood (183).

In previous studies, hyperbaric medicine has shown a

satisfactory excellent curative effect in some cancers (breast

and ovarian cancer) (184, 185). Hyperbaric oxygen (HBO) can

be used as an adjuvant therapy to inhibit tumors by improving

the hypoxic microenvironment (186). A recent study showed

that hyperbaric medicine in mice with lung cancer improves the

anoxic state of tumors, promotes tumor cell apoptosis, and

inhibits tumor growth (187).
Conclusion

Hypoxia is the key factor regulating TME, which mediates the

occurrence, development, and drug resistance of tumor cells. Under

the condition of hypoxia, TME show immunosuppression and

metabolic reprogramming. Therefore, the proliferation and

differentiation of immune cells were inhibited. Immunosuppressive

cells such as MDSCs, TAM and Tregs are recruited to the hypoxic

zone to promote the escape of tumor cells. The metabolic

reprogramming of tumor cells is conducive to obtaining energy in

a hypoxic environment while maintaining an acidic

microenvironment. In addition, glutamine metabolism and fatty

acid metabolism have made great contributions to the balanced

redox, anti-apoptosis, growth promotion and drug resistance of

tumor cells. More importantly, while the hypoxia inhibits the

function of PHD, HIF-1a will be activated and promotes

the expression of downstream target genes, which further promotes
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the formation of hypoxic microenvironment and the progress of

tumor cells. Therefore, anti-tumor therapy targeting hypoxia and

related factors has attracted many researchers’ exploration. Finally,

drug resistance induced by hypoxia still plays an important role in the

process of anti-tumor treatment, which significantly affects the

outcome of treatment. In this review, we summarize the treatment

schemes for hypoxia, such as glycolysis inhibitors, anti-angiogenesis

drugs, HIF inhibitors, hypoxia-activated prodrugs, and hyperbaric

medicine, and finally the found targets and signal pathways in the

form of table.

In conclusion, hypoxia is still the key to fight against

malignant tumors. It is very necessary to clarify the molecular

mechanism of hypoxia on the formation of tumor

microenvironment and drug resistance, which will contribute to

the breakthrough of tumor targeted therapy in the following work.
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