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Objective. +e aim of this research was to create a new genetic signature of immune checkpoint-associated genes as a prognostic
method for pediatric acute myeloid leukemia (AML).Methods. Transcriptome profiles and clinical follow-up details were obtained
in +erapeutically Applicable Research to Generate Effective Treatments (TARGET), a database of pediatric tumors. Secondary
data was collected from the Gene Expression Omnibus (GEO) to test the observations. In univariate Cox regression and
multivariate Cox regression studies, the expression of immune checkpoint-related genes was studied. A three-mRNA signature
was developed for predicting pediatric AML patient survival. Furthermore, the GEO cohort was used to confirm the reliability. A
bioinformatics method was utilized to identify the diagnostic and prognostic value. Results. A three-gene (STAT1, BATF, EML4)
signature was developed to identify patients into two danger categories depending on their OS. A multivariate regression study
showed that the immune checkpoint-related signature (STAT1, BATF, EML4) was an independent indicator of pediatric AML. By
immune cell subtypes analyses, the signature was correlated with multiple subtypes of immune cells. Conclusion. In summary, our
three-gene signature can be a useful tool to predict the OS in AML patients.

1. Introduction

Acute myeloid leukemia (AML) in children is a progressive
disorder with a poor prognosis [1]. In recent decades, the
overall survival (OS) of pediatric patients with AML has
increased. Since the introduction of high-dose cytarabine/
mitoxantrone, the 5-year probability of OS rose significantly
from 49% to 76%, but the probability of event-free survival
only increased from 41% to 50% and has stayed steady since
then, according to a retrospective review of 1940 pediatric
AML patients. Despite the increased first-line therapy, non-
response and relapse rates remained stable [2]. Another large
cohort study involving 482 children with AML showed that
significant improvements in patient stratification and op-
timization in induction and postremission treatment
strategies led to an increase in OS [3]. We now have a greater
understanding of the specific biology driving pediatric AML

and patient results due to decades of concerted efforts across
cooperative community trials. +e two standard therapies
for AML are chemotherapy and hematopoietic stem cell
transplantation (HSCT). +e 5-year survival rate is still
below 50% [4, 5]. Acute promyelocytic leukemia (APL), also
known as M3 in the French-American-British system, is a
form of AML that affects between 5 and 10% of children in
the United States. In today’s traditional frontline therapy for
pediatric APL, all-trans retinoic acid (ATRA) is included in
any step of treatment, resulting in a 90–95 percent full
remission rate [6]. Chemotherapy and hematopoietic stem
cell transplantation (HSCT) are not even needed any longer
[6]. Despite advances in diagnostic methods and therapeutic
effectiveness for AML, refractory acute leukemia still reacts
and dies during remission, with limited survival duration.
Despite the detection of various genetic alterations, in-
cluding MLL gene rearrangements, Annalisa reported that

Hindawi
Journal of Oncology
Volume 2021, Article ID 5550116, 14 pages
https://doi.org/10.1155/2021/5550116

mailto:gpzhou20@163.com
https://orcid.org/0000-0002-3525-8752
https://orcid.org/0000-0003-2158-4917
https://orcid.org/0000-0001-5277-8488
https://orcid.org/0000-0003-0440-1605
https://orcid.org/0000-0002-6148-5027
https://orcid.org/0000-0002-5622-6020
https://orcid.org/0000-0002-7472-9940
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/5550116


the histone methyltransferase DOT1L was active in the
proliferation of MLL-r cells, for which a target inhibitor,
Pinometostat, has been tested in a clinical trial involving
pediatric MLL-r leukemic patients [7]. Elena found that
exposing MLL-AF6-rearranged AML blasts to tipifarnib, a
RAS inhibitor, causes cell autophagy and apoptosis, im-
plying that RAS targeting may be a new therapeutic ap-
proach for patients with T cell lymphoma (6; 11) [8]. +ere
are still few more targeted interventions that are effective. As
a consequence, early prognostic indications and new ther-
apeutic targets are in high demand.

With the recent advances in microarray technology and
bioinformatics, the complex molecular structure of AML has
permitted the classification, prognostic stratification, and the
discovery of novel drug targets [9]. A risk classification
model was proposed by Ng et al. [10], which is focused on 17
gene expression for rapid screening in patients with acute
leukemia, and a model of somatic mutations was proposed
by Patel et al. [11], which is based on molecular biology of a
collection of 18 genes. +ese models were shown to be
predictive of patient outcomes.

+e advent of immune checkpoint inhibitors has en-
abled the treatment of patients with tumors and with a
substantial benefit. +e immune system’s functions during
cancer development are complex. When the immune
system recognizes tumor cell antigens, it activates both the
innate and adaptive immune systems, which are both in-
volved in a range of immune cells and cytokines [12].
However, cancer can cause immune system dysfunction
during tumorigenesis and development. +e immune
system can then become an accomplice through chronic
inflammation [13]. Avoiding immune destruction and
tumor-promoting inflammation are two hallmarks of
cancer immunity [14]. +ere are several malignancies that
need PD-L1/CTLA-4 inhibitors, while other molecules that
interrupt inhibitory mechanisms are being studied [15].
Interest in checkpoint inhibitors in AML is currently
growing since they help improve the immune response to
tumor cells [16]. +is specific technique has been used in
adult solid cancers but remains unproven in AML. Active
therapies available include nivolumab, pembrolizumab,
and ipilimumab, which target either CTLA-4, PD-1, or
both. Clinical trials have demonstrated that checkpoint
inhibition, either alone or in combination with other
therapies, is a feasible and effective approach for AML and
is currently being explored in large studies [17, 18].
Nivolumab has also proved useful in patients who relapse
after stem cell transplant and is an important alternative in
this patient group [19]. +e only recorded instance of usage
of pediatric AML was in a child who had relapsed AML who
failed to provide any substantial progress, though step I and
II clinical trials in children with AML have been performed
[20]. +ere is a need for appropriate biomarkers for
children with AML that can enhance survival estimation
and diagnosis. +erefore, focused on immune checkpoint
and diagnostic genes, we are utilizing two datasets to
confirm a predictive signature for pediatric AML and
contribute to assessing successful immunotherapy for
pediatric AML.

2. Materials and Methods

2.1. Immune Checkpoint-Related Gene Collection and Data
Acquisition. A total of 187 AML mRNA data and subse-
quent clinical follow-ups were downloaded from the data-
base of +erapeutically Applicable Research to Generate
Effective Treatments (TARGET). +e signature was vali-
dated using RNA-sequencing data from 417 patients with
corresponding clinical follow-ups retrieved from Gene
Expression Omnibus (GSE37642). Genes for PD-1/PD-L1
and CTLA-4 signaling pathways were obtained from the
KEGG (Kyoto Encyclopedia of Genes and Genomes) and
Reactome. +e KEGG and Reactome pathway databases
resulted in 282 candidate genes (Table S1). For the following
study, intersection combinations between immune check-
point-related genes and the two datasets (TARGET and
GSE37642) were analyzed.

2.2. Identification of Predictive Genes and Construction of
Gene Signature. With a univariate Cox regression study,
the connection between genes correlated with immune
checkpoint and overall survival (OS) in AML was de-
termined. For the LASSO-penalized Cox regression study
by 10-time cross-validation using “glmnet” R package, the
gene scale was further reduced in a univariate analysis by
p< 0.05. Finally, a multivariate approach was used to
classify the ideal model with the lowest Akaike data cri-
terion, which is a fitness indicator [21]. +e gene-de-
pendent prognosis risk score was calculated based on the
defined immune checkpoint and a linear combination of
risk score formula and multiple regression degree ex-
pression (β). Risk score � β1 ∗ gene1expression + β2 ∗
gene2expression + β3 ∗ gene3expression + . . .+ βn ∗ gene-
nexpression. Risk score was then obtained depending on
each patient’s algorithm. +e median value of the risk
score was used as a cutoff in all individuals categorized
into high-risk and low-risk categories. In order to com-
pare statistical variance between high- and low-risk cat-
egories, Kaplan–Meier study was conducted. Area under
the curve (AUC) for 1-, 3-, and 5-year OS was carried out
for a time-dependent ROC (receiver operating charac-
teristic) curve to assess the clinically predictive capability
of the model.

2.3. Prognostic Signature Independence. +e study of uni-
variate Cox regression was done in order to assess the
significance of current gene signature and clinical param-
eters on the method of OS in children with AML. Further
study of the multivariate Cox regression to classify indi-
vidual prognostic variables was performed. Survival evalu-
ation was performed to verify the novel signature’s risk
stratification capability as patients were identified as clinical
subgroups.

2.4. Gene Set Enrichment Analysis. In order to research the
biological mechanisms behind the predictive signature,
GSEA investigates whether there are statistically meaningful
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variations between high- and low-risk classes in defined sets
of genes [22]. Sets of genes p< 0.05 and FDR< 0.25 were
deemed substantially enriched and biological mechanisms
were established.

2.5. Immune Cell Subtypes and Associations of Immune
Checkpoint-Related Genes Defined. +e analytic method
named CIBERSORT was applied to measure immune cell
subtypes in order to examine the relative tumor-infiltrating
immune cells’ abundance from gene expression profiles in
AML. +e algorithm calculated the supposed immune cells’
abundance by using a comparison range of 1000 permu-
tations of 22 immune cell subtypes (LM22) [23]. In order to
determine immune violations of each sample, we used the
mRNA expressions matrix as input files [24]. CIBERSORT
production of p< 0.05 was filtered for subsequent study,
indicating inferred proportion of CIBERSORT generated
immune cell number is precise [25]. +e performance values
of the CIBERSORT have been identified as fraction immune
cell subtypes. +e sum of 22 immune cell fractions for each
event was equivalent to 1. Spearman’s rank correlation study
was conducted on the R-software and the correlations of
function genes with infiltrating immune cells were visualized
using a kit of “ggplot2.”

2.6. Statistical Analysis. Using the package “survival,” sur-
vival curves were created. +e R package “survivalROC” was
used to execute the ROC curves. Multivariate Cox 95 percent
confidence interval (CI) relative hazards regression analyses
were introduced to classify prospective factors. +e visual-
ization was achieved by using the “corrplot” package R of 22
types of infiltrating immune cells. p< 0.05 has been found
meaningful. Both analyses of statistics were completed with
R (version 3.6.2).

2.7. PPI Network. Cytoscape is an open source framework
for the simulation and integration of dynamic networks with
attribute data of any type. Cytoscape has been used for
creating a network of protein interactions and evaluating the
interaction of core genes in immune control genes. +e
Cytoscape Network Analyzer was applied for the node
degree measurement specified as the number of connections
to select key genes in the PPI.

3. Results

3.1. Clinical Information and Patient Demographics. +e
TARGET and GEO cohort clinicopathology features are
listed in Table 1. In this study, the survival analysis included
clinicopathology and follow-up details composed of 187
AML children in TARGET database and 422 AML patients
in GEO database, respectively. Figure 1 shows the workflow
chart.

3.2.GeneFeature IdentificationandConstructionof Predictive
Gene Signature. For subsequent study, a total of 128 genes
linked to immune checkpoint between two datasets were

established. We also performed PPI network analysis using
STRING online tool and Cytoscape software to better clarify
associations between these genes that are linked to immune
checkpoint (Figure S1). Word clouds are seen in Figure S1
for the 128 immune checkpoint-related genes. Univariate
Cox study of 43 survival-related genes and 11 genes pre-
served after LASSO Cox regression was established
(Figures 2(a)–2(b)). +en, multivariate Cox regression study
was performed to establish the risk signature (Figure 2(c)).
+us, STAT1, BATF, and EML4 were considerably deter-
mined to be key genes linked to prognosis. For each sample,
the risk score value for each sample was determined as
follows: risk score� 0.4439 ∗ STAT1 expression +
0.3082 ∗BATF expression + 0.3003 ∗ EML4 expression.
+ree key genes were all high-risk genes and correlated with
poor survival. +e risk score in the TARGET and GEO
datasets was measured for each person and patients were
divided into low- or high-risk categories.

3.3. Gene Signature’s Performance. +e high-risk group
AML patients exhibited considerably unfavorable OS in the
TARGETcohort (Figure 3(e)) and were further confirmed in
GEO dataset relative to low-risk group. +e prediction
signature AUC values were 0.654, 0.711, and 0.681, re-
spectively, in TARGETdataset for 1-, 3-, and 5-year survival
rates (Figure 3(f )). Figures 3(b) and 3(c) show the expression
of gene signature between 2 datasets, the risk score distri-
bution, and the survival status of all patients. +e prognostic
signature can divide patients with AML into low- or high-
risk categories, and patients in the TARGET cohort have an
elevated risk score, which improves the expression of
prognostic genes. In comparison, GEO cohort AUC values
were 1, 3, and 5 years, respectively, of 0.569, 0.587, and 0.571
(Figure 3(f )). +e higher mortality rate was correlated with
an improved risk score (Figure 3(d)). +ese observations
verified the specific prediction of AML patients by the
current signature.

3.4. Independent Immune Checkpoint-Related Predictor
Value. +e analysis for multivariate Cox regression of
clinicopathological variables was first conducted to decide
whether the risk score in the TARGET cohort was an in-
dependent predictor of OS. After adjustment for other ex-
planatory factors, it was indicated that the risk score was
significantly related to the OS of AML patients (Table 2).

3.5. Gene Set Enrichment Analyses. GSEA was performed to
demonstrate biological pathways between high- and low-risk
categories. +e biological pathways in high-risk group were
significantly enriched by the natural killer cytotoxicity, the
T cell receptor signaling pathway, regulation of autophagy,
JAK STATsignaling pathway, chemokine signaling pathway,
and cell cycle (Figure 4).

3.6. Infiltration of Immune Cells and Interaction of �ree
Immune Checkpoint-Related Genes. In AML patients from
the TARGET (Figure 5(a)) and GEO cohorts, we first
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examined immune cell composition (Figure 5(c)). TARGET
cohort has considerably higher proportions of naive, T cell
CD4 memory in high-risk group than in low-risk group
(Figure 5(b)). +e mast cells and macrophages M2 pro-
portion were therefore significantly less than in low-risk

populations. +e GEO cohort was higher than low-risk
group in proportions of naive B cells and T-gamma delta
cells. However, the proportion of resting mast cells and
eosinophils in the low-risk group is relatively lower. As
Figure 6 shows, STAT1 has been positively associated with

Identification of 128 immune 
checkpoint-related genes mRNA expression

43 immune checkpoint-related 
genes related to OS

11 immune checkpoint-related 
genes related to OS

Prognostic model (3 immune
checkpoint-related genes)

Kaplan–Meier
survival curve

Independent
prognostic analysis ROC curve GSEA Immune cell

subtypes analysis

PPI network

GEO validation
cohort

Univariate Cox regression analysisSTRING database

LASSO penalized Cox analysis

Stepwise multivariate Cox regression analysis

Figure 1: Analysis process flowchart in this study.

Table 1: Clinical data from TARGET and GEO datasets of AML patients.

Variables Subgroups TARGET (n� 156) GSE37642 (n� 422)
Age

<14 years 103 —
≥14 years 53 —

Gender
Male 91 —
Female 65 —

Vital status
Alive 94 109
Dead 62 308

Unknown 0 5
WBC at diagnosis (106/L)

≥50 77 —
<50 79 —

Bone marrow leukemic blast percentage
≥90 32 —
<90 120 —

Unknown 4 —
CNS disease

No 146 —
Yes 10 —
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activated NK cells, macrophages M1, and activated dendritic
cells and negatively associated with monocytes, macro-
phages M2, and memory B cells. T CD4 memory resting,
neutrophils, macrophages M0, dendritic cell activated, and
naive B cell were positively correlated with EML4 and
negatively associated with monocytes, macrophages M2, and
B cell memory. BATF was linked to monocytes with memory
resting T cells CD4 and to mast cells resting negatively.

3.7. Risk Score Ability as an Indicator of Immunotherapy
Response. +e association between the risk score and ex-
pression of three immune checkpoint genes has been

investigated in TARGET cohort (Figure 7). Our findings
indicate that, in the high-risk group, PD-L1, PD-1, and
CTLA4 were upregulated, which positively correlated with
the high-risk score.

4. Discussion

AML is a malignant haematological disorder, with a rise in
prevalence with age, and 70% of patients also die from the
disease diagnosed [26]. Immune therapy advances have been
met with many challenges for children and adults with AML,
including lack of identified tumor-specific antiquities, inter-
and intrapatient disease heterogeneity [27], as well as greater
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Figure 2: Participant immune checkpoint genes recognition of the TARGETcohort. (a) Univariate Cox regression testing that defines HR
prediction variables with 95% CI and p values. (b) Selecting LASSO regression algorithm input variables. (c) Constructing immune
checkpoint-related gene model by multivariate Cox regression in TARGET cohort.
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Figure 3: Continued.
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understanding of microenvironmental factors impeding the
therapeutic effectiveness of immunosuppressive bone
marrows [28]. Until now, checkpoint inhibitors in the pe-
diatric leukemia community have beenminimally examined.
+e latest opened Phase I study of Nivolumab with 5-aza-
cytidine in children with multiple relapsed/refractory AML
is examining the protection and tolerability, along with the
assessment of the recommended Phase 2 dosage [29]. In the
high-risk group, the expression levels of PD1, PD-L1, and
CTLA4 were significantly increased, suggesting that when
the AML patients are assigned to the high-risk group, there
may be strong clinical indications for the use of immune
checkpoint inhibitor treatment.

However, there are also not adequate immune check-
point biomarkers and prognostic models for the survival of
pediatric AML patients. +e goal of this research was to
develop an effective signature of prognosis for AML children
and estimate the survival of AML children. Two datasets
reported 128 common immune checkpoint-related genes.
Immune checkpoint-related prognostic genes, which sub-
sequently were analyzed in TARGET dataset using multi-
variate regression analysis, were screened using univariate
Cox regression and LASSO algorithms in the TARGET
dataset. Finally, a new three-gene model was developed and
validated in GEO dataset, successively categorizing patients
into groups with low risk and high risk with distinct OS,

where there were considerably lower prognostic patterns
than in high-risk group. +e utility of the current signature
suggests a good predictive potential. +e 3-gene signature
also shows that the survival of AML is an individual pre-
diction. In addition, an immune reaction and immuno-
therapeutic reaction are more likely to occur in the high-risk
group. Consequently, this gene-prognostic signature cor-
related with immune checkpoint is reliable, strong, and
interpretable. In certain malignancies, tumor-infiltrating
immune cells have a strong predictable tumor development
and patient survival. +e three genes were shown to be
correlated to different immune cells.

+ree risk genes have been found (STAT1, BATF, and
EML4). STAT1 is a crucial IFN signaling portion. Most data
suggest that activated STAT1 plays a function in cancer cells
as a tumor suppressor [30]. In several forms of human
cancer, such as breast cancers, pleural mesothelioma, head
and neck cancer, and lymphoma, aberrant activation STAT1
has been identified [31]. In the majority of trials, high ex-
pression of STAT1 leads to improved clinical outcomes, but
contradictive data has been shown suggesting that the
clinical findings of cancer patients with high expression of
STAT1 and/or pSTAT1 are poorer as contrasted with low
expression patients [31]. Recent research showed that the
eIF4F-STAT1-PD-L1 axis in melanoma is associated with
immune evasion [32]. It has proven to be mainly expressed
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Figure 3: Signature prediction value in pediatric AML. (a) A heat map showing the three patterns of gene expression linked to immune
checkpoint in both the TARGET and GEO categories of high and low risk. (b) +e distribution of risk score. (c) Distribution of status in
high- and low-risk AML patients. +e dot indicates the condition of the patient by the rising risk. +e x-axis consists of the number of
patients with a y-axis of time of survival. (d) +e death rates of all the risk categories. (e), (f ) +e general survival curves of Kaplan–Meier
patients allocated to high- and low-risk groups depending on the median score of the risk score.

Table 2: Multivariate analysis of AML patients’ OS identified independently prognostic factors in TARGET cohort.

Multivariate analysis
HR 95%CI p value

Gender 0.601 0.367–0.984 0.0432
WBC at diagnosis 1.001 0.585–1.711 0.9986
Bone marrow leukemic blast percentage 1.082 0.615–1.904 0.7829
CNS disease 1.774 0.693–4.541 0.2315
Age at diagnosis 1.044 1.001–1.089 0.0421
Risk score 1.914 1.366–2.682 0.0001
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in hematopoietic cells, particularly in B and T cells. BATF
belongs to the transcription factors family of AP-1. T cell
activity can be blocked by the PD-1, which can reverse the
signal downstream of TCR and CD28 co-stimulation by
the enhanced production of the BATF transcription
factors [33]. EML4 is a protein linked to microtubules that
improve the stability of the microtubules [34]. Human
EML4 is phosphorylated with mitosis residues of serine/
threonine. A large proportion (∼5 percent) of lung ade-
nocarcinoma patients as well as breast and colorectal
tumors are found in pathological fusion sections of this
gene with portions of ALK gene that produces the EML4-
ALK transcript [35, 36]. In this research, the GEO dataset
contains 422 adult patients which was used as validation
group. A recent comprehensive genomic characterization
of pediatric AML from Children’s Oncology group
showed that, though similar to adults, pediatric AML also
has low rate of overall somatic mutation burden, and the
mutational profile is different. Unlike adult AML,
DNMT3A mutations and mutations in TP53 were almost

absent and mutations in IDH1 or IDH2 were rare in
pediatric patients [37]. In our research, the three genes
involved in the model (STAT1, BATF, and EML4) have
not been reported to be heterogeneous between adults and
children. +is may be part of the commonality between
adults and children.

As far as we know, this is the first research to create a
prognostic signature in pediatric AML dependent on an
immune checkpoint. Our analysis, however, had some
restrictions. Any additional intrinsic variables such as
family background, gene mutation phenotypes, and the
primary treatment process, which could have had an
influence that may have had a certain influence on the
outcome, were not feasible in this analysis. In other
independent future research and operational tests on
established genes, more confirmation of the utility of the
signature is also required. In addition, more analytical
capacity is expected in more clinical trials of greater
sample sizes. So, before the effects can be translated to
clinical practice, there is already a lot to be done.
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Figure 4: Low-risk and high-risk GSEA enrichment.
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Figure 5: Continued.
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Figure 5: Immune cell subtypes distribution and visualization of patients with AML. (a) Overview of 22 immune cell subtypes in dataset of
TARGETpredicted compositions. (b) Distinctions between low- and high-risk groups with 22 immune cell subtypes. (c) Description of the
22 immune cell subtypes of the GEO cohort estimated compositions. (d) Contrast between low- and high-risk groups in 22 subtypes of
immune cells. Colors blue and red represent low-risk and high-risk samples.

10 Journal of Oncology



R = 0.26, p = 0.00087

0.000

0.025

0.050

0.075

0.100

STAT1

N
K 

ce
lls

 ac
tiv

at
ed

R = −0.35, p = 8.4e − 06

0.0

0.2

0.4

0.6

0.8

STAT1
M

on
oc

yt
es

R = −0.19, p = 0.018

0.0

0.1

0.2

0.3

STAT1

M
ac

ro
ph

ag
es

 M
2

R = 0.23, p = 0.0048

0.00

0.01

0.02

0.03

0.04

STAT1

M
ac

ro
ph

ag
es

 M
1

R = 0.16, p = 0.046

0.01

0.02

0.03

0.04

STAT1

D
en

dr
iti

c c
el

ls 
ac

tiv
at

ed

R = 0.23, p = 0.0048

0.2

0.4

5 6 7 8 9 5 6 7 8 9 5 6 7 8 9 5 6 7 8 9

0.00

5 6 7 8 9
0.0

5 6 7 8 9
STAT1

B 
ce

lls
 n

ai
ve

R = −0.29, p = 0.00029

0.00

0.05

0.10

0.15

STAT1

B 
ce

lls
 m

em
or

y

R = 0.2, p = 0.011

0.0

0.1

0.2

0.3

0.4

0.5

STAT1

T 
ce

lls
 C

D
4 

m
em

or
y 

re
sti

ng

R = 0.32, p = 3.9e − 05

0.0

0.1

0.2

0.3

0.4

0.5

EML4
T 

ce
lls

 C
D

4 
m

em
or

y 
re

sti
ng

R = 0.31, p = 8.9e − 05

0.00

0.05

0.10

0.15

EML4

N
eu

tr
op

hi
ls

R = −0.29, p = 0.00028

0.0

0.2

0.4

0.6

0.8

EML4

M
on

oc
yt

es

R = −0.3, p = 0.00011

0.0

0.1

0.2

0.3

EML4

M
ac

ro
ph

ag
es

 M
2

R = 0.29, p = 0.00025

0.000

0.025

0.050

0.075

0.100

EML4

M
ac

ro
ph

ag
es

M
0

R = 0.19, p = 0.02

0.00

0.01

0.02

0.03

0.04

EML4

D
en

dr
iti

c c
el

ls 
ac

tiv
at

ed

R = 0.33, p = 3.3e−05

0.0

0.2

0.4

EML4

B 
ce

lls
 n

ai
ve

R = −0.37, p = 1.7e−06

0.00

0.05

0.10

0.15

EML4
B 

ce
lls

 m
em

or
y

R = 0.18, p = 0.024

0.0

0.2

0.4

0.6

0.8

87

5 6 7 8 9 5 6 7 8 9 5 6 7 5 6 7 5 6 7 5 6 7

5 6 7 5 6 7 5 6 7 5 6 7 6
BATF

M
on

oc
yt

es

R = −0.27, p = 0.00066

0.0

0.2

0.4

0.6

0.8

876
BATF

M
as

t c
el

ls 
re

sti
ng

Figure 6: STAT1, BATF, and EML4 association and infiltration of immune cells in pediatric AML.
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