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Abstract  
Adult BALB/c mice, individually housed, were stimulated with nine different stressors, arranged 
randomly, for 4 continuous weeks to generate an animal model of chronic stress. In chronically 
stressed mice, spontaneous locomotor activity was significantly decreased, escape latency in the 
Morris water maze test was prolonged, serum levels of total thyrotropin and total triiodothyronine 
were significantly decreased, and dopamine and norepinephrine content in the pallium, 
hippocampus and hypothalamus were significantly reduced. All of these changes were suppressed, 
to varying degrees, by L-tyrosine supplementation. These findings indicate that the neuroendocrine 
network plays an important role in chronic stress, and that L-tyrosine supplementation has 
therapeutic effects. 
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INTRODUCTION 
    
Stress is the body’s non-specific response to 
both internal and external stimuli. Persistent 
or excessive stress, surpassing the 
individual’s capacity to adapt and cope, 
disturbs normal physiological function and 
behavior, even leading to physical and 
psychiatric diseases[1-3]. Statistics show that 
the stress response can cause histological, 
physiological and biochemical changes[4-6]. 
As the pace of social life increases and 
competition intensifies, people generally are 
in a state of chronic stress that can give rise 

to a series of familial and social problems. 
Therefore, it is an urgent task for modern 
medicine to study relevant mechanism of 
stress, and to investigate methods to 
alleviate its impact on human health. 
Tyrosine, an aromatic amino acid, is a 
precursor for the synthesis of catecholamine 
neurotransmitters[7]. In the central nervous 
system, catecholamine neurotransmitters 
participate in regulating activities such as 
awakening, attention and mood[8]. Therefore, 
when catecholamine insufficiency arises in 
the brain due to chronic stress, 
supplementation with tyrosine can reduce 
physical decline, loss of interest and slow 
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movement caused by chronic stress[9-10]. Previous 
studies indicate that tyrosine plays an active part in 
regulating the behavior and mood of people in such 
extreme environments as high altitude, oxygen 
deficiency and extreme cold[11-13]. However, little is known 
regarding the effects of tyrosine on disorders resulting 
from daily stresses (e.g., the quickened pace of life, 
fiercer social competition and increasing pressure at 
work, the disparity between efforts and gains, 
occupational instability and interpersonal tension). In the 
present study, we established a mouse model of chronic 
stress to investigate the effects of tyrosine intervention 
on disruption of the neuroendocrine network caused by 
chronic stress, and to clarify the underlying mechanism. 
 
 
RESULTS 
 
Quantitative analysis of experimental animals 
A total of 63 healthy BALB/c mice were randomly 
divided into three groups with 21 mice in each group: 
normal control (control), chronic and unpredictable 
stress (CUS) and CUS plus L-tyrosine interference 
group (CUS-L). Experiments lasted for 4 weeks. All 
mice were included in the final analysis with no cases of 
death or infection. 
 
Stress increased mouse body weight 
After 4 weeks of chronic and unpredictable stress, the 
body weight of mice increased significantly compared 
with that 4 weeks earlier (P < 0.05; Table 1). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
L-tyrosine alleviated behavioral deficits in stressed 
mice 
Spontaneous locomotor activity 
Compared with normal control mice, stressed mice 
displayed a significant reduction in the total horizontal 
distance traveled in a novel environment (P < 0.01). 
L-tyrosine supplementation significantly increased the 
total horizontal distance traveled by mice subjected to 

stress (P < 0.01; Table 2). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The Morris water maze test 
After five successive tests in 4 weeks, the time taken by 
the control mice to find the platform gradually decreased, 
while mice submitted to stress showed the opposite trend, 
and there was a significant difference between these two 
groups (P < 0.05). Stressed mice given L-tyrosine 
supplementation showed greater improvement in 
performance in maze tests (P < 0.05; Figure 1). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
L-tyrosine increased serum levels of total 
thyrotropin (TT3) and total triiodothyronine (TT4) in 
stressed mice 
Compared with mice in the control group, serum levels of 
TT3 and TT4 were significantly decreased in stressed 
mice (P < 0.05). TT3 and TT4 serum levels were 
significantly increased by L-tyrosine supplementation  
(P < 0.05; Table 3). 

Table 1  Effect of chronic stress on body weight (g) of 
mice 

Time after stress induction (week) 
Group Before stress 

induction 1 2 3 4 

Control 23.9±1.2 24.1±1.4 24.7±1.7 25.3±1.1 26.1±1.2
CUS 22.7±1.4 23.9±1.2 21.9±1.5 25.6±1.1 26.2±1.4a

CUS-L 23.9±1.5 24.9±1.9 25.5±1.2 25.8±1.2 26.3±1.2
 
Data are presented as mean ± SD. Differences between the 
control group and the other two groups were tested using analysis 
of variance and paired sample t-test. aP < 0.05, vs. before stress 
induction. CUS: Chronic and unpredictable stress; CUS-L: CUS 
plus L-tyrosine interference. 

Table 2  Locomotor activity (m) of mice in each group after 
exposure to chronic stress 

Time after stress induction (week) 
Group Before stress 

induction 1 2 3 4 

Control 1.31±0.21 1.39±0.29 1.38±0.17 1.52±0.21 2.01±0.31 
CUS 1.30±0.48 1.73±0.20a 1.86±0.36a 1.51±0.56 1.36±0.43a 
CUS-L 1.46±0.32 1.49±0.44b 2.71±0.44ab 1.65±0.42 1.81±0.39b 

 
Data are presented as mean ± SD. Differences between the 
control group and the other two groups were tested using analysis 
of variance and paired sample t-test. aP < 0.01, vs. control group; 
bP < 0.01, vs. CUS group. CUS: Chronic and unpredictable stress; 
CUS-L: CUS plus L-tyrosine interference. 

Figure 1  Escape latency trends at 1-4 weeks in the 
Morris water maze test.  
Data are presented as mean ± SD. Differences between 
the control group and the other two groups were tested 
using analysis of variance and paired sample t-test. aP < 
0.05, vs. CUS group. CUS: Chronic and unpredictable 
stress; CUS-L: CUS plus L-tyrosine interference. 
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L-tyrosine supplementation modulated 
neurochemical changes in brain tissues of stressed 
mice 
After 4 weeks of chronic stress, dopamine and 
norepinephrine levels in the pallium, hippocampus and 
hypothalamus were significantly decreased (P < 0.01 or 
P < 0.05). Levels of dopamine in the pallium and 
hippocampus, as well as levels of norepinephrine in the 
pallium and hypothalamus, were restored by L-tyrosine 
supplementation (P < 0.05 or P < 0.01; Figure 2). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
DISCUSSION 
 
In daily life, chronic stress-related hazards are generally 
caused by various complex, low-intensity and long-term 
life events[14]. Single stress factors (e.g., amputation of 
the tail, high-frequency-voltage convulsion and long-term 
restraint) were, in the past, frequently used to reproduce 
stress in animal models in a relatively short period of 
time[15]. However, single stress factors do not fully 
reproduce chronic stress because they are too intense or 
animals develop resistance easily[16]. While multiple 
chronic and unpredictable factors are better able to 
reproduce chronic stress in animal models, this approach 
has its own shortcomings, including a lengthy model 
production period, high demands on laboratory 
resources and the requirement to frequently change 
stimulants, which results in a heavy workload for the 
researcher[17-18]. 
After 4 weeks of chronic stress, the body weight of mice 
in the CUS group showed a significant increase 
compared with that before the experiment. In previous 
studies, some mice suffered a loss of weight, while some 
gained weight. Thus, our result is not contradictory to 
those previously reported by various groups[15, 19-20]. The 
distance covered per unit time by CUS mice in the first 
and second weeks of testing increased gradually, but 
their performance declined in the spontaneous 
movement experiment from the third week. This 
indicates that damage caused by chronic stress to 
physical and psychological health begins to manifest 
from the third week, and that chronic stress can weaken 
the animal physically, leading to increased fatigability, 
which hinders their ability to explore the surrounding 
environment in a limited time. The increased escape 
latency of the stressed mice suggests that the animals’ 
learning and memory abilities decline with increasing 
duration of stress, and that chronic stress may damage 
their learning and memory functions. 
Rodents’ memory ability is related to prefrontal cortex 
dopamine content, and proper functioning of the 
dopaminergic system is critical to good working 
memory[21-24]. Studies show that the locus coeruleus 
releases substantial amounts of norepinephrine during 
awakening, decreases release significantly in the period 
of slow-wave sleep, and completely halts the release of 
the neurotransmitter in the period of paradoxical sleep, 
which causes people not to remember their dreams. This 
indicates that norepinephrine regulates the plasticity of 
nerve cells and promotes memory[25-28]. In this 
experiment, supplementation with tyrosine increased 
levels of catecholamine neurotransmitters in the brain, 
thereby improving the learning and memory abilities of 
the mice. 

Table 3  Effect of chronic stress on serum levels of TT3 
and TT4 (ng/mL) 

Group    TT3   TT4 

Control   0.74±0.22     48.20±3.41 
CUS 0.55±0.27a     29.91±12.8a 
CUS-L    0.64±0.13b        35.62±7.1b 

 
Data are presented as mean ± SD. Differences were tested using 
analysis of variance and paired sample t-test. aP < 0.05, vs. control 
group; bP < 0.05, vs. CUS group. TT3: Total thyrotropin; TT4: total 
triiodothyronine; CUS: chronic and unpredictable stress; CUS-L: 
CUS plus L-tyrosine interference. 

Figure 2  Dopamine (A) and norepinephrine (B) content in 
the pallium, hippocampus and hypothalamus (ng/mg).  

Data are presented as mean ± SD. Differences between 
the control group and the other two groups were tested 
using analysis of variance and paired sample t-test. aP < 
0.01 and bP < 0.05, vs. control group; cP < 0.05, vs. CUS 
group.  

CUS: Chronic and unpredictable stress; CUS-L: CUS plus 
L-tyrosine interference. 
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The lowered serum TT3 and TT4 levels in the stressed 
mice clearly show that the hypothalamus-hypophysis- 
thyroid axis plays an important role in the stress 
response. Under stress, reduced activities of thyroid 
peroxidase and oxidase, which are necessary for TT3 
synthesis, leads to decreased serum levels of TT3 in the 
peripheral blood and quicker transformation of TT4 into 
the non-bioactive TT3. Central nervous system 
norepinephrine functions to inhibit the 
hypophysis-adrenal cortex axis and activate the 
hypophysis-thyroid axis, both of which affect thyroid 
function, which depends on the regulation of the 
hypothalamus-hypophysis-thyroid axis. Other central 
nervous system regions act on the arcuate nucleus in the 
center of the hypothalamus, causing it to produce and 
release thyrotropin-releasing hormone, which induces 
anterior pituitary cells to secrete thyroid-stimulating 
hormone, which regulates thyroid hormone levels[29-32]. 
Normal levels of thyroid hormone help regulate energy 
metabolism in the body, quicken the repair and the 
renewal of damaged cells, and strengthen resistance to 
chronic stress. Clinically, many patients with depression 
caused by social stress present with weakened immunity 
and easy fatigability due to decreased serum levels of 
TT3 and TT4. Supplementation with tyrosine can increase 
norepinephrine in the brain and induce 
thyrotropin-releasing hormone neurons to release more 
thyrotropin-releasing hormone, which acts on the 
hypophysis to release more thyroid-stimulating hormone. 
As a result, the synthesis and release of thyroid 
hormones increase[33-35]. 
In summary, chronic stress causes behavioral changes 
and disorders in the neuroendocrine network, and 
L-tyrosine can relieve or inhibit these changes. However, 
the stress response itself is dynamic, and examining only 
one specific time point cannot fully clarify the 
complexities of this process. 
 
 
MATERIALS AND METHODS 
 
Design 
A randomized, controlled, animal experiment. 
 
Time and setting 
The experiments were performed at a laboratory in the 
Department of Pathophysiology of Peking Union Medical 
College in China from March 2008 to September 2010. 
 
Materials 
Animals 
Sixty-three genetically similar male BALB/c mice, 
weighing 23-24 g and 8-9 weeks of age, were provided 
by the Experimental Animal Center, Peking Union 

Medical College in China (certification No. SYXK (Jing) 
2008-0098). The animals were housed at a controlled 
temperature (22 ± 2°C) and humidity (45-65%) in 
artificially lighted rooms with a 12-hour light/dark cycle 
(lights on at 7: 00 a.m.), with free access to food and 
water. During the first week after arrival, animals were 
allowed to habituate to their new environment without 
handling. The experiments were performed in a different 
room with the same temperature. 
 
Drugs 
L-tyrosine (Sigma, St. Louis, MO, USA) was dissolved in 
sterile 0.9% saline[36]. 

 
Methods 
Stress induction 
Mice in the CUS and CUS-L groups, which were housed 
alone, were subjected to nine types of stressors, 
including cage tilting (45°, 12 hours), an empty cage with 
water on the bottom (12 hours), inversion of the light/dark 
cycle (12 hours), vibration (45 minutes), immersion in 
water (4°C, 5 minutes), restraint (2 hours), food 
deprivation (12 hours), water deprivation with empty 
water bottles (12 hours) and unpredictable 1-second foot 
shocks (0.3 mA). Two of these stressors were applied 
daily in a random manner to ensure that mice could not 
predict which type of stress would be presented[37-39]. The 
mice in the control group were housed together (21 mice 
in one cage) and did not receive any stimulation. The 
weights of the mice were monitored before experiments 
every week 
 
L-tyrosine administration 
Mice from the CUS-L group (L-tyrosine suspension, 5 mL, 
2.032 g/kg), control group and CUS group (distilled water, 
the same volume as for the CUS-L group) received 
intragastric administration of the appropriate solution 
daily before stress induction (lasting for 28 successive 
days)[36]. 
 
Behavioral observations 
The stress procedure lasted for 4 weeks, and behavioral 
testing was performed at the end of every week. 
 
Spontaneous locomotor activity 
Each mouse was individually placed in an automated 
locomotor activity chamber (50 × 50 × 40 cm3) equipped 
with horizontal and vertical infrared beams (Institute of 
Materia Medica, Peking Union Medical College, Beijing, 
China). The chambers were placed in a dimly lit room 
illuminated by four overhead 15 V projection lamps 
mounted 200 cm above the chambers. The animal was 
placed in the chamber and allowed to move 
spontaneously for 120 seconds (18:00 and 21:00). The 
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total horizontal activity distance (m) traveled by mice in 
the test chamber was recorded with a video camera 
placed above the chamber and analyzed with DigBehv 
software (Version 2.0; Shanghai Jiliang Software 
Technology Co., Ltd., Shanghai, China). Data were 
collected before the stress was applied and on the last 
day of every week[40-42]. 
 

The Morris water maze test 
The Morris water maze test was conducted in a large 
circular pool with a diameter of 80 cm and four side walls 
approximately 70 cm high, containing no internal cues, 
stimuli, markings or objects, but surrounded by stable, 
salient extra-maze cues (Institute of Materia Medica, 
Peking Union Medical College, China). The pool was 
filled with water at a temperature of 22 ± 1°C to a depth 
of about 35 cm. The pool was conceptually divided into 
four quadrants with equal areas (NE, SE, SW and NW). A 
circular escape platform (8 cm in diameter and 34 cm in 
height) was placed into the tank at a fixed position in the 
center of the NW quadrant, and was 20 cm away from 
the wall. Black nontoxic carbon ink (Chinese ink) was 
added to the pool to make the water opaque. The top 
surface of the platform was 1 cm below the water surface, 
with a rough surface to make it easy for the mice to climb 
on. The test was given before the stress had been 
applied and was conducted on the last day of every week 
between 21:00 and 23:00. During the test trial, the 
mouse was released into the water at one of the three 
different starting positions (in three different quadrants 
that did not contain the platform) with its head facing the 
wall. And then the mouse was allowed to swim for 120 
seconds to search for the hidden platform. If it failed to 
locate the platform within 120 seconds, escape would be 
assisted and escape latency was recorded as 120 
seconds. At the end of each trial, each mouse would stay 
on the platform for 3 seconds. The sequence of the 
starting positions remained the same for all the mice 
within one session, but changed each session. During 
each trial session, escape latency (the time taken to find 
the platform) was recorded by a computerized video 
imaging analysis system[43-47] (supplementary Figure 1 
online). 

 
Sampling 
Mice were sacrificed by cervical dislocation at the end of 
the last behavioral tests, and serum and brain tissues 
(pallium, hippocampus and hypothalamus[48-49]) were 
immediately collected and stored at -80°C for 
experiments. 
 
Determination of serum levels of thyroid hormone 
Thyroid hormone levels were analyzed using 
radioimmunoassay kits with 125I as a tracer (China 

Institute of Atomic Energy, Beijing, China). All assays 
were performed in duplicate according to the 
manufacturer’s instructions. Analyses were conducted at 
room temperature on 50-µL samples for TT4 and TT3. 
The reaction system was composed of standard (50 μL, 
0, 0.5, 1, 2, 4, 8 ng/mL), samples (50 μL) and 125I tracer 
(200 μL), each of which was at an appropriate volume. 
After incubation, the reaction system was separated by 
adding a separation reagent (500 μL), except for the 
tubes set to measure total counts, and centrifuged at    
4 000 r/min for 25 minutes. The supernatant was 
decanted, and the radioactivity of the pellet was counted 
with a gamma counter (GAMMA-C12, DPC, USA)[50-51]. 
 
Measurement of catecholamines by high 
performance liquid chromatography 
Assays for norepinephrine and dopamine were 
performed with high performance liquid chromatography. 
The pallium, hippocampus and hypothalamus were 
sonicated in 1.5 mL 0.1 M HClO4 and 40 µL 
3,4-dihydroxy-benzylamine as the internal standard and 
centrifuged at 14 000 r/m for 15 minutes. Supernatants 
(20 µL) were injected onto a 4.5 mm × 250 mm, 10 µm 
chromatography column (Shimadzu, Japan) in a mobile 
phase containing KH2PO4 (100 mM), sodium 
1-octanesulfonate (1.0 mM), ethylenediamine tetraacetic 
acid-Na2 (0.5 mM), methanol (11% v/v) and pure water. 
Sample amounts were calculated by comparing the 
relative peak areas of sample peaks to internal standards. 
Norepinephrine and dopamine levels were measured in 
a single chromatogram. Concentrations were expressed 
as nanogram of norepinephrine or dopamine per 
milligram of sample tissue wet weight[52-55]. 
 
Statistical analysis 
Data were analyzed using SPSS version 17.0 (SPSS, 
Chicago, IL, USA) and were expressed as mean ± SD. 
One-way analysis of variance was performed for 
intergroup comparisons for the same rearing condition at 
different time points. The paired sample t-test was used 
for intergroup comparisons for different rearing 
conditions. A value of P < 0.05 was considered 
statistically significant. 
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