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Abstract
Objective:	To	determine	the	spatial	distribution	of	the	risk	of	Zika	virus	disease	in	each	
region	of	Colombia	during	the	2015–2016	epidemic.
Methods:	An	ecological	study	was	designed	to	estimate	the	risks	for	each	Colombian	
region	using	first-	order	neighbors,	covariate	effects,	and	three	adjacent	periods	of	time	
(beginning,	development,	and	end	of	the	epidemic)	to	analyze	the	spatial	distribution	of	
the	disease	based	on	a	Bayesian	hierarchical	model.
Results:	 Spatial	distribution	of	 the	estimated	 risks	of	Zika	virus	disease	 showed	 that	
it	 increased	 in	a	strip	that	crosses	the	central	area	of	the	country	from	west	to	east.	
Analysis	 of	 the	 three	time	periods	 showed	 greater	 risk	 of	 the	 disease	 in	 the	 central	
and	southern	zones—Arauca	and	Santander—where	the	increase	in	risk	was	four	times	
higher	during	the	peak	phase	compared	with	the	initial	phase	of	the	outbreak.
Conclusion:	 In	 the	 identified	high-	risk	areas,	 integrated	surveillance	 systems	 for	Zika	
virus	 disease	 and	 its	 complications	must	 be	 strengthened	 to	provide	up-	to-	date	 and	
accurate	epidemiological	 information.	This	 information	would	allow	those	 involved	 in	
policy	and	decision	making	to	identify	new	outbreaks	and	risk	clusters,	enabling	more	
focused	and	accurate	measures	to	target	at-	risk	populations.
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1  | INTRODUCTION

Knowledge	of	the	Zika	virus	was	scarce	in	many	high-	resource	coun-
tries	until	an	epidemic	began	in	Brazil	in	2015.1	A	public	health	emer-
gency	of	international	importance	was	declared	in	the	Americas	after	
48	 countries	 had	 confirmed	 autochthonous	 cases	 of	 Zika	 by	vector	
transmission;	 furthermore,	 the	 Emergency	 Committee	 of	 the	World	

Health	Organization	(WHO)	reported	cases	of	microcephaly	and	other	
neurological	disorders	in	disease	endemic	areas.2

In	Colombia,	 information	provided	by	the	National	Public	Health	
Surveillance	System	(SIVIGILA)	through	the	epidemiological	bulletin	of	
the	Colombian	National	Institute	of	Health	(NIH)	reported	that,	since	
the	disease	was	first	identified	in	epidemiological	week	29	of	2015	up	
to	 the	endemic	phase,	close	 to	105	000	symptomatic	cases	of	Zika	
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virus	 infection	were	 identified,	 including	more	 than	 19	 000	 among	
pregnant	women.	The	incidence	reported	during	the	epidemic	phase	
was	of	377.7	cases	per	100	000	inhabitants.3

Several	studies	have	been	carried	out	to	investigate	the	causes	
and	 behavior	 of	 Zika	 virus	 disease	 in	 Colombia.	 Pacheco	 et	 al.4 
estimated	 the	 risk	 of	 the	 disease	 in	 the	 country	 and	 found	 that	
most	 provinces	 had	 an	 accumulated	 incidence	 of	 between	 0.1	
and	 129.7	 per	 100	 000	 habitants.	 Rojas	 et	 al.5	 analyzed	 data	 to	
assess	the	incidence	of	the	virus	in	Girardot	and	the	island	of	San	
Andrés,	 and	 estimated	 attack	 rates	 of	 18.43	 and	 12.13	 per	 1000	
inhabitants,	respectively.

Although	the	results	of	previous	studies	provide	important	infor-
mation	on	the	use	of	crude	data,	they	show	great	variability	and	con-
sider	spatial	relationships	between	observations	only	according	to	the	
geographical	limits	of	each	province.	These	studies	do	not	consider	the	
influence	of	other	factors,	such	as	settlement	size,	size	of	neighboring	
settlements,	and	the	relationship	between	the	risk	area	and	neighbor-
ing	areas,	which	can	all	affect	the	spatial	and	temporal	risk	of	contract-
ing	the	Zika	virus.

Health	 data	 commonly	 consist	 of	 aggregated	 counts	 of	 disease	
within	 administrative	 units	 (small	 areas)	 such	 as	 departments	 and	
municipalities.	 To	 estimate	 the	 risk	 of	 disease,	 maximum	 likelihood	
estimators	 are	 typically	 used,	 such	 as	 standardized	 morbidity	 rate	
(SMR).	These	rates	are	variable	because	they	depend	on	the	expected	
values,	which	in	turn	depend	on	the	size	of	the	population.

When	mapping	the	geographical	distribution	of	a	disease,	the	aim	
is	 to	discover	spatial	patterns	that	help	explain	behavior	and	enable	
hypotheses	 about	 its	 etiology.	 The	 present	 study	 used	 Bayesian	
smoothing	methods	to	estimate	risk	to	spatially	review	the	geograph-
ical	structures	of	disease	behavior.	A	wide	range	of	models	in	disease	
mapping	have	been	developed	to	offer	appropriate	relative	risk	esti-
mates.	 Taking	 into	 account	 area	 information,	 these	 models	 provide	
smoothed	risk	maps	and	improve	the	estimates.

One	 of	 the	most	 important	 studies	 in	 risk	 estimation	 is	 that	 of	
Besag	et	al.6	Risks	are	estimated	using	a	model	that	captures	the	risk	
structure	 through	 incorporation	 of	 information	 from	 neighboring	
areas.	The	aim	is	to	identify	any	spatial	relationship	that	reveals	the	
behavior	of	the	disease,	how	it	 is	distributed,	and	whether	different	
factors	explain	this	behavior.	Besag	et	al.6	proposed	a	Bayesian	hierar-
chical	model	that	models	risk,	incorporating	two	random	factors:	one	
that	explains	the	spatial	dependence	between	neighboring	areas	and	
one	that	explains	the	residual	effects.	Some	extensions	and	contribu-
tions	to	the	Besag	model	are	the	works	of	Bernardinelli	et	al.,7	Best	
et	al.,8	and	Lawson.9,10

The	aim	of	the	present	study	was	to	determine	the	spatial	distribu-
tion	of	the	risk	of	Zika	virus	disease	in	each	region	of	Colombia	during	
the	2015–2016	epidemic	using	a	Bayesian	hierarchical	model.

2  | MATERIALS AND METHODS

An	 ecological	 study	 was	 designed.	 The	 units	 of	 analysis	 were	 the	
administrative	departments	of	Colombia,	which	is	politically	organized	

into	 32	 departments	 and	 four	 districts:	 Bogotá	 (DC),	 Barranquilla,	
Santa	Marta,	and	Cartagena.

2.1 | Case definition

Cases	of	Zika	virus	disease	were	those	reported	in	SIVIGILA	as	con-
firmed	or	suspected	cases.	The	information	corresponds	to	the	total	
number	of	cases	reported	by	the	NIH	per	epidemiological	week	(from	
week	32	of	2015	until	week	52	of	2016)	and	for	each	department.

Regarding	the	trend	 in	cases	of	Zika	virus	disease	over	time,	we	
evaluated	the	numbers	of	cases	reported	every	week	to	SIVIGILA	and	
defined	three	stages	of	the	epidemic	for	analysis:	 (1)	 the	first	phase	
began	with	the	first	case	reported	and	ended	at	the	beginning	of	the	
epidemic's	 peak	 (P1:	weeks	 32–52	 of	 2015);	 (2)	 the	 second	 phase	
began	at	this	point	and	ended	at	the	beginning	of	a	plateau	in	reported	
cases	 (P2:	weeks	 1–28	 of	 2016);	 (3)	 the	 third	 phase	 began	 at	 this	
plateauing	and	ended	 in	 the	 last	week	of	2016	 (P3:	week	29–52	of	
2016)	(Fig.	1).

2.2 | Spatial distribution of disease risk

In	the	present	study,	an	autoregressive	approach	to	spatial	mapping	
of	the	disease	based	on	the	model	of	Besag	et	al.6	was	applied	and	
included	estimation	of	risk	by	time	period	(initial,	peak,	and	endemic).

The	 study	 by	 Besag,	 better	 known	 as	 the	 BYM	 convolution	
model,	 is	 frequently	 used	 in	 epidemiological	 literature	 (Mollié,11 
Ferrándiz	et	al.,12	Barceló	et	al.13).	The	main	idea	behind	the	model	
is	to	assume	that	there	are	risk	factors	that	encompass	more	than	
one	area	of	study	and,	consequently,	the	relative	risks	are	spatially	
dependent.	 In	the	second	 level	of	hierarchy,	the	 logarithm	of	rela-
tive	risk	is	modeled	according	to	spatially	random	effects,	correlated	
and	uncorrelated:

where α0	 identifies	 the	 risk	 as	 one	 in	 the	 study	 area;	ui	 is	 the	
random	component	with	spatial	dependence;	and	vi	is	uncorrelated	
heterogeneity.	 As	 mentioned	 previously,	 dependence	 is	 incorpo-
rated	in	this	model	based	on	the	idea	that	observations	from	within	
the	 geographical	 areas	 will	 be	 closer	 to	 each	 other	 than	 obser-
vations	 from	 more	 distant	 geographical	 areas,	 thus	 achieving	 a	

λi=α0+ui+vi

F IGURE  1 Notified	cases	of	Zika	virus	in	Colombia,	from	week	32	
of	2015	until	week	52	of	2016	(P1:	week	32–52	of	2015;	P2:	week	
1–28	of	2016;	P3:	week	29–52	of	2016).
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softened	estimate	of	the	risk.	Introduction	of	this	spatial	correlation	
structure	in	the	model	provides	additional	information	and	allows	us	
to	obtain	more	stable	estimates	of	relative	risks	than	the	estimated	
maximum	likelihood.

The	 relationships	 between	 risk	 and	 some	 bioclimatic	 variables	
have	been	studied;	for	example,	altitude	data	taken	from	the	Shuttle	
Radar	Topography	Mission14	every	3-	arc	seconds	(i.e.	90	m);	average	
annual	 temperature	 identified	with	BIO01	data15	 every	10-	arc	min-
utes	 (i.e.	 18	 km);	 and	 precipitation	with	BIO16	 data15	 every	 10-	arc	
minutes	(i.e.	18	km).

In	the	present	study	the	model	was	implemented	through	R	statis-
tical	software	version	3.5.116	and	WinBUGS	14.17	The	QGIS	2.18.11	
program18	was	used	to	prepare	the	maps.

The	 project	 was	 endorsed	 as	 a	 risk-	free	 investigation	 by	 the	
Ethics	 Committees	 of	 North	 University	 and	 the	 Pan	 American	
Health	Organization.

3  | RESULTS

The	main	input	for	the	implementation	of	the	Bayesian	model	is	the	
number	of	cases	of	Zika	virus	disease	in	each	of	the	areas	studied	dur-
ing	the	three	time	periods	included	in	the	analysis.	There	were	40	741	
cases	of	Zika	virus	disease	in	total:	909	in	the	first	phase,	37	094	in	the	
second	phase,	and	2738	in	the	third	phase.	The	distribution	of	cases	
for	the	areas	studied	is	given	in	Table	1.

Figure	2	depicts	the	studied	areas,	showing	the	spatial	distribu-
tion	of	 the	 estimated	 risks	 using	 the	 convolution	model	 proposed	
by	Besag	et	al.6	The	risk	 in	each	spatially	distributed	area	shows	a	
trend	of	high	values	 in	 the	east,	 center,	 and	 south	of	 the	 country.	
The	risk	structure	captured	shows	the	highest	values	(from	1.97	to	
6.83)	in	these	areas.	The	departments	with	the	highest	risk	were	the	
Archipelago	of	San	Andrés,	Providencia,	 and	Santa	Catalina	 (6.83);	
Casanare	 (5.01);	 Norte	 de	 Santander	 (3.53);	 Arauca	 (3.25);	 Huila	
(2.77);	Valle	del	Cauca	(2.68);	Tolima	(2.34);	Santander	(2.28);	Meta	
(2.03);	and	Amazonas	(1.97).	In	the	northern	zone	of	Colombia	(the	
Caribbean	region),	it	is	noteworthy	that	the	districts	of	Santa	Marta	
and	Barranquilla	present	the	highest	values	in	that	region	(1.811	and	
1.761,	respectively).

Figure	3	provides	maps	of	 the	estimated	risks	by	time	period	to	
reflect	 the	 spatial	 and	 temporal	 evolution	 of	 the	 Zika	 virus	 disease	
during	 2015–2016.	 Each	 estimate	 considers	 the	 geographical	 and	
temporal	relationship	for	the	risk	estimation.	At	the	beginning	of	the	
epidemic	(P1,	Fig.	3),	the	risk	values	that	stand	out	are	in	the	depart-
ments	of	San	Andrés,	Córdoba,	Atlántico,	Magdalena,	Casanare,	Meta,	
Guaviare,	Putumayo,	and	Nariño.

During	 the	peak	of	 the	disease	 (P2,	 Fig.	 3)	 the	 risk	values	were	
higher	 in	 the	 center	 and	 south	 of	 the	 country;	 in	 areas	 such	 as	
Casanare,	Norte	de	Santander,	Meta,	and	Guaviare,	for	example,	the	
risk	was	up	to	four	times	higher	than	at	the	initial	phase	of	the	out-
break.	Similar	results	were	observed	in	Nariño,	Putumayo,	Huila,	Valle	
del	Cauca,	and	Tolima,	among	others.	It	was	evident	that	the	disease	
risk	of	 the	departments	 increased	over	time	as	 their	neighbors’	 risk	

also	increased	over	time.	The	spatial	tendency	observed	in	the	second	
phase	is	related	to	the	dynamics	of	the	disease.

During	 the	 endemic	 phase	 of	 the	 disease	 (P3,	 Fig.	 3)	 there	was	
a	 decrease	 in	 risk	 in	 some	 areas,	mainly	 in	 the	 north	 (Santa	Marta,	
Barranquilla,	among	others),	and	in	the	center	and	south	of	the	country	
(Meta,	Guaviare,	among	others).

In	phase	3	(weeks	29–52	of	2016),	the	risk	values	do	not	abruptly	
decrease	because	the	risks	are	spatially	correlated	and	the	estimation	
of	risk	in	each	of	the	areas	depends	on	the	estimate	obtained	in	period	
2.	Although	the	risk	values	do	decrease	in	this	endemic	phase	of	the	

TABLE  1 Distribution	of	observed	cases	of	Zika	virus	disease	by	
stage	of	the	epidemic	(initial,	peak,	and	endemic)	by	areas	studied,	
Colombia	2015–2016.

Area studied

First  
phase 
(P1- initial)

Second  
phase 
(P2- peak)

Third phase  
(P3- 
endemic) Total

Amazonas 0 205 0 205

Antioquia 87 1452 80 1619

Arauca 6 504 38 548

Atlantico 36 2053 67 2156

Bolivar 343 391 26 760

Boyaca 24 121 24 169

Caldas 9 125 28 162

Caqueta 2 721 18 741

Casanare 6 905 93 1004

Cauca 2 92 19 113

Cesar 5 888 50 943

Choco 0 27 4 31

Cordova 11 1503 17 1531

Cundinamarca 8 1838 44 1890

Guainia 0 0 1 1

Guaviare 0 24 4 28

Huila 16 3584 67 3667

La	guajira 3 336 8 347

Magdalena 16 1056 19 1091

Meta 2 1553 145 1700

Nariño 8 32 10 50

Norte	de	Santander 10 4452 137 4599

Putumayo 22 251 15 288

Quindio 0 108 17 125

Risaralda 29 488 65 582

San	Andres 201 65 9 275

Santander 9 2338 532 2879

Sucre 35 335 13 383

Tolima 19 3529 114 3662

Valle 0 8118 1.071 9189

Vaupes 0 0 1 1

Vichada 0 0 2 2

Total	No.	(%) 909	(2.23) 37	094	(91.05) 2738	(6.72) 40	741
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disease,	the	decrease	is	low,	indicating	only	a	small	variation	in	the	risk	
between	phase	2	and	phase	3.

The	effect	of	rainfall	as	a	covariate	on	the	risk	of	Zika	virus	disease	
was	also	analyzed.	The	peak	period	of	rainfall	coincided	with	the	peak	
period	of	the	disease.	Results	showed	that	areas	with	highest	rainfall	
coincided	with	areas	that	had	the	greatest	estimated	risk	of	Zika	virus	
disease	(Fig.	4).

4  | DISCUSSION

To	our	knowledge,	 this	 is	 the	first	study	 to	explore	 the	 risk	of	con-
tracting	 Zika	 virus	 disease	 in	 Colombia	 using	 spatial	 models	 based	
on	a	Bayesian	approach.	In	spatial	epidemiology,	it	is	common	to	use	
the	 maximum	 likelihood	 estimator	 of	 the	 morbidity	 and	 mortality	
rates	 to	 estimate	 risk.5,19,20	 These	 rates	 depend	on	 the	behavior	 of	
the	expected	values	and	work	well	when	this	value	is	high.	The	pre-
sent	study	used	smoothing	methods	that	incorporate	information	on	
neighboring	areas	and	covariates	that	allow	more	stable	risk	estimates	
to	be	obtained	and	that	show	a	tendency	on	the	map.

Our	results	show	a	spatial	grouping	of	high	risk	for	Zika	virus	dis-
ease	in	the	departments	located	between	the	equator	and	the	3rd	par-
allel	north	(3	degrees	north	of	the	equator),	where	there	is	a	high	level	
of	rainfall	during	the	year	that	might	explain	the	space–time	dynamics	
of	the	disease.	Correlations	between	Zika	virus	cases	and	environmen-
tal	 factors	 such	 as	 daily	 rainfall,	 humidity,	 and	 average	 temperature	
have	been	described	in	studies	from	Brazil	and	China.21,22

Inclusion	 of	 these	 covariates	 and	 geo-	referencing	would	 allow	
an	 integrated	 surveillance	 system.	 It	would	 generate	more	 stable,	
accurate,	 and	 smoothed	 risk	 estimators	 to	 visualize	 trends	 that	
would	 improve	 the	control	of	vector-	type	diseases	 in	 tropical	 and	
subtropical	countries.23	This	information	would	allow	those	involved	
in	 policy	 and	 decision-	making	 to	 identify	 new	 outbreaks	 and	 risk	
clusters	 to	 enable	more	 focused	 and	 accurate	measures	 to	 target	
at-	risk	populations.

The	 study	 has	 some	 limitations.	 Intensified	 surveillance	was	 only	
conducted	in	populations	at	risk:	pregnant	women,	children	aged	under	
1	year,	adults	older	than	60	years,	and	patients	with	comorbidities.	Most	
data	on	Zika	virus	cases	were	collected	through	passive	surveillance	of	
people	with	symptoms	of	Zika	virus	and	whose	diagnoses	were	mainly	
clinical	without	laboratory	confirmation;	it	excludes	asymptomatic	cases	
that	may	represent	up	to	40%–80%	of	the	infected	population.24–28 In 

F IGURE  2 Estimated	spatial	risk	map	using	the	convolution	
model	for	Zika	virus	disease	in	Colombia	for	the	2015–2016	period.

F IGURE  3 Maps	of	estimated	spatial	risk	using	the	convolution	
model	for	Zika	virus	disease	in	Colombia	by	time	period	(P1:	weeks	
32–52	of	2015;	P2:	weeks	1–28	of	2016;	P3:	weeks	29–52	of	2016).

F IGURE  4 Map	of	the	estimated	spatial	risk	using	the	convolution	
model	for	Zika	virus	disease	in	Colombia,	including	rainfall	as	a	
covariate.
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addition,	recent	experience	in	Colombia	in	surveillance	of	other	arbovi-
ruses	(chikungunya	and	dengue	virus)	generated	adequate	preparation	
of	 surveillance	 systems;	however,	notification	of	Zika	cases	may	have	
varied	 at	 different	 times	 and	 places.29	 Lack	 of	 knowledge	 concerning	
disease	management	among	public	healthcare	providers	during	the	first	
weeks	of	the	outbreak	was	corrected	by	the	actions	of	the	Ministry	of	
Health	 and	 associated	 healthcare	 departments	 through	 training	 and	
awareness.	Therefore,	 there	were	 lower	numbers	of	 reported	cases	 in	
the	early	stages	of	the	outbreak	(October	2015)	compared	with	the	later	
stages.	 Furthermore,	 it	 is	 worth	 noting	 that	 environmental	 measure-
ments	were	taken	at	a	community	 level	and	not	at	an	 individual	 level,	
which	might	cause	an	ecological	bias.

From	a	statistical	point	of	view,	our	study	is	based	on	retrospective	
data	from	a	period	of	less	than	24	months,	which	limits	model	gener-
ation	due	to	lack	of	available	data.	This	also	poses	a	challenge	to	the	
incorporation	of	sociodemographic	and	inter-		and	intrapersonal	char-
acteristics	 that	would	help	better	understand	other	possible	 factors	
associated	with	Zika	virus	infection.

It	is	of	great	interest	to	review	other	possible	models	that	include,	
for	example,	distance	from	the	geo-	referenced	point	of	a	subject	to	a	
focal	point,	such	as	a	healthcare	center.	This	information	would	have	
enabled	 study	 of	 the	 dynamics	 of	 notification	 of	 symptoms	 and/or	
disease	situations.

Comparing	an	individual's	history	of	related	diseases	such	as	den-
gue	and	chikungunya	would	allow	study	of	 the	probabilities	of	con-
tracting	 Zika	 virus	 disease	 based	 on	 two	 pathologies	 known	 to	 be	
transmitted	by	the	same	vector.	A	risk	scale	for	 individuals	could	be	
made	based	on	whether	they	had	contracted	any	of	those	diseases.

We	hope	that	these	results	are	a	starting	point	to	continue	study-
ing	 the	 effect	 of	 covariates	 (for	 example	Aedes aegypti	 pupal	 count,	
water	 storage	 containers,	 biological	 or	 chemical	 control	 methods,	
among	others)	 on	 the	 estimation	of	 risks	 in	 small	 areas.	 In	 a	 future	
study	we	 can	 assess	 the	 impact	 of	 these	 covariates	 simultaneously	
to	 investigate	 their	 joint	 effect	 on	 the	 estimation	of	 risk	 in	 each	 of	
the	areas.

In	 conclusion,	 Zika	 virus	 disease	 is	 a	 public	 health	 emergency	
that,	despite	not	having	a	high	burden	of	mortality,	generates	neu-
rological	 complications	 in	 adults	 and	 malformations	 in	 children	
that	 require	 prevention	 and	 control	 measures	 from	 healthcare	
authorities.	 Given	 this,	 risk	 estimation	 and	 categorization	 by	 clus-
ter	are	key	tools	that	allow	the	detection	of	high-	risk	areas	beyond	
geographical	boundaries.

Although	 the	 disease's	 epidemic	 status	 has	 ended	 in	 Colombia,	
the	results	of	our	study	identify	high-	risk	areas	where	integrated	sur-
veillance	systems	for	Zika	virus	disease	and	its	complications	must	be	
strengthened	in	order	to	provide	up-	to-	date	and	accurate	epidemio-
logical	 information.	This	 information	will	 identify	 the	 appearance	of	
new	outbreaks	and	guide	the	response	of	health	services.
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