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Brightness illusions demonstrate that an object’s perceived brightness depends on its visual context, leading
to theoretical explanations ranging from simple lateral inhibition to those based on the influence of
knowledge of and experience with the world. We measure the relative brightness of mid-luminance test disks
embedded in gray-scale images, and show that rankings of test disk brightness are independent of viewing
distance, implying that the rankings depend on the physical object size, not the size of disks subtended on the
retina. A single filter that removes low spatial frequency content, adjusted to the diameters of the test disks,
can account for the relative brightness of the disks. We note that the removal of low spatial frequency
content is a principle common to many different approaches to brightness/lightness phenomena;
furthermore, object-size representations--as opposed to retinal-size representations--inherently remove
low spatial frequency content, therefore, any process that creates object representations should also produce
brightness illusions.

S
imultaneous brightness contrast (SBC) is a visual phenomenon in which a mid-luminance test patch
appears brighter when placed against a black background and darker when placed against a white back-
ground. SBC shows a deviation between what we perceive (brightness) and an objective measure of the

environment such as a luminance reading from a photometer; the phenomenon therefore allows insight into how
neural processing in the retina and in the brain shapes our perceptual world. The most common historical
explanation for SBC has been lateral inhibition, a process in which signals generated in response to the surround-
ing field inhibit the strength of signals generated by responses to the central test patch. Lateral inhibition is
considered a ‘‘low-level,’’ bottom-up approach to understanding SBC because it is the wiring in the retina that
shapes the visual response to the image and produces the difference between perceived brightness and physical
luminance levels; this approach does not require any higher level response mediated by knowledge or memory.
While there have consistently been other theories concerning brightness and lightness1,2 over the past 20 years,
numerous researchers have produced displays and configurations aimed at arguing that lateral inhibition (and
other low-level explanations) are inadequate for explaining SBC-type phenomena. The alternative theories
propose that our perception of brightness is influenced and mediated by our previous knowledge about the
world, or by the conceptual frameworks in which the images are placed3–5.

Recently, Gilchrist and Radonjić4 developed a powerful technique in which observers report on the appearance
of identical mid-luminance test spots placed in the context of natural gray-scale images. The appearance of the
test patches did not depend upon the test spot’s immediate spatial context, but instead seemed to depend more
upon the test spots’ illumination framework (i.e., how the spot was organized relative to lighting and surfaces in
the scene). The authors therefore concluded that the appearance of the test patches ‘‘[could not] be explained
without an explicit representation of the structure of illumination in the scene’’ and stated that they ‘‘are aware of
no low-level [i.e., lateral inhibition] approach that can account for our obtained pattern of results.’’

Using similar types of displays, however, Shapiro and Lu6 found that the relative rankings of the test patches
could be accounted for simply by filtering the low spatial frequency content from an image. For example, Figure 1
shows test disks on a natural scene image (a) and the same image post-filtering (b); in 1a, all the disks have a pixel
value of 128, but in 1b, the values of the disks mimic the perception of brightness (i.e., disk E which is perceived as
being darkest now has the lowest pixel value (57)). To remove low spatial frequency content, Shapiro and Lu used
a filter that followed the following equation:

New Image~Original Image{Original Image 1 HzConstant ð1Þ

where H is an averaging kernel of diameter N pixels that blurs the image. The basic idea, then, is that the filter
subtracts a blurred image from the original image and a constant is added to bring the image values back into a
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viewable range. There are many equivalent ways of constructing such
a filter, but the simplest is to use the Adobe Photoshop high pass filter
function, which allows the observer to control the amount of low
spatial frequency content removed from an image. The image in
Figure 1b is constructed with the Photoshop filter.

Initially, it might appear that equation (1) is just a new way to
express lateral inhibition. After all, equation (1) and lateral inhibition
are both types of high pass filters. Indeed, if equation (1) had a fixed
filter size, then the equation would be very similar to models that
propose that lateral inhibition extends over a larger spatial range7,8.
Similarly, it might appear that equation 1 is a method for discounting
the illuminant, since models that remove shadows or attempt to
calculate surface reflectance also make use of similar types of high-
pass filters3,9.

However, the Shapiro and Lu filter embodies a broader theory
about how object perception relates to surface features, such as color
and brightness. The brain represents the world in terms of objects
instead of pixels of light10–12. Object representation is its own form of
spatial filter, since object representations do not require the encoding
of low spatial frequency content. Consider, for example, a coffee mug
with a logo placed on a table. Theories of object coding10,12,13 propose
that the visual representation of the mug contains the mug’s assoc-
iated features; such a representation would necessarily filter out low
spatial frequency content because the mug’s important information
(the logo design, reflectance patterns, etc.) is carried within its
boundaries. Information about the illumination and shadows is car-
ried in the low spatial frequency range, and as far as object perception
is concerned, is unnecessary and unwanted; part of the goal of object
representation therefore would be to remove the low spatial fre-
quency information.

To be clear, we are not suggesting that the object representations
are the only spatial filters in the visual system; clearly, spatial filtering
occurs during many stages of visual processing – for example, eye
movements seem to create very early and adaptable spatial filters in
retinal ganglion cells14. We are suggesting, however, that one of the
end results of visual processing is a perceptual world parsed into
objects and in which color and brightness are bound to those objects;
we argue that information in this type of representation is appro-
priately filtered to produce brightness illusions. The Shapiro and Lu
hypothesis, then, is that the spatial filter for brightness perception
depends upon the size of an object, i.e., the physical or measurable
size of the object within a scene or image, as opposed to simple lateral
inhibition or a multi-scale filter. This hypothesis is consistent with
reports from the spatial vision literature that suggest that some
aspects of visual encoding can be best expressed in terms of the size
of the object relative to the whole image (i.e., object frequency) rather
than the size of the test disks on the retina (i.e., retinal spatial fre-
quency); such a system has been suggested for the detection of letters
in noise13. Here we examine whether the filter in the Shapiro and Lu6

model can be best accounted for in terms of relative object-size in the

image or in terms of the retinal projection of the object. As with
Shapiro and Lu, observers rank the brightness of test disks placed
within natural images, but here the disks are of multiple sizes and the
images are viewed at a range of distances (see Figure 2).

As a general rule, we find that the test patches do not change their
relative brightness as a function of viewing distance, a result that is
consistent with other reports of scale invariance and brightness15, but
we are the first to have tested this principle in the Gilchrist and
Radonjić natural image paradigm (we note in the discussion some
of the important consequences of using natural images for brightness
perception). Our results cannot be accounted for by simple lateral
inhibition, in which the size of the filter remains constant, but could
be accounted for by adjusting the size of the filter kernel in equation
(1); to work, the filter kernel must be adjusted to about the size of the
object. Our results could also be accounted for by several different
classes of models: a) adjusting the response of multiple filters based
on the output of the most active spatial frequency channel16,17 (i.e.,
multi-scale model); b) a higher-level inferential process that dis-
counts the illumination (inference-based model); and c) relative
ranking of the luminance levels of frameworks within a scene (i.e.,
anchoring theory). All of these approaches have their proponents
and detractors, and we do not intend our very simple filter to replace
these approaches; instead, we suggest that a high-pass filter tuned to
object-size can be considered a common principle shared by multi-
scale, inference-based, and gestalt approaches to brightness/lightness
perception.

Results
Observer rankings of the brightness of test disks placed in natural
images can be matched by a filter that removes low spatial frequency
content from the image6. Here we ask if the cut-off frequency of the
filter depends upon the absolute size of test disks and/or on the
distance at which the image is viewed. If the filter depends upon
the size of the object as projected onto the retina, then we would
expect the filter’s optimal range of spatial frequency response to
change as a function of both the viewing distance and the size of
the disks. If the filter depends on the absolute size of the object,
measured here as diameter in pixels, then we would expect the
opposite to happen: the optimal frequency would change as a func-
tion of the size of the object, but not as a function of viewing distance.

Observer rankings of brightness as a function of distance and test
disk size. The first and most obvious empirical finding is that for a
fixed object size, observer rankings stay constant as function of
viewing distance. For example, Figure 3 shows the average
rankings for Image 1. The lines in each panel (a–d) represent the
ranking of a disk of a fixed pixel size at all viewing distances (120
pixels excluded for space). The average rankings are remarkably
consistent across all distances, meaning that the relative brightness
rankings did not change as the observer moved away from the image.

Figure 1 | Test disks placed in grayscale image (Image 1). (a) Original (i.e. unfiltered) image with seven test disks labeled A–G; each disk has a pixel value

of 127. (b) Image in (a) filtered to remove low spatial frequency content; test disks in image (b) have physically different pixel values (disk A

has a pixel value of 155, B 5 95, C 5 152, D 5 102, E 5 57, F 5 165, G 5 112). All images were taken by Erica L. Dixon.

www.nature.com/scientificreports
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Consistent with these observations, a one-way ANOVA that tested
the equality of observer rankings for each disk across viewing dis-
tance showed few significant differences; only two out of twenty-
eight conditions in Image 1 had p , .05, disk B at 80 pixels and
disk B at 160 pixels (see table 1 for ANOVA values of significant
differences across all images).

Correlation between observer rankings and physical values in
filtered image. We analyzed the images using a high-pass filter, the
goal of which is to calculate the correlation between observer rankings
(average observer rankings of test disks on unfiltered image) and the
measured pixel values of the test disks after the original image has been
filtered.

The only parameter in equation (1) is the size of the averaging
kernel (H). Adjusting the size of the kernel adjusts the amount of
spatial frequency content available in the final image. A small aver-
aging kernel creates blur only over a small region in the convolved
image (i.e., Original Image*H), therefore, only sharp edges will
remain in the final image when the blurred image is subtracted from
the original image. A larger averaging kernel creates a larger blur
area, and as result, a wider range of low-spatial frequency content will
remain when the blurred image is subtracted from the original image.

In our analysis we parametrically changed the size of the kernel
(kernel sizes ranged from 5 pixels in diameter up to 1000 pixels in
diameter), measured the pixel values of the tests disks in the filtered
image, and then calculated the correlation between the ranking of the
pixels values and the observer brightness rankings. Figure 4 shows an
example of the correlations plotted as a function of filter size; there

were 80 such plots, one for each disk size at each of four distances for
all four images. To estimate the filter size that produced the peak
correlation, we fit a Gaussian function to the data in each of the
correlation vs. filter size plots; the fit is shown as a red line in Figure 4.

The peak correlations for each image and each pixel size, and the
corresponding filter kernel size, are shown in Table 2 (for clarity we
averaged across distance for each pixel size). The maximum correla-
tion values were above 0.85 for disk diameters of 80 pixels and below;
the correlations decline for most larger disk diameter conditions,
perhaps because perceived differences between the disks are less
apparent on average for larger disks (i.e. the illusory effect is not
perceived). The clear peak in correlation value versus filter size was
shown for Images 1, 2 and 3. For Image 4, the correlation values did
not decline but remained high for all filter values greater than the size
of the disk–this might be expected for Image 4, since the image has
fewer brightness transitions (i.e., the image is mostly sky or bridge).

How does the best filter size change as a function of distance and
disk size. The goal of the analysis is to estimate the effects of changing
the disk size and viewing distance on the size of the optimal filter size.
If the filter depends on relative object-size in the image rather than
retinal size then the optimal filter size should increase as the disk size
increases and remain constant as a function of viewing distance.
Figure 5 plots the best filter size as a function of test disk size; each
panel shows the results for a different image; and each symbol
represents a different viewing distance. In order to estimate the best
filter size, we fit Gaussian functions to individual observer correlation
plots (i.e., plots that are similar to Figure 4, but for individual

Figure 2 | The four grayscale images used in the study. Each image contains seven test disks (pixel value 127). Each row shows all four images with a

particular size of test disk. The test disks range in diameter from 20 pixels (top row) to 160 pixels (bottom row). Observers viewed the full set of images at

four distances from the computer screen: 50, 100, 200, and 300 cm. The task was to rank the test disks in each image from darkest to brightest. All

images were taken by Erica L. Dixon.

www.nature.com/scientificreports
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observers) giving us a set of ten peak filter size values for each
condition. We then used a bootstrapping procedure with 1000 itera-
tions in Matlab to estimate the standard error of the best fitting filter
sizes (Figure 4).

There are two main observations from the plot in Figure 5: 1) As
disk size increases, so does the optimal filter size; for all three curves
the optimal filter follows a line approximately equal to 0.35 ln(x) 1

0.8. 2) The optimal filter size is not affected by changing viewing
distance since in each panel of Figure 5, data from all viewing dis-
tances cluster together at the peak filter size. We excluded Image 4
from the figure because, as stated above, a Gaussian curve could not
be fit to the correlation vs. filter plots because all filter sizes above the
size of the disk diameters produced very strong correlations (i.e., for
this figure most filter sizes worked). We have shown that ranking
changes as a function of object size in the image and that, for any
object size, the ranking remains a relatively constant function of
viewing distance. The results suggest that brightness effects are view-
ing distance invariant.

Study 2: Extension of model to Knill and Kersten Illusion (1991).
How well can the simple filter account for a well-known illusion that
seems to suggest brightness estimates require inferences about the
illumination? In the Knill and Kersten18 illusion, two identical shaded
gradients appear dramatically different when viewed as the front

surface of two cubes, but appear similar to each other when viewed
as the front surface of cylinders (Figure 6a). The proposed theoretical
explanation is that when the gradients are cylinders, the visual system
infers that the dark regions are in shadows created when the central
part of the cylinders block the illumination; when the gradients are
interpreted as a flat face of the cubes, no such inference is possible.
We tested whether the Shapiro-Lu model could account for the
perceptual disparities between the cubes and cylinders.

In order to determine if the filter could produce an image that
corresponds to the perceived appearance of the illusion, we filtered
the image with a series of convolution kernel diameters ranging in
size from 60 pixels to 240 pixels. Figure 6(b–e) shows the images after
filtering at consecutively larger filter sizes, up to 240 pixels–the dia-
meter of the paired shaded gradients; panels g–j show the measured
pixel value compared to the unfiltered image. When the filter size is
scaled to the shaded gradients, i.e. 240 pixels, (Figure 1d and 1i), the
object-level filtered image physically mirrors the brightness illusion
demonstrated in the original.

The Shapiro-Lu high-pass filter model can account for the bright-
ness differences between the cylinders and the cubes in the Knill and
Kersten illusion, providing an alternate explanation for the illusion; a
high-pass filter creates brightness differences and does not require
the visual system to make unconscious inferences about illumina-
tion. In order for the filter to make the appropriate predictions,
however, the size of the blur kernel must be adjusted to the approx-
imate size of the gradient fields. This result once again suggests that
the cut-off frequency of the filter corresponds to the size of the
attended object.

Discussion
Here we examined how the Shapiro and Lu6 filter model accounts for
observer rankings of multiple sizes of test disks placed within natural
images and viewed at a range of distances. As a general rule, the
relative brightness of the test patches did not change as a function
of viewing distance. We have replicated the Shapiro and Lu finding

Figure 3 | Average observer rankings for Image 1. Each panel shows results for different sizes of test disk diameter (panel a 5 20 px, b 5 40 px, c 5 80 px,

d 5 160 px); each line represents observer viewing distance (blue 5 50 cm, red 5 100 cm, green 5 200 cm, purple 5 300 cm). The y-value

shows the average ranking for each test disk across all observers.

Table 1 | ANOVA

Across Distance

Image Pixel Size Disk df F Sig

1 80 B 3 2.90 0.05
1 160 B 3 4.58 0.01
2 40 E 3 3.05 0.04
3 40 E 3 3.05 0.04
3 80 E 3 4.81 0.01

www.nature.com/scientificreports
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that such brightness rankings can be accounted for by simply remov-
ing low spatial frequency content from the image, indicating that
even though all the test disks have the same pixel value, the test disks
are actually physically different from each other after high-pass fil-
tering at some spatial scale. For Images 1, 2, and 3, only a narrow
range of filters could account for the observer rankings: intermedi-
ate-sized filters produced larger correlations to observer rankings,
while large and small filters produced zero correlations. The results
indicate that the visual system removes a greater range of low spatial
frequency content when the test disks are small than when the test
disks are large. A static filter that responds to a fixed retinal size or
retinal frequency would not be able to account for these results,
instead, the results require a filter tuned to the absolute size of the
attended object.

We used test patches placed in natural images based on Gilchrist
and Radonjic4. An advantage of using natural images can be seen in
Image 4. In this image, unlike the other three, nearly all filter sizes
larger than the size of the disks ‘‘worked’’; that is, a wide range of filter
sizes produced strong correlations with observer rankings. Image 4 is
therefore consistent with tuned filter responses but also with models
in which the filter remains fixed. Image 4 was different from the other
three images in that it contained fewer brightness transitions. The
results suggest that filter tuning might be psychophysically detectable
only in relatively complex scenes, and that spatially complex scenes
may be required to test differences between brightness models. For
instance, others have shown that brightness illusions are relatively

independent of viewing distance15, and brightness invariance with
distance can be accounted by several filtering-based models16,19,20.
While multi-scale- and static-filter approaches can account for many
brightness illusions9,16,17,21, the difference between Images 1–3 and
Image 4 suggests that it may be worth examining these models with
spatially complex images as well, since such images may test how well
the models perform in the presence of a wider variety of spatial
information.

Any model that adaptively removes low spatial frequency content
will be able to account for most brightness illusions, even when the
images are viewed at a variety of distances. For instance, in multi-
channel models, the channel with maximum response is accentuated
relative to the other channels by some form of divisive normalization
and thereby lowering the response from the low spatial frequency
channel (in most conditions)22,23. The question we ask is whether the
weighting of spatial channels allow us to perceive brightness illu-
sions, or does brightness follow from a weighting function that is
part of a broader, more functionally important, role? Multichannel
processes have to serve several different functions of the visual sys-
tem (multiple motion systems, color, texture segregation, object
form, object and face identity, etc.), and each of these undoubtedly
requires weighting of the spatial channels that correspond to the
tasks that they are performing. There are several other processes that
could change the spatial weighting function. For instance, much of
the filtering does not have to do with brightness or gain control, per
se, but rather with compensation for eye movements to prevent
motion blur. Eye movements cause suppression of low spatial fre-
quencies carried by the magnocellular pathway24, and ganglion cells’
spatial responses shift towards higher spatial frequencies14,25. The
effects of eye movements on spatial frequency seem to follow the
reduction of low spatial frequency response, and could therefore
create a weighting function that may be similar to those needed to
account for relative brightness perception.

Another possibility – one that we favor – is that one of the pur-
poses of multiple spatial channels is to create an object-level repres-
entation of the world. If the disks in our displays can be considered
visual objects, then there is an invariant relationship between the
disks and the background. Invariance of this sort has been suggested

Figure 4 | Correlation between observer rankings and test disk pixel values. We calculated the correlations between observer rankings and the physical

values of test disks in the filtered image. The figure shows correlations as a function of filter size in equation (1) for Image 1, test disk size 80, at viewing

distance of 50 cm. Such calculations were performed for each image at each test disk pixel size and viewing distance (80 conditions total). We fit a

Gaussian function to each plot, seen as a red line. The peak filter size for each condition was taken as the mean of the fitted function.

Table 2 | Peak Correlations and Filter Size

Pixel size of disks

Image

Image 1 Image 2 Image 3 Image 4

20 0.97 (20) 0.96 (20) 0.9 (40) 0.98 (40)
40 0.94 (160) 0.95 (80) 0.89 (80) 0.97 (80)
80 0.85 (240) 0.94 (240) 0.85 (120) 0.96 (240)
120 0.63 (240) 0.94 (240) 0.85 (120) 0.97 (240)
160 0.17 (240) 0.82 (500) 0.61 (160) 0.96 (240)

www.nature.com/scientificreports
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in some psychophysical studies that have shown that the crucial
variable for object detection is not retinal spatial frequency, but
object spatial frequency relative to the image spectrum13. Further-
more, much of visual cognitive neuroscience literature concerns
separate processes for object perception26,27,12. Roe et al.28 recently

proposed a theory concerning the functional purpose of V4–a cor-
tical area in the early stages of the ventral visual pathway, suggesting
that V4 combines brightness and other cues to enhance ‘‘figureness’’
by differential neuronal response to objects and their surrounds.
Such an approach is consistent with idea that that some form of

Figure 5 | Peak filter size as a function of test disk size. We calculated the peak filter size (see Figure 4) for each condition. Here we plot the change in filter

size as function of test disk diameter. If the filter depends on object size rather than retinal size then the optimal filter size should increase as the disk size

increases and remain constant as a function of viewing distance. Panels (a–c) show the log filter size versus the diameter of the test disk for Images 1–3;

Image 4 not shown as a Gaussian could not be fit to the correlation plots as seen in Figure 4 (see Discussion). Error bars are log(y)1/2 dy/y of the

bootstrapped estimate of variance. The solid lines are the best-fit regression lines to the data; x is disk diameter.

www.nature.com/scientificreports
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Figure 6 | Filter model applied to Knill Kersten (1991) illusion (a) Knill and Kersten illusion: test gradients are identical luminance levels; the gradients for

the cubes appear different from each other, gradients for the cylinders appear similar. Panels (b–e) show high-pass filtered versions of the illusion with

increasing size of the kernel diameter (in filtered image, pixel size of each gradient was 120 pixels). Panels (f–j) show pixel level profiles for the images

(a value of 1 is the highest pixel level, i.e., 255): the blue dashed line indicates the level for the unfiltered image (shown by itself in panel f); the red

solid line indicates the pixel level for the image in the corresponding row. Filter sizes 120 to 240 show profiles corresponding to the perception of the

brightness in the unfiltered image.

www.nature.com/scientificreports
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visual representations are encoded as object files10. Object files can
only be possible if the object representation has removed the
information that conveys illumination and shadows within a scene
and other information that is irrelevant to an object’s content. An
object represntation will, almost by default, create a reduction of low
spatial frequency content similar to those reported here (and impli-
citly by other spatial-frequency-type models of brightness percep-
tion). Indeed, our results suggest that simply by separating a figure
from the ground, the visual system may be triggering events that
select for higher spatial frequency content (or that do not respond
to low spatial frequency content) and therefore may be producing
what is commonly thought of as a brightness illusion.

Adjusting filters to the size of the object could possibly account for
brightness changes that occur without changes in the visual image.
For instance, it has been shown that spatial organization can affect
the extent of brightness illusions29 (another compelling illusion in
this vein was recently presented by Hong and Kang30). Tse31 showed
that simply shifting attention from one disk to another while main-
taining constant fixation could change the brightness levels of three
identical overlapping disks. Both of these results would be hard to
account for strictly by bottom-up processes with contrast normal-
ization; however, an object-level filter approach predicts that changes
in perceptual organization would lead to changes in brightness since
a larger or smaller grouped object would lead to shifts in the filter cut-
off. Also, it would not be surprising if attended objects create a finer
perceptual representation than unattended objects; to produce a finer
representation, the visual system would have to exclude more low
spatial frequency responses, which would lead to a change in bright-
ness perception. This type of process is consistent with other findings
of the effect of attention on spatial frequency responses32.

Indeed, the object-level approach provides a response to a puzzle
raised by Paul Whittle: the observation that ‘‘colour is always per-
ceived relative to its background [in brightness illusions] is contra-
dicted by the everyday observation that if you move an object against
a variegated background, it is often hard to see any changes in its
colour at all33.’’ If objects are the fundamental level of interest, then
such problems should be easily accounted for, since the size of the
filters adjusts to the objects in the scene. This is particularly true if
one considers the role of object layering in brightness perception;
Anderson and Winawer34,35 have been strong advocates for the role of
scission in perceptual interpretations. In many respects, the argu-
ment in favor of filtering by object size is consistent with the central
tenets of the argument for scission, since scission is essential for
object formation. The major advantage of an object-based repres-
entation is that scission layers by themselves do not necessarily indi-
cate the size of the filter.

Much of the literature related to unconscious inference theories
assumes that the visual system attempts to ‘‘discount the illuminant’’
so as to estimate the reflectance of the surface, and assume, implicitly
or explicitly, that features of objects are essential for understanding
brightness/lightness3. As we have shown, in the case of the Knill and
Kersten illusion, an object-based filter that removes low spatial fre-
quency content may be thought of as serving to discount the illu-
minant, as well; indeed, at a practical level, the Adobe Photoshop
high-pass filter is frequently used to reduce the effects of shadows
while maintaining image detail and to remove shading patterns
introduced into textures. The filter in equation (1) would serve the
purpose of reducing the effects of illumination changes, therefore
allowing the visual system to make a better estimate of surface reflec-
tance36,37. The advantage of a filter technique is that the visual system
would be making these inferences based upon the information pre-
sent in the image and would therefore not require knowledge about
the illumination in the scene.

Our approach does not eliminate the need for linking rules such as
those found in anchoring theory38, which creates an explicit rule for
assigning lightness to levels of luminance value. We do note, how-

ever, that any such linking rule is likely to be based on a high-pass
filtered version of the image, not on an analysis of the pixel values or
individual points in the image. In addition, we speculate that the size
of the relevant frameworks within a scene would influence the size of
the filter. Anchoring theory makes clear predictions for how an
object should appear depending on its specific perceptual frame-
work. When an object changes its framework (either through an
act of the observer, through motion39, or through changing its depth
plane40,41), we would also expect the size of the filter to change, thus
producing a change in relative appearance. We have not yet tested
whether the size of the filter would produce relative value changes
consistent with those expected from anchoring.

Lastly, one recent approach to brightness from Dale Purves’5

laboratory is that our perceptual world is empirically based on our
past experience with surfaces and illuminants. A major tenet of this
theory is that perceptions stem from the process of connecting retinal
images with successful and valuable behaviors. While it is certainly
likely that experience influences brightness, a high-pass filter can
account for relative brightness changes in most of the very impressive
brightness demonstrations included in Purves’5 research. Our results
suggest that rather than learning a complex range of possible illumi-
nations and surface reflectances, the visual system would learn to
select the appropriate channels for producing an object. Once the
object is perceptually defined, much of relative brightness perception
is a given, and many illumination problems become easier to handle.

In conclusion, we have replicated our previous findings that a
simple filter that removes low spatial frequency content can account
for relative brightness rankings of test spots in natural scenes once
the filter is adjusted for the size of the object. As stated in Shapiro and
Lu (2011), the reason for this is that in most brightness illusions, test
patches with identical pixel values are actually physically different
from each other when considered at the appropriate spatial scale.
Any theoretical approach that, in effect, removes low spatial fre-
quency content from the image will therefore in principle account
for simultaneous contrast phenomena. Furthermore, we note that in
the natural environment, lightness and brightness are usually
attached to objects; a representation of a visual object does not need
to include spatial frequency content that is lower than the size of the
object. Object representations, therefore, act as the appropriately
sized spatial filter to produce the effects demonstrated in this paper.
Object identification occurs rapidly and is probably the end result of
many processes dedicated to extracting spatially invariant objects
from the visual image12. So, while spatial filtering occurs at many
different stages of processing, it is likely that representations of visual
objects are constructed of information that is subsequently required
for the production of simultaneous contrast phenomena.

Methods
Observers. Ten undergraduate and graduate students at American University with
normal or corrected-to-normal vision participated.

Materials. To measure perceived test disk brightness in images of natural scenes, we
presented observers with a set of twenty images comprised of four grayscale
photographs (1856 3 1160 pixels), reproduced five times. Each image contained a
single size of seven identical mid-luminance-level test disks (the diameters were 20,
40, 80, 120, or 160 pixels); the complete set of images is shown in Figure 2. Each image
had a midscale gray border extending to the edges of the computer screen to ensure
contrast between the edges of each picture remained constant and neutral.

Images were presented on a 270 iMac LCD screen set to a linear gamma level of 1.0.
A uniform 127 value gray 8 3 4 grid matched to the size of the presentation images
was measured using a photometer at 32 locations; luminance values varied from 0–
15%. We created a filter in Matlab to increase or decrease the value of each section of
the image to ensure that while the pixel value was not identical, the luminance values
were much less varied; variance for the filtered gray grid ranged from 0–2% from the
center average. The filter was used to adjust each photo. Four randomized pre-
sentation series were created to ensure that participants viewed the twenty images in a
novel order at each of the four distances. Additionally, the order of the four pre-
sentations was arranged to create four distinct viewing orders that varied among
participants.
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Procedure. Observers viewed the images at four distances from the computer screen:
50, 100, 200, and 300 cm. The task was to rank the disks from darkest to brightest–so,
for instance, in Figure 1a, most observers would rank the disk labeled E as 1 since they
perceive it as darkest, and the disk labeled A as 7 since they perceive it as brightest.
Each participant viewed a practice presentation series to ensure understanding of the
viewing and ranking process; the number of images viewed by each participant varied
based on comfort with the response system. Rankings were recorded on paper
containing a schematic replicating the arrangement of the test disks on the images.
After all disks were ranked, the experimenter advanced to the next image until all
twenty images had been completed; no time limit was placed on responses. After the
completion of each series, the participant moved to the next distance to rank the same
images in a novel order.
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