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The overall topology and interfacial interactions play key roles in understanding structural and functional principles of protein
complexes. Elastic Network Model (ENM) and Protein Contact Network (PCN) are two widely used methods for high throughput
investigation of structures and interactions within protein complexes. In this work, the comparative analysis of ENM and
PCN relative to hemoglobin (Hb) was taken as case study. We examine four types of structural and dynamical paradigms,
namely, conformational change between different states of Hbs, modular analysis, allosteric mechanisms studies, and interface
characterization of an Hb.The comparative study shows that ENM has an advantage in studying dynamical properties and protein-
protein interfaces, while PCN is better for describing protein structures quantitatively both from local and from global levels. We
suggest that the integration of ENM and PCN would give a potential but powerful tool in structural systems biology.

1. Introduction

Proteins rarely act alone: in the great majority of cases they
perform a vast array of biological functions by forming
functional complexes [1, 2]. The study of protein complexes
not only elucidates the molecular mechanism of many dis-
eases [3] but also provides structural information of protein-
protein interactions [4].With the increasing number of struc-
tural data, a lot of regularities have been found for protein
complexes based on their topological structures [5].However,
the structural and assembly principles underlying protein
complexes organization are not yet fully understood, which
poses a great challenge in structural systems biology [6]. A
well-studied example of protein complex is hemoglobin (Hb)
tetramer, which contains two 𝛼 and two 𝛽 subunits as a dimer
of dimer [7]. Hbs exist in three quaternary conformations:
the low-affinity (deoxy, 𝑇) state and the high-affinity (oxy,𝑅; carbonmonoxy, 𝑅2) states. Hbs are never present in cells
as monomers. Therefore, Hbs were considered as a sort of
‘obliged’ allosteric protein complexes and, even thanks to

the great amount of both structural and physiological data,
attracted a lot of attentions [8–10].

Network theory has become a versatile method to study
structures and dynamics of biological systems [11–13]. As a
dynamical-based method introduced by Tirion [14], Elastic
Network Model (ENM) allows performing normal mode
analysis at𝐶𝛼 network level. Twomostly used ENMmethods,
Gaussian Network Model (GNM) and Anisotropic Network
Model (ANM), were further proposed by Bahar and cowork-
ers [15, 16]. ENM is an efficient computational tool to describe
the essential vibrational dynamics encoded in the molecular
topology [17–20]. It has been proved that the low-frequency
modes of ENM are critical of collective motions [21], while
the high-frequency modes can identify hot spots for protein-
protein interactions [22].

The approach of Protein Contact Network (PCN) was
proposed by Kannan and Vishveshwara [23] and now has
become a new paradigm in protein ontology [24–28]. In a
PCN, nodes correspond to𝐶𝛼, while edges exist if two amino
acid residues (nodes) are close to each other under different
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cutoffs [29]. Based on this graphical representation, different
topological parameters have been developed to describe
protein structures and functions from both the global and the
local prospective [30–32].

Both ENM and PCN offer computationally efficient tools
to study the structure and function of protein complexes
[33, 34], from predicting functionally important residues
[35, 36], to characterize protein-protein interactions [37, 38]
and allosteric communication paths [39, 40]. Of course, both
models have strengths and weaknesses and their comparative
study is needed.

In this paper, we have analyzed and compared four
applications of ENM and PCN on Hb structures: conforma-
tional change characterization, modular analysis, allosteric
mechanisms investigation, and interface characterization.
Although there are several works reported on the ENM [41–
43] and PCN [44, 45] studies of Hb independently, this
work revisits Hb as case study and mainly focuses on the
methodology comparison of ENM (specifically GNM and
ANM) and PCN.

2. Materials and Methods

2.1. Data Sets. Hemoglobins (Hbs) have three states [7]. We
select their structures for the ENM and PCN analysis, which
are listed as follows: 𝑇-Hb (PDB code: 2dn2), 𝑅-Hb (PDB
code: 2dn1), and 𝑅2-Hb (PDB code: 2dn3).

2.2. Gaussian NetworkModel and Anisotropic NetworkModel.
GNM[15] describes a protein as a network of𝐶𝛼 connected by
springs of uniform force constant 𝛾 if they are locatedwithin a
cutoff distance 𝑟𝑐 (7 Å in this study). In GNM, the interaction
potential for a protein of 𝑁 residues is [46]

𝑉GNM = −𝛾2 [[
𝑁−1∑
𝑖=1

𝑁∑
𝑗=𝑖+1

(𝑅𝑖𝑗 − 𝑅0𝑖𝑗) ⋅ (𝑅𝑖𝑗 − 𝑅0𝑖𝑗) Γ𝑖𝑗]] , (1)

where 𝑅𝑖𝑗 and 𝑅0𝑖𝑗 are the equilibrium and instantaneous
distance between residues 𝑖 and 𝑗, and D is 𝑁 × 𝑁 Kirchhoff
matrix, which is written as follows:

Γ𝑖𝑗 =
{{{{{{{{{{{

−1 𝑖 ̸= 𝑗, 𝑅𝑖𝑗 ≤ 𝑟𝑐0 𝑖 ̸= 𝑗, 𝑅𝑖𝑗 ≥ 𝑟𝑐−∑
𝑖,𝑖 ̸=𝑗

Γ𝑖𝑗 𝑖 = 𝑗. (2)

Then, square fluctuations are given by

⟨(Δ𝑅𝑖)2⟩ = (3𝑘𝑇𝛾 ) ⋅ [Γ−1]
𝑖𝑖
,

⟨Δ𝑅𝑖 ⋅ Δ𝑅𝑗⟩ = (3𝑘𝑇𝛾 ) ⋅ [Γ−1]
𝑖𝑗
. (3)

The normal modes are extracted by eigenvalue decomposi-
tion: Γ = 𝑈Λ𝑈𝑇, where𝑈 is the orthogonal matrix whose 𝑘th
column 𝑢𝑘 is 𝑘th mode eigenvector. Λ is the diagonal matrix

of eigenvalues, 𝜆𝑘. ⟨Δ𝑅𝑖 ⋅ Δ𝑅𝑗⟩ can be written in terms of the
sum of the contribution of each mode as follows:

⟨Δ𝑅𝑖 ⋅ Δ𝑅𝑗⟩ = (3𝑘𝑇𝛾 ) ⋅ ∑
𝑘

[(𝑈𝑘Λ 𝑘𝑈𝑇𝑘 )−1]𝑖𝑗 . (4)

Thus, the cross-correlation can be calculated by

𝐶𝑖𝑗 = ⟨Δ𝑅𝑖 ⋅ Δ𝑅𝑗⟩
[⟨Δ𝑅𝑖⟩2 ⋅ ⟨Δ𝑅𝑗⟩2]1/2 . (5)

The cross-correlation value ranges from −1 to 1: positive
values mean that two residues have correlated motions,
while the negative values mean that they have anticorrelated
motions.

In ANM [16], the interaction potential for a protein of 𝑁
residues is [46]

𝑉ANM = −𝛾2 [[
𝑁−1∑
𝑖=1

𝑁∑
𝑗=𝑖+1

(𝑅𝑖𝑗 − 𝑅0𝑖𝑗)2 Γ𝑖𝑗]] . (6)

The motion of the ANM mode of proteins is determined by3𝑁 × 3𝑁 Hessian matrix 𝐻, whose generic element is given
as follows:

𝐻𝑖𝑗 =
[[[[[[[[[[

𝜕2𝑉𝜕𝑋𝑖𝜕𝑋𝑗 𝜕2𝑉𝜕𝑋𝑖𝜕𝑌𝑗 𝜕2𝑉𝜕𝑋𝑖𝜕𝑍𝑗𝜕2𝑉𝜕𝑌𝑖𝜕𝑋𝑗 𝜕2𝑉𝜕𝑌𝑖𝜕𝑌𝑗 𝜕2𝑉𝜕𝑌𝑖𝜕𝑍𝑗𝜕2𝑉𝜕𝑍𝑖𝜕𝑋𝑗 𝜕2𝑉𝜕𝑍𝑖𝜕𝑌𝑗 𝜕2𝑉𝜕𝑍𝑖𝜕𝑍𝑗

]]]]]]]]]]
, (7)

where 𝑋𝑖, 𝑌𝑖, and 𝑍𝑖 represent the Cartesian components of
residues 𝑖 and 𝑉 is the potential energy of the system. 𝑟𝑐 used
here is 13 Å. Accordingly, ANMs provide the information not
only about the amplitudes but also about the direction of
residue fluctuations.

The similarity between two ANM modes, 𝑢𝑘 and V𝑙,
evaluated for proteins with two different conformations can
be quantified in terms of inner product of their eigenvectors
[39]; that is,

𝑂 (𝑢𝑘, V𝑙) = 𝑢𝑘 ⋅ V𝑙. (8)

The degree of overlap between 𝑘th ANM modes 𝑢𝑘 and
the experimentally observed conformation change Δ𝑟 of
Hbs among different states is quantified by ((Δ𝑟 ⋅ 𝑢𝑘)/|Δ𝑟|).
Therefore, the cumulative overlap CO(𝑚) betweenΔ𝑟 and the
directions spanned by subsets of𝑚ANMmodes is calculated
as follows:

CO (𝑚) = √ 𝑚∑
𝑘=1

(Δ𝑟 ⋅ 𝑢𝑘|Δ𝑟|)
2. (9)

The Markov model coupled with GNM was used for
exploring the signal transductions of perturbations in pro-
teins [47, 48].The affinity matrix𝐴 describes the interactions
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between residue pairs connected inGNM; its generic element𝑎𝑖𝑗 is defined as follows:

𝑎𝑖𝑗 = 𝑁𝑖𝑗√𝑁𝑖𝑁𝑗 , (10)

where 𝑁𝑖𝑗 is the number of atom-atom contacts between
residues 𝑖 and 𝑗 based on a cutoff distance of 4 Å and𝑁𝑖 is the
number of side-chain atoms in residue 𝑖. The density of con-
tacts at each node 𝑖 is given by

𝑑𝑖 = 𝑁∑
𝑗=1

𝑎𝑖𝑗. (11)

The Markov transition matrix 𝑀, whose element 𝑚𝑖𝑗 =𝑑−1𝑗 𝑎𝑖𝑗, determines the conditional probability of transmitting
a signal from residue 𝑗 to residue 𝑖 in one time step. Accord-
ingly, the hitting time for the transfer of a signal from residue𝑗 to 𝑖 is given by [47]

𝐻(𝑖, 𝑗) = 𝑁∑
𝑘=1

{[Γ−1]
𝑘𝑗

− [Γ−1]
𝑖𝑗
− [Γ−1]

𝑘𝑖
− [Γ−1]

𝑖𝑖
}

⋅ 𝑑𝑘,
(12)

where D is Kirchhoff matrix obtained by GNM. The average
hit time for 𝑖th residue ⟨𝐻(𝑖)⟩ is the average of𝐻(𝑖, 𝑗) over all
starting points 𝑖. The commute time is defined by the sum of
the hitting times in both directions; that is,

𝐶 (𝑖, 𝑗) = 𝐻 (𝑖, 𝑗) + 𝐻 (𝑗, 𝑖) . (13)

𝐶(𝑖, 𝑗) was defined as the corresponding distance, as the
weight of the edge between node 𝑖 and 𝑗 in the network.

2.3. Protein Contact Networks (PCNs). Protein Contact Net-
works (PCNs) provide a coarse-grained representation of
protein structure [49], based on 𝐶𝛼 coordinates from PDB
files: network nodes are the residues, while links exist
between nodes whose Euclidean distance (computed with
respect to 𝛼-carbons) is within 4 to 8 Å, in order to account
only for significant noncovalent intramolecular interactions
[24, 50, 51].

After building up the network, it is possible to quantify
its features through the adjacency matrix Ad, whose generic
element Ad𝑖𝑗 is 1 if 𝑖th and 𝑗th nodes are connected by a link;
otherwise it is 0.

The most basic descriptor is the node degree, defined for
each node as the number of links involving the node itself:

𝑘𝑖 = ∑
𝑗

Ad𝑖𝑗. (14)

Given a set of vertices 𝑉, the shortest path sp𝑢,V between
two nodes 𝑢, V ∈ 𝑉 is the minimum number of edges con-
necting them (Figure 1). Its role is crucial since it has been
demonstrated that the lower the network average shortest path
(or characteristic length, computed as the average value over
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Figure 1: Example of a graph with 8 vertices and 13 edges, while the
red line shows a path from vertices 𝑢 to V.

the whole number of node pairs), the higher the efficiency
of signal transmission through the network [52]. In PCNs
the average shortest path describes the protein attitude to
allosteric regulation.

The betweenness centrality of a node describes the number
of shortest paths passing by it. Given a set of vertices 𝑉, the
betweenness centrality of node 𝑠 ∈ 𝑉 is defined as follows:

betw (𝑖) = ∑
V∈𝑉,V ̸=𝑖

∑
𝑢∈𝑉,𝑢 ̸=𝑖

𝜎V,𝑢 (𝑖)𝜎V,𝑢 , (15)

where𝜎V,𝑢 is the total number of the shortest paths connecting
two nodes 𝑢, V ∈ 𝑉, whereas 𝜎V,𝑢(𝑖) represents the number of
shortest paths connecting the nodes 𝑢 and V passing on 𝑖 as
well. Therefore, high betweenness centrality nodes take part
in many shortest paths, so their removal is likely to be nox-
ious for the whole network connectivity. We computed the
betweenness centrality by means of the algorithm described
in [53].

Closeness centrality describes the general closeness of a
node to all other nodes, in terms of length of shortest paths:

close (𝑖) = 1∑𝑢∈𝑉,𝑢 ̸=𝑖 sp (𝑢, 𝑖) . (16)

Closeness centrality of residues in PCNs has been demon-
strated to describe conformational transitions occurring in
protein response to environmental stimuli through cooper-
ative processes [54]: residues in the active site of enzymes
show both high degree and closeness centrality; however, it
does not provide any clue about allosteric regulation in the
enzyme-substrate binding.

The Guimerà-Amaral cartography [55] provides a frame-
work to classify nodes according to their topological role in
the network. It is based on network clustering into nodes
groups (clusters). We applied a spectral clustering procedure,
previously demonstrated to catch functional modules in
protein structures [56].
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The spectral clustering algorithm [57] applies to the
Laplacianmatrix𝐿defined as the difference between the adja-
cency matrix Ad and the degree matrix 𝐷 (a diagonal matrix
whose generic element 𝐷𝑖𝑖 is 𝑖th node degree). We applied
the eigenvalue decomposition to 𝐿: the spectral clustering
decomposition refers to the eigenvector V2 corresponding to
the second minor eigenvalue.

The procedure applies iteratively to get the final desired
number of clusters (set by defining the number of iterations);
nodes are parted according to the sign of corresponding V2
components. So, for instance, if it is required to part the
network into four clusters, the first partition produces two
clusters, whose V2 components have opposite signs and, suc-
cessively, both clusters undergo the same procedure, applied
to single cluster nodes subset.

We represented the clustering partition in two ways: first,
we reported on the ribbon representation residues pertaining
to different clusters in different colors, to identify at once
clusters on the three-dimensional structure representation.
Second, we reported the clustering color map, a matrix
whose generic element is colored not in blue if residues
corresponding to indices pertain to the same cluster and in
blue, background, if corresponding residues do not belong to
the same cluster.This representation helps understanding the
distribution of clusters along sequence.

After clustering partition, it is possible to compute for
each node (residue) the participation coefficient P, defined as
follows:

𝑃𝑖 = 1 − (𝑘𝑠𝑖𝑘𝑖 )
2 . (17)

𝑘𝑖 is the overall degree of the node, 𝑘𝑠𝑖 is the node degree in its
own cluster (number of links the node is involved into with
nodes pertaining to its own cluster).

A complementary descriptor is the intramodule connec-
tivity 𝑧-score 𝑧, defined as follows:

𝑧𝑖 = 𝑘𝑠𝑖 − 𝑘𝑠𝑖
SD𝑠𝑖

, (18)

where 𝑘 and SD are the average value and the standard
deviation of the degree 𝑘 extended to the whole network.The
descriptor 𝑧 catches the attitude of nodes to preferentially
connect with nodes in their own clusters; 𝑧 strongly correlates
with node degree, so high 𝑧 residues are mostly responsible
for global protein stability.

The participation coefficient 𝑃 has been previously
demonstrated of a crucial importance in identifying key
residues in protein structure with a functional role [43, 56,
58]; residues with 𝑃 values higher than 0.75 are mostly
devoted to the communication between modules (clusters),
since they spend more than half of their links with residues
pertaining to clusters other than theirs. In other words,
signaling pathways between clusters pass by them.𝑃-𝑧 maps show a peculiar shape (“dentist’s chair”) for
PCNs [58]: high 𝑃 residues show low 𝑧 values, meaning
the role of nodes (communication, high 𝑃, and 𝑧) are well
separated. We previously reported [35] that in protein-ligand

Table 1: PCN descriptors and their structural and biological
relevance.

PCN descriptor Structural and biological role
Node degree 𝑘 Local stability [24]
Betweenness centrality
(betw)

Signal transmission throughout the
structure [26]

Closeness centrality (close) Residues located in the active site of
enzymes [26]

Participation Coefficient 𝑃 Signal transmission through
modules (domains) [27]

Intramodule Connectivity𝑧 Intramodule connectivity and
communication [27]

binding 𝑃 shifts from nonnull to null values for residues close
to an active site in allosteric proteins.

We computed for each structure 𝑃 profile and 𝑃-𝑧 maps.
Then, for the two pairs apo-holo forms we report the heat
maps of 𝑃 variation on the ribbon structure, so to highlight
regions in the protein structure undergoing changes upon
ligand binding.

The analysis was performed by means of a purposed soft-
ware implemented in Matlab environment v 2014a, including
functions from Bioinformatics Toolbox. Heat maps of 𝑃 vari-
ation (comparison between holo and apo forms), Guimerà-
Amaral cartography and clusters onto the protein ribbon
representation, have been produced by means of a purposed
Python script compiled in the embedded Python environ-
ment; for further details and application of the method see
[37].

Table 1 sums up PCN descriptors, along with their
structural and biological relevance.

3. Results and Discussion

3.1. ENM Results. GNM and ANM are simple yet effective
methods [33]. GNM can only describe the amplitude of
residue fluctuations, but ANM can give the direction of
the motions. In this section, ANM was used to investi-
gate conformational change between 𝑇-Hb and 𝑅-Hb, and
describe the dynamical properties of protein-protein inter-
faces. GNM was employed for the modular analysis of Hbs,
which was coupled with Markovian stochastic analysis to
study the allosteric mechanisms of Hbs. Expecting for the
conformational change, we only chose 𝑇-Hb to exhibit these
investigations. ENM results for other two states of Hbs show
similar results, as shown in the supporting information.

3.1.1. Conformational Change. ENM results for the transition
of tetrameric Hb between 𝑇-state (PDB code: 2dn2) and 𝑅-
state (PDB code: 2dn1) are shown in Figure 2, while the results
of the conformational change between 𝑇-state and 𝑅2-state
(PDB code: 2dn3) and 𝑅-state and 𝑅2-state are shown in
Supplementary Figure S1 in SupplementaryMaterial available
online at https://doi.org/10.1155/2017/2483264. First, the over-
lap map between the ten ANM slowest modes was calculated
to compare the global dynamics of 𝑇- and 𝑅-Hbs. Along the
diagonal in Figure 2(a), only the fifth and sixth modes are

https://doi.org/10.1155/2017/2483264
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Figure 2: ENM results for 𝑇 → 𝑅 transition of tetrameric Hb. (a) Overlaps between the ten slowest ANM modes of 𝑇- and 𝑅-Hbs. (b)
Distribution of mean-square fluctuations obtained by the first ANM mode of 𝑇- and 𝑅-Hbs. The residue index of the four chains is 1–140
(𝛼1), 141–285 (𝛽1), 286–425 (𝛼2), and 426–570 (𝛽2). (c) Overlaps of individual 𝑇-Hb ANM modes with the conformational change within𝑇 → 𝑅 transition. (d) The motion of the second ANMmode of 𝑇-Hb; here the protein is represented as a network.

maintained, with the overlap values of 0.92 and 0.79. For
other global modes, there are weaker correlations between
two conformations. For example, the reordering of the first
two modes was found, which means that the motion of the
first mode of 𝑇-Hb is similar to the motion of the second
mode of 𝑅-Hb, while the first mode of 𝑅-Hb shifts to the
secondmode of𝑇-Hb.This result shows that global dynamics
greatly changes between the two different states, even for the
lowest mode. Then, the difference of two states was further
investigated by the distribution of mean-square fluctuations
driven by their global ANMmodes, as shown in Figure 2(b).

For the first mode 𝑇-Hb, the two 𝛼 chains exhibit different
dynamical behaviorwith two𝛽 chains, but twodimers of𝛼1𝛽1
and𝛼2𝛽2 show similar global dynamics (the blue line). For the
first mode of 𝑅-Hb, the mean-square fluctuations profile of𝛼-chain is very similar to that of the 𝛽-chain (the red line).
Comparing these two structures the fact that 𝛼 chains are
more stable and 𝛽 chains are less stable in 𝑇 state than in 𝑅
state emerges.

Overlaps of each ANM mode with the structural dif-
ference between 𝑇 and 𝑅 conformations were calculated to
detect which individual mode contributes significantly to the
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Figure 3:Modular analysis of𝑇-Hb based onGNM. (a)The correlationmap corresponding to the firstmode divides theHb into twomodules.
Red regions correspond to collective residue motions and blue-colored regions correspond to uncorrelated motions. (b)The shape of the first
mode, which not only shows two modules but also predicts hinge sites.

structural differences between the results from experimental
study and are calculated by (9). Figure 2(c) shows that the
transformation from 𝑇 into 𝑅 is favored by the second mode
of 𝑇-Hb with the highest overlap (0.84). In this mode, the
global motion involves quaternary changes of two dimers,
namely, 𝛼1𝛽1 dimer, exhibiting a torsional rotation in an
opposite direction with 𝛼2𝛽2 dimer (Figure 2(d)). Further-
more, this mode is also coordinated by hinge sites at 𝛼1-𝛽1
and 𝛼2-𝛽2 interface. Tekpinar and Zheng [42] have previously
performed the ENM study of conformation changes from 𝑇
to 𝑅2 structures, in which they found the first two modes
contribute significantly to the conformational change. Our
revisiting is in accordance with their results, because mode 2
observed herein seems like the combination motion of their
two modes.

3.1.2. Modular Analysis. In their recent work, Li et al. [59]
developed a new method based on GNM and ANM for
dividing a protein into intrinsic dynamics modular analysis.
Here, we adopted a much simpler way, just based on the
analysis of the GNM lowest mode. Correlation maps for
cross-correlation not only describe collective motion but
also reflect the symmetry of proteins [36]. To our aim, the
correlation map for the first GNM mode was used for the
modular analysis of Hb [60]. In the map, red indicates the
highly correlated motions, blue represents the anticorrelated
motions, and green is for the uncorrelatedmotions. As shown
in Figure 3(a), the correlationmap shows that 𝑇-Hb tetramer
is divided into twomodules, which correspond to 𝛼1𝛽1 dimer
and 𝛼2𝛽2 dimer. Two red blocks indicate that 𝛼1 and 𝛼2 move
in the same directionwith𝛽1 and𝛽2, respectively. Blue blocks
indicate that opposite motions are observed between these
dimers.

Although the first GNM mode can only generate two
modules, it can provide more dynamical information. After
diagonalizing the Kirchhoff matrix, the first eigenvector
corresponding to the highest eigenvalue can be derived and
interpreted to represent the shape of a mode [61]. Figure 3(b)
demonstrates that the shape corresponds to GNM mode of
the Hb tetramer. It is easy to see that the shape of 𝛼1𝛽1 dimer
distributes under zero and 𝛼2𝛽2 dimer above zero. Thus, the
eigenvectors also partition the structure into two modules.
In addition, some hinge sites were predicated at near zero
positions, which are Thr41, Ala88, and Pro95 in Chain A,
His146 in Chain B, Phe98, Leu105, and Ser138 in Chain C, and
His2 andHis146 inChainD.Note that these hinge sites always
locate at 𝛼1-𝛽2 and 𝛼2-𝛽1 interfaces. ENM results formodular
analysis of 𝑅-Hb and 𝑅2-Hb are shown in Supplementary
Figure S2.

3.1.3. Allosteric Mechanisms. Communication inside protein
complexes is implicit in collectivemotionswhich are inherent
to the network topology [62]. Based on this idea, the signal-
processing properties of residues can be investigated by
Markovian stochastic analysis coupled with GNM [63, 64].
The commute time, 𝐶(𝑖, 𝑗), a function of Markov transition
probabilities, was used to measure the communication abili-
ties of residue pairs. Figure 4(a) displays the commute time
map of 𝑇-Hb, while the blue and red regions correspond
to short and long hit times. Furthermore, we calculated the
average values of each row or column of the commute time
map to evaluate the communication abilities of each residue.
As shown in Figure 4(b), theminima of the average commute
time ⟨𝐶(𝑖)⟩ indicate the key residues for 𝑇-Hb allostery.
The profiles of average commute times for 𝛼1 chain and 𝛽1
chain indicate that Val10, Leu29, Arg31,Thr39, Cys104, Val107,
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Figure 4: Signal propagation of residues for 𝑇-Hb. (a) The commute time map of 𝑇-Hb. Minimal of average commute time profiles (red
circles) for 𝛼1 chain and 𝛽1 chain (b) indicates that most of residues with highest communication abilities (green beads in 𝛼1 chain and yellow
beads in 𝛽1 chain) distribute at 𝛼1-𝛽1 interface (c). Results are presented for 2dn1 (𝑇), and 2dn2 (𝑅) and 2dn3 (𝑅2) showed similar behavior.

His122, and Leu125 in 𝛼1 chain and Ala27, Val109, Cys112, and
Gln127 in 𝛽1 chain are residues with highest communication
abilities. It is worth mentioning that the two 𝛼 chains and
two 𝛽 chains have the same profile shapes. The distributions
of these residues in 𝛼1 chain and 𝛽1 chain are also displayed
in the three-dimensional representation (Figure 4(c)). It was
found that Arg31, Cys104, Val107, and His122 in 𝛼1 chain and
Cys112 and Gln127 in 𝛽1 chain are located at 𝛼1-𝛽1 interface.
Likely, the same region was also found at 𝛼2-𝛽2 interface.
ENM results for modular analysis of 𝑅-Hb and 𝑅2-Hb are
shown in Supplementary Figure S3.

3.1.4. Interface Characterization. Protein interfaces are the
sites where proteins or subunits physically interact. Identifi-
cation and characterization of protein interfaces are not only
important to understand the structures of protein complexes
and protein-protein interactions, but also disease phenotypes
[65]. Both GNM and ANM have been used to investigate

protein-protein interfaces. Kantarci et al. [66] firstly applied
GNM to classify interfaces of p53 core domain into the
dimerization interface and crystal interface on the base of
interfacial dynamics. Zen et al. [67] extended this method to
study the interface of 22 representative dimers.More recently,
Soner et al. [68] developed a web server to discriminate
obligatory and nonobligatory protein complexes. Although
GNM is the most used method to study protein-protein
interfaces, we have showed here that ANM is also powerful
to explore interfacial dynamics of Hbs.

Two kinds of interfaces have been classified in the Hb
tetramer: allosteric sites located at 𝛼1-𝛽1 and 𝛼2-𝛽2 interfaces,
which could be intended as allosteric interfaces. Hinge sites
are detected always at 𝛼1-𝛽2 and 𝛼2-𝛽1 interfaces, providing
structural interfaces. The analyses are in accordance with
the results in Tekpinar and Zheng [42], which showed that
allosteric interfaces are dynamically variable regions but
not necessarily structural interfaces. In this section, square
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Figure 5: Square fluctuations of Hb monomers and tetramers. (a) Square fluctuations of 𝛼1 subunits in isolated and tetrameric states based
on the first 20 ANM modes. The differences of mobilities at 𝛼1-𝛽1 and 𝛼1-𝛽2 interfaces are indicated by red and green circles. (b) Square
fluctuations of 𝛽1 subunits in isolated and tetrameric states based on the first 20 ANM modes. Red, green, and black circles indicate the
differences of mobilities at 𝛼1-𝛽1 and 𝛼2-𝛽1 interfaces and a common region of these two interfaces. (c) Square fluctuations of𝑇-Hb tetramers
based on the highest two modes. Hot spots are predicted by the peaks in the profile, while 𝛼1𝛽1 and 𝛼2𝛽2 dimer show the same prediction
result.

fluctuations of both monomeric and oligomeric proteins
based on a large set of slow modes and the highest modes are
compared for a deeper analysis of interfaces.

Figures 5(a) and 5(b) show square fluctuations of 𝛼1 and𝛽1 subunits in isolated and tetrameric states based on the
first 20 ANM modes, while 𝛼2 and 𝛽2 subunits show similar
behavior. Although 𝛼 and 𝛽 subunits are structurally iden-
tical, they are different in length and sequence. Accordingly,𝛼1 and 𝛽1 subunits show different types of fluctuations, which
have also been predicted by the previousmolecular dynamics
(MD) study [69]. The mobility of 𝛼1-𝛽1 and 𝛼1-𝛽2 interfacial
residues of 𝛼1 subunit is reduced in the tetramer. The same
happens for the mobilities of 𝛼1-𝛽1 and 𝛼2-𝛽1 interfacial
residues of 𝛽1 subunit. Therefore, the flexibilities of residues
located at both kinds of interfaces in bound states are lower
than in unboundmonomers.This kind of dynamical property
of interfacial residues has also been detected by the MD
simulation [70].

In addition, a similar region (residues 45–57) with high
mobility in both isolated states was found, which corresponds
to a long loop distributing between two adjacent subunits.
The mobility of this region in 𝛽1 subunit was reduced, while

no reduction was observed in 𝛼1 subunit. This may suggest
that this long loop in 𝛽 subunits is an allosteric region
controlled by interfacial residues.

Among the interface residues, hotspots are defined as
residues that have the greatest contribution to the binding
energy.The prediction of hotspots is helpful not only to guide
drug design but also to understand disease mutations [71].
Based on ENM results, Chennubhotla et al. [72] revealed that
hot spots residues show a moderate-high flexibility at global
modes. On the other hand, hot spots correlated very well
with the residues with high mean-square fluctuations in the
highest frequency modes in both GNM [73, 74] and ANM
[22]. Ozbek et al. [74] have found that hot spots predictions
based on the highest, the second and third highest, and the
average three and five highest GNM modes show similar
accuracies. Our calculation demonstrates that the square
fluctuation based on two highest ANM modes is enough
to predict the distribution of of Hb-tetramer hot spots. The
result for 𝑇-Hb is shown in Figure 5(c). It is surprising
that hot spots have been predicted only at 𝛼1-𝛽1 and 𝛼2-𝛽2
interfaces: Phe28, Arg31, Phe36, and Val107 in 𝛼 subunits
and Arg31, Asn108, Val111, Cys112, Gln127, and Ala129 in



BioMed Research International 9

(a)

100 150 200 250 300 350 400 500 55045050
Nodes

550

500

450

400

350

300

250

200

150

100

50

N
od

es

(b)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90
P, participation coefficient

−3

−2

−1

0

1

2

3

4

z
, i

nt
ra

co
nn

ec
tiv

ity
z

-s
co

re

(c) (d)

Figure 6: PCN results for𝑇-Hb: (a) cluster partition, (b) cluster color map, (c) 𝑃-𝑧map, and (d)𝑃 over ribbon. Cluster partition satisfactorily
matches with chains, and high 𝑃 residues are mostly located at the chain interfaces.

𝛽 subunits. Note that Arg31 and Val107 in 𝛼 subunits and
Arg31, Cys112, and Gln127 in 𝛽 subunits are overlapped
with allosteric sites. It also proved that allosteric interfaces
rather than structural interfaces take part in the complex
formation. The hotspots predicted for 𝑅- and 𝑅2-Hbs show
small differences but still located at the same interfaces
(Supplementary Figure S4).

3.2. PCN Results. In this section, results from the application
of PCN method and spectral clustering are reported for
the three structures under enquiry. Figures 6 and 7 and
Supplementary Figure S5 clearly show that cluster partition

satisfactorily matches with chains, yet with some divergences
(region pertaining to a chain falling in a cluster mainly
composed of residues belonging to a second chain, “whiskers”
in the clustering color map). In comparison with ENM, PCN
results of three states ofHbs exhibit quite high similarity, even
between 𝑅- and𝑅2-states, as emergedmainly from the distri-
bution of 𝑃 along the ribbon structures (see Figures 8 and 9).𝑃𝑧 maps show the typical profile for PCNs (and not for
other real world networks), with most residues having 𝑃 = 0
(only contacts with residues belonging to their own clusters).
Residues with 𝑃 > 0 are mostly interesting for protein
functionality, since they account for signaling transmission
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Figure 7: PCN results for 𝑅-Hb: (a) cluster partition, (b) cluster color map, (c) 𝑃-𝑧 map, and (d) 𝑃 over ribbon. Again, clusters catch almost
perfectly the chains and high𝑃 residues are located at the interfaces between chains. Similar results are obtained for𝑅2-Hb; see Supplementary
Figure S5.

through the protein structure (global property of protein
structure).

High 𝑃 residues are spotted in the structure and mostly
(but not necessarily) placed in the interchain region. In pre-
vious works [35, 37, 51, 75], we demonstrated that the parti-
cipation coefficient𝑃 addresses the functional role of residues
in protein binding and, in general, identifies residues with a
key role in protein structural and functional features.𝑃𝑧maps instruct a cartography, addressing a specific role
to residues, as reported in Table 2. Hubs are nodes with𝑧 > 2.5, while 𝑃 values address the role of nodes to connect

different clusters. The Guimerà-Amaral cartography of the
three Hbs is reported in Figures 8 and 9 and Supplementary
Figure S6, as original form, on 𝑃𝑧 maps, and projection on
ribbon structures.

Noticeably, in PCNs 𝑅6 and 𝑅7 nodes are absent and
only few 𝑅5 nodes are present, all at 𝑃 = 0. In other words,
high 𝑧 nodes correspond to residues in charge for protein
stability, while nonhub connector nodes are responsible
for interdomain (intercluster) communication. Lys60 in 𝛼1,
Glu26, His63, Lys66 in 𝛽1, and Leu28, Lys65, Leu68 in 𝛽2 in𝑇-Hb, whereas Gly24, Lys61, and Leu141 in two 𝛽 chains in
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Figure 8: Guimerà-Amaral Cartography for𝑅-Hb: only very few nodes are classified as hubs (𝑅5) and located close to the active site. Non-hub
kinless nodes (𝑅4) are located in turn on the interface between chains and play a key role in the concerted motion underlying the allosteric
regulation of hemoglobin.
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Figure 9: Guimerà-Amaral Cartography for 𝑇-Hb: very few nodes are classified as hubs (𝑅5), but more than for 𝑅/O2 complex, again close
to the active site. Non-hub kinless nodes (𝑅4) lie on the interface between chains. Similar results hold for 𝑅2-Hb; see Supplementary Figure
S6.

Table 2: Guimerà-Amaral cartography.

Regions 𝑧 𝑃
Module nonhubs

𝑅1: ultraperipheral node 𝑧 < 2.5 𝑃 < 0.05𝑅2: peripheral node 𝑧 < 2.5 0.05 < 𝑃 < 0.625𝑅3: nonhub connectors 𝑧 < 2.5 0.625 < 𝑃 < 0.8𝑅4: nonhub kinless nodes 𝑧 < 2.5 𝑃 > 0.8
Module hubs

𝑅5: provincial hubs 𝑧 > 2.5 𝑃 < 0.3𝑅6: connector hubs 𝑧 > 2.5 0.3 < 𝑃 < 0.75𝑅7: kinless hubs 𝑧 > 2.5 𝑃 > 0.75
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Table 3: Pearson correlation coefficients of network descriptors with mean fluctuations (MF) and average commute times (CT).

Closeness/MF Betweenness/MF P/MF P/CT
2DN2 −0.3741 −0.1828 −0.0861 −0.2677
2DN1 −0.4320 −0.1226 −0.1878 −0.2904
2DN3 −0.7331 −0.1419 −0.3649 −0.2740
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Figure 10: Closeness versus mean fluctuations: in this complex,
there is an hyperbolic variation of closeness along with mean
fluctuations: the closeness is thus a local rigidity descriptor.

𝑅-Hb belong to 𝑅5 nodes. It is easy to note that 𝑅5 nodes
distribute at 𝛽 chains within the protein interior.

As previously stated [58], 𝑅4 nodes (nonhub kinless
nodes) are crucial for the allosteric signal propagation: their
kinless nature poses in the gray zone where residues acting at
a global level play, so their role in the protein functionality
is central. It was found that Leu91 and Arg92 in 𝛼1, His2,
His116, and Ala129 in 𝛽1, His89 in 𝛼2, andThr38, His116, and
Phe118 in 𝑇-Hb and Trp37, Cys112, Phe122, and Pro124 in 𝑅-
Hb belong to 𝑅5 nodes. Except His2, 𝑅4 residues were found
at all four interfacial regions.

3.3. Comparison between ENM and PCN Results. We finally
explicitly superpose the ENMs and PCNs results, in order
to better specify key residues and features in allosteric
regulation of Hb. Average commute times predict allosteric
sites at both protein interior and two interfaces (𝛼1-𝛽1 and𝛼2-𝛽2 interfaces). In PCN, 𝑅4 nodes include allosteric sites
at interfaces and 𝑅5 nodes include allosteric sites at protein
interior. Combined with modular analysis and hot spots
prediction, the use of ENM has advantage to classify protein-
protein interfaces.

On the other hand, PCNs analysis relies upon a set
of network descriptors to approach the study of protein
structures quantitatively. Table 3 reports the Pearson corre-
lation coefficients between mean fluctuations and network
descriptors, closeness centrality, betweenness centrality, and
participation coefficient.

Betweenness centrality poorly correlates (negatively)
with mean fluctuations, while closeness anticorrelates more
strongly with mean fluctuations, especially in the more rigid
structure (𝑅2/complex, Figure 10). The hyperbolic shape
of the distribution confirms closeness is a general stiffness
descriptor for protein structure. This property may indicate
that closeness in PCN could provide an additional evidence
to detect hinge sites. There is a relatively poor one-to-one
correspondence of functional sites obtained between ENM
and PCN, and thus the combination of these two approaches
would improve the prediction.

4. Conclusion and Perspectives

ENM and PCN are light yet effective computational methods
which simply require the three-dimensional coordinates of
atoms in protein structures. In this work, the combination
of the ENM and PCN methodologies has provided a plenty
of information regarding the dynamic behavior of Hbs. It is
noteworthy that the two classes of methods are able to catch
the same features without a common, interexchange ground.
In comparison with PCN, ENM can find the dominate
motion for the conformational change of proteins and detect
the dynamics of protein-protein interfaces observed by MD.
Except for the topological parameters used in our work, there
aremore local and global network parameters that can be cal-
culated in PCN to describe protein structures quantitatively.
For example, residue centrality as a local network parameter
was proposed to identify allosteric sites [76], and coefficient
of assortativity as a global network parameter is related to the
rates of protein folding [77]. In addition, we have found some
correlations between ENM and PCN results. In previous
studies [78], the average path lengths are highly correlated
with residue fluctuations. Here, we show an additional pos-
itive correlation between residue fluctuations predicted by
ENM and closeness centrality calculated by PCN. Although
the general relationship between dynamical properties and
more network parameters is needed to be established, we can
conclude that ANM and GNM have advantages in studying
dynamical properties and protein-protein interfaces, while
PCN is better for describing structures quantitatively from
both local and global levels.

In future, the combined description by means of
these methods will largely contribute to understanding the
dynamic behavior of complexes without heavy computa-
tional approaches, such as molecular dynamics (MD). Evi-
dently,MDwill anyway provide a very complete and fine des-
cription of dynamics, but the combination of lighter meth-
ods, such as ENM and PCN, will, for instance, guide MD
simulations with well-grounded preliminary results, as pre-
liminary approached in our previous works [79]. On the
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other hand, the two methods may help understanding the
relationship between local fluctuation of residues and protein
stability and functionality, being a primer for identifying key
residues, responsible for lethal mutations. For example, the
first attempt to combine ENM and PCN has been reported
to investigate allosteric communication pathways [80]. In
our work, we only indicate that ENM and PCN can be
applied to four types of structural and dynamical paradigms.
More detailed analysis for each case is needed. Although the
integration of these two methods is just at the beginning, it
would give a potential but powerful tool in structural systems
biology.
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