
 

 

Since January 2020 Elsevier has created a COVID-19 resource centre with 

free information in English and Mandarin on the novel coronavirus COVID-

19. The COVID-19 resource centre is hosted on Elsevier Connect, the 

company's public news and information website. 

 

Elsevier hereby grants permission to make all its COVID-19-related 

research that is available on the COVID-19 resource centre - including this 

research content - immediately available in PubMed Central and other 

publicly funded repositories, such as the WHO COVID database with rights 

for unrestricted research re-use and analyses in any form or by any means 

with acknowledgement of the original source. These permissions are 

granted for free by Elsevier for as long as the COVID-19 resource centre 

remains active. 

 



Computers in Biology and Medicine 143 (2022) 105233

Available online 29 January 2022
0010-4825/© 2022 Qatar University. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

A review of deep learning-based detection methods for COVID-19 

Nandhini Subramanian *, Omar Elharrouss, Somaya Al-Maadeed, Muhammed Chowdhury 
Qatar University College of Engineering, Computer Science and Engineering, Qatar   

A R T I C L E  I N F O   

Keywords: 
COVID-19 detection 
DL-Based COVID-19 detection 
Lung image classification 
Coronavirus pandemic 
Medical image processing 

A B S T R A C T   

COVID-19 is a fast-spreading pandemic, and early detection is crucial for stopping the spread of infection. Lung 
images are used in the detection of coronavirus infection. Chest X-ray (CXR) and computed tomography (CT) 
images are available for the detection of COVID-19. Deep learning methods have been proven efficient and better 
performing in many computer vision and medical imaging applications. In the rise of the COVID pandemic, 
researchers are using deep learning methods to detect coronavirus infection in lung images. In this paper, the 
currently available deep learning methods that are used to detect coronavirus infection in lung images are 
surveyed. The available methodologies, public datasets, datasets that are used by each method and evaluation 
metrics are summarized in this paper to help future researchers. The evaluation metrics that are used by the 
methods are comprehensively compared.   

1. Introduction 

The World Health Organization (WHO) declared the spread of the 
coronavirus infection a pandemic in March 2020, which is called the 
coronavirus pandemic or COVID-19 pandemic. The coronavirus 
pandemic is caused by severe acute respiratory syndrome coronavirus 2 
(SARS CoV 2). The outbreak originally started in Wuhan, China, and 
later spread to every country in the world [1]. The coronavirus spreads 
through respiratory droplets of the infected person that are produced 
through cough or sneeze. These droplets can further contaminate the 
surfaces increasing the spread. Coronavirus-infected persons may suffer 
from mild to severe respiratory illness and may require ventilation 
support [2]. Older people and people with chronological disorders are 
easily prone to coronavirus infection. Thus, many governments have 
closed their borders and locked down people to break the cycle and 
prevent the spread of the pandemic [3]. 

With the sequencing of ribonucleic acid (RNA) from the coronavirus, 
many vaccines are being developed worldwide. The developed vaccines 
use both traditional and next-generation technology with six vaccine 
platforms, namely, live attenuated virus, inactivated virus, protein or 
subunit, viral vector-based, messenger RNA (mRNA), and deoxy-
ribonucleic acid (DNA). Although vaccines can reduce the rapid spread 
and facilitate the development of immunity via the production of suit-
able antibodies, the efficacy of the vaccines is still 95%. Many issues are 
encountered in administering the vaccine, such as supply chain logistical 

challenges, vaccine hesitancy, and vaccine complacency. A vaccine is a 
prevention measure rather than a cure [4]. Even with the availability of 
the vaccine, early detection of the coronavirus is important, as it can 
facilitate tracing of the people who were in contact directly and indi-
rectly. By tracing these people, further spread of the pandemic can be 
avoided. COVID-19 infection manifests as lung infection, and computed 
tomography (CT) and chest X-ray (CXR) images are primarily used in the 
detection of lung infection of any type [5]. 

Along with doctors and clinical personnel, researchers and technol-
ogists are focusing their efforts on early detection of coronavirus in-
fections. According to PubMed [6], 755 academic articles were 
published with the search term “coronavirus” in 2019, and this number 
rose to 1245 in the first 80 days of 2020. Artificial intelligence and deep 
learning methods are the most commonly used methods by researchers 
for the detection of coronavirus infection from CT and CXR images. Deep 
learning methods have shown significant performance in many research 
applications, such as computer vision [7], object tracking [8], gesture 
recognition [9], face recognition [10], and steganography [11–13]. 
Deep learning methods are widely used because of their improved per-
formance compared to traditional methods. In contrast to traditional 
methods and machine learning methods, the features need not be 
hand-picked. By changing the parameters and configurations of the deep 
learning convolutional neural network (CNN) architecture, a model can 
be trained to learn the best possible features for the dataset in use. Re-
searchers have used deep learning methods to explore the field of 
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medical imaging even before the coronavirus pandemic. With the recent 
pandemic, the use of deep learning methods for the detection of coro-
navirus infection from images has increased tremendously. 

A detailed survey of the available deep learning approaches for the 
detection of coronavirus infection from images such as CT scans or CXR 
images is conducted in this paper. Although other surveys are available 
in the literature, most of them cover a wider scope. For example, Ulhaq 
et al. [14] surveyed all methods that address coronaviruses, such as 
medical image processing, data science methods for pandemic 
modeling, AI and the Internet of things (IoT), AI for text mining and 
natural language processing (NLP), and AI in computational biology and 
medicine. This provides an overall view of what is happening in the 
research world. A survey on the application of computer vision methods 
for COVID-19 [15] described the segmentation of lung images. This 
paper aims to exclusively describe coronavirus detection methods using 
deep learning methods. In the hope of helping researchers develop 
better coronavirus detection methods, this paper summarizes all the 
methods that have been reported in the literature. Along with the 
methods, the used datasets, commonly used metrics for evaluation and 
comparison are discussed and future direction are elaborated in this 
paper. 

2. Background 

Before discussing the details of the available methods for coronavirus 
infection detection, it is essential to have a working knowledge of deep 
convolutional neural networks and popular CNN architectures. In this 
section, a brief overview of CNN architectures and main points on 
available CNN architectures are presented. 

2.1. Convolutional neural networks 

Convolutional neural networks, specifically artificial neural net-
works, are a branch of deep learning methods that are inspired by the 
natural visual perception mechanism of living organisms [16]. CNNs are 
nothing but stacked multilayered neural networks. There are three 
major categories of layers, namely, convolutional layers, pooling layers 
and fully connected layers. The first layer of any CNN model is an input 
layer, where the width, height and depth of the input image are specified 
as the input parameters. Immediately after the input layer, convolu-
tional layers are defined with the number of filters, filter window size, 
stride, padding and activation as the parameters. Convolutional layers 
are used to extract meaningful feature maps for the input location by 
calculating the weighted sum [17,18]. Then, each feature map is passed 
through an activation function, and bias is added to form the output. 
Usually, rectilinear unit (ReLU) activation is used as the activation 
function [19]. 

Pooling layers are used to reduce the size of the output from the 
convolutional layers. As the model increases in size with an increasing 
number of filters in the convolutional layer, the output dimensionality 
also increases exponentially, which makes it hard for computers to 
handle. Pooling layers are added to reduce the dimensions for easy 
computation and sometimes to suppress noise. The pooling layer can be 
a max pooling, average pooling, global average pooling, or spatial 
pooling layer. The most commonly used pooling layer is a max pooling 
layer [20]. The output is flattened to form a single-array feature vector, 
which is fed to a fully connected layer. Finally, a classification layer is 
defined with activation functions such as sigmoid, softmax and tanh 
functions [21]. The number of classes is specified in this layer, and the 
extracted features are aggregated into class scores. 

Batch normalization layers are applied after the input layer or after 
the activation layers to standardize the learning process and reduce the 
training time [22]. Another important parameter is the loss function, 
which summarizes the error in the predictions during training and 
validation. The loss is backpropagated to the CNN model after each 
epoch to enhance the learning process [23]. 

2.2. Transfer learning and fine-tuning 

After designing, creating and building a deep learning model, the 
number of epochs is set to start training. During training, random 
weights are initialized, which will be refined during each epoch to make 
the result closer to the classification score. However, in transfer 
learning, instead of using random weight values, the model can be 
initialized with weight values from pretrained models. Transfer learning 
performs best when there is a limited availability of training data. When 
performing transfer learning, the last layer of the pretrained model ar-
chitecture is replaced with a fully connected layer with the same number 
of classes as the new dataset. The architecture is retrained to use the 
model for the new dataset [24]. 

Another method, namely, fine-tuning, is also used when the dataset 
is small. Similar to transfer learning, the last layer of the architecture is 
replaced and redefined. The only difference is that in transfer learning, 
all the layers are retrained, while in fine-tuning, some layers can be 
redefined and retrained according to the application [25]. One major 
disadvantage of these methods is that the size of the input image cannot 
be changed. Therefore, if the pretrained model uses a smaller image 
dimension and transfer learning has to be conducted on a dataset with a 
larger image dimension, resizing the image is compulsory. Resizing a 
large image to a smaller image can affect the performance of the model 
in some cases. Careful consideration must be taken when transfer 
learning and fine-tuning are implemented. 

2.3. Available architectural families 

Several available architectures generalize well irrespective of the 
dataset or application. Various popular architectures, such as AlexNet, 
VGG, Inception, ResNet, DenseNet, MobileNet, and Xception, are sum-
marized in this section. 

AlexNet is a simple five-layer convolutional neural network. There 
are two variants of the VGG network – VGG16 and VGG19 [26]. The 
VGG architecture was originally proposed for image recognition appli-
cations. In VGG16 and VGG19, 16 and 19 wt layers are used with a 
smaller convolutional filter size of 3 × 3. The network won first and 
second places in the ILSVR (ImageNet) competition [27] in 2014. The 
size of the input image is fixed to 224 × 224. The model is trained on the 
ImageNet dataset, which contains millions of images [28]. 

In contrast to CNN architectures, in which the layers are stacked, a 
new architecture with an inception block is introduced in InceptionNet 
[29]. Several variants are available in the inception family. The incep-
tion network is also used for image classification and localization and 
participated in the ILSVR (ImageNet) competition [27] in 2014. Instead 
of increasing the depth of the model by adding additional layers, the 
authors apply various filter sizes to the input image simultaneously in 
the inception block. This leads to the growth of the model width. All the 
outputs of the inception block are concatenated and fed to the next 
inception block. Available versions include InceptionV1 (GoogLeNet) 
[29], InceptionV2 and InceptionV3 [18], InceptionV4 and Inception-
ResNet [30]. The input image size that is accepted by the model is 224 ×
224. 

ResNet [31] is also used in image classification methods and was the 
winner of the ILSVRC 2015 [27]. The ResNet family uses the residual 
block, which is a network-in-network in their architecture. Five steps 
with convolutional and identity blocks are used to define the network. 
Similar to the VGG family, the input image size is 224 × 224. Many 
variations are available. Inception-ResNet [30] is a hybrid architecture 
that combines the inception and residual blocks. The input image size 
for InceptionResNet is 229 × 229. 

The DenseNet architecture [32] is a variation of the ResNet archi-
tecture. Similar to the ResNet family, a residual identity block is used to 
build the architecture, except concatenation is conducted in place of 
summation. Traditional CNN models have L connections for L layers, 
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whereas the DenseNet model has L(L+1)
2 direct connections. Each layer is 

connected into every other layer in a feed-forward fashion. The feature 
maps of all the previous layers are used as input to the current layer, and 
the feature map of the current layer is fed to all the other layers. The size 
of the accepted input image is 224 × 224. 

MobileNets are compact architectures with depthwise separable 
convolutional layers that can be used in mobile phones and embedded 
systems [33]. Usually, 2D convolutional layers are used, but in depth-
wise separable convnets, two 1D convolutional layers are used. Doing so 
has helped reduce the number of parameters and, hence, decrease the 
computation and training times and memory usage. There are 54 layers, 
and the input image size is 224 × 224. 

Xception [34] architectures are similar to the Inception family, 
where inception blocks with depthwise separable convolutional layers 
are used. The input image size is 229 × 229, and the number of layers is 
71. 

3. Summary of the research methods 

Since COVID-19 is a novel pandemic, only a few datasets with a 
limited number of samples are publicly available. The best strategy that 
can be followed with the limited availability of data is either transfer 
learning or fine-tuning (Section 2.2). Although new CNN architectures 
can be constructed, to improve the performance, a wider range of images 
under each class is required. According to this study, the majority of the 
papers use transfer learning methods, a few rely on fine-tuning, and only 
a handful propose a novel CNN architecture with comparable perfor-
mance to transfer learning-based methods. The majority of the works 
use transfer learning from models that are pretrained on the ImageNet 
dataset. Additionally, the input image size to the architecture is either 
224 × 224 or 229 × 229, but the dataset that is used to train and test the 
model contains images of various sizes. A simple preprocessing step is 
used to resize the images in the dataset to fit into the shape of the input 
layer of the network. In this section, first, transfer learning and fine- 
tuning-based methods and the CNN architectures that are used will be 
specified. Then, methods with novel CNN architectures will be 
described. Finally, methods that do not belong to these categories will be 
described in detail. Fig. 1 presents an overall summary of all the methods 
that are reviewed in this paper. 

3.1. Transfer learning and fine-tuning approaches 

Transfer learning is the go-to method for most of the papers. Pre-
trained models that are trained on the ImageNet database are used to 
perform transfer learning. Although the method is the same, different 
architectures are used in the works [35]. Even if the architectural family 
is the same, different variants are used. Cross-validation is another 
technique that is used in some of the methods. In addition, methods with 
new CNN models are considered, which also utilize the benefits of 
transfer learning when the dataset is very small. 

A comparative study of the available deep learning architectures, 
namely, MobileNet V2, Inception, Xception, Inception ResNet V2 and 
VGG19, that use the transfer learning method is performed by Aposto-
lopoulos et al. [35]. Three models - ResNet50, InceptionV3 and 
Inception-ResNetV2 - are also utilized [36]. Transfer learning on 
InceptionV3 [37] and AlexNet [38] along with data augmentation is 
another variation. ResNet18, ResNet50, SqueezeNet [39], and 
DenseNet-121 [40] are used for transfer learning along with data 
augmentation methods [41]. Transfer learning using VGG19, Dense-
Net201, InceptionV3, ResNet152, InceptionResNetV2, Xception, and 
MobileNetV2 is conducted by Ref. [42]. Transfer learning on ImageNet 
with VGG16 and ResNet50 [43] by replacing the last layer of both 
VGG16 and ResNet50 with one global average pooling layer [44] and 
two fully connected layers is used in Ref. [45]. 

Transfer learning on AlexNet, ResNet18, DenseNet201 and 

SqueezeNet is performed by Ref. [46]. Two-class and three-class clas-
sification with and without data augmentation is performed with five-
fold cross-validation and stochastic gradient descent (SGD) 
optimization. Fig. 2 illustrates the working principle of [46] stepwise. 
Similar to Ref. [46], binary and multiclass classification on 
NASNet-Large, DenseNet169, InceptionV3, ResNet18, and Inception 
ResNet V2 are implemented by Punn et al. [47]. However [47], uses a 
weighted class loss function and random oversampling methods to 
overcome the disproportionate rates in the classes. The class with the 
”COVID” label is given higher weight, since it is of higher significance 
than other classes, using the weighted class loss function. In the random 
oversampling method, the classes are balanced by increasing the num-
ber of samples in the minority class by data augmentation. For denois-
ing, an image mask is created using binary thresholding and subtracted 
from the original image. Fine-tuning is performed by keeping non-
trainable layers as the base model and adding four trainable convolu-
tional layers, one fully connected layer and one classification layer. 
Transfer learning is also used by Wang et al. [48], but instead of the 
whole image, region of interests (RoIs)/image patches are provided as 
input. A total of 195 COVID-positive and 258 COVID-negative image 
patches are used for training. These image patches are input into a 
pretrained network for feature extraction, followed by a fully connected 
classification layer for classification. 

Generative adversarial networks (GANs) are used extensively for 
image reconstruction [49]. Data augmentation is one application of 
GANs [50]. Since the dataset is small, more data are obtained using a 
GAN for data augmentation, and the augmented data are split into 
training and testing sets to train a deep CNN model for binary classifi-
cation [51]. Three phases are used. First, in the preprocessing phase, the 
GAN is used for data augmentation. Second, transfer learning on Alex-
Net, SqueezeNet, GoogleNet, and ResNet18 is performed to train the 
model. Finally, in the testing phase, the trained model is evaluated. 

Along with fine-tuning on the top layers of the CNN, VGG16, VGG19, 
DenseNet201, Inception_ResNet_V2, Inception_V3, Xception, Resnet50, 
and MobileNet_V2 architectures, a comparative study is conducted [52]. 
Three convolutional layers with a filter size of 3 × 3, two max-pooling 
layers with a filter size of 2 × 2, a fully connected layer and, finally, a 
classification layer with a sigmoid classifier are proposed. Intensity 
normalization [53] and contrast limited adaptive histogram equaliza-
tion (CLAHE) [54] are performed on the images during preprocessing. 

First, a dataset is synthesized using a fuzzy color technique. Then, 
another dataset is created by combining the original and fuzzy color 
images using the stacking technique. Transfer learning and fine-tuning 
are performed on the created dataset [55]. Transfer learning on a 
combination of chest X-ray and CT scan images using the VGG19-CNN, 
ResNet152 V2, ResNet152 V2 + gated recurrent unit (GRU), and 
ResNet152 V2 + bidirectional GRU (Bi-GRU) architectures for multi-
class classification is performed by Ibrahim et al. [56]. Transfer learning 
on 3D CT scans using ResNet architectures is also conducted [57]. A 
machine-learning algorithm-based method is also designed and evalu-
ated for coronavirus detection [58,59]. 

3.2. Novel architectures 

COVID-Net [60] utilizes a new CNN architecture for detecting COVID 
from CXR images, and an open-source COVID dataset, namely, COVIDx,1 

is introduced. COVID-Net can classify CXR images into one of three 
classes. The architecture is based on lightweight residual 
projection-expansion projection extension (PEPX) design patterns with 
two stages of projections, expansions, a depthwise representation and an 
extension. The authors perform transfer learning by training the CNN 
architecture initially on the ImageNet dataset and subsequently on the 
COVIDx dataset. 

1 https://github.com/lindawangg/COVID-Net. 
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A model with three parts, namely, a backbone, a classification head 
and an anomaly detection head, is proposed by Zhang et al. [61]. The 
pretrained backbone architecture on ImageNet is used to extract 
high-level features from X-ray images, and these features are fed to the 
classification and anomaly detection heads to produce a score. A cu-
mulative score for every ’l’ predictions is also used. 

COVID-CAPS is a capsule network-based framework for detecting the 
presence of COVID infection from CXR and CT scan images [62]. One 
advantage of using a capsule network is that it can perform well even 
when data are scarce. Transfer learning is also used in this framework. 
However, this is contrary to other methods of transfer learning on a 
model that is pretrained with X-ray images from a publicly available 
dataset 2. This has advantages over the other methods for transfer 
learning on the ImageNet dataset. 

A novel CNN model is proposed by Abbas et al. [63], namely, 

DeTraC, which consists of three phases: feature extraction, decomposi-
tion and class composition. Using the backbone architecture, features 
from images are obtained. Then, training using the SGD optimizer is 
performed, followed by class composition for classification. 

COVIDLite is a novel architecture that uses the depthwise separable 
convolutional neural network (DSCNN) to classify CXR images for 
coronavirus detection [64]. A preprocessing step (CLAHE) is used to 
improve the visibility and enhance the white balance. White balancing is 
performed to enhance the color fidelity of the images. Fast COVID-19 
detector (FCOD) is another variant of the depthwise separable con-
volutional neural network, which is based on the inception architecture 
[65]. Using depthwise separable convolutional layers in place of the 
normal convolutional layer decreases the computational complexity and 
computation time. Similar to Ref. [65], depthwise separable convolu-
tional layers are used in the XceptionNet architecture by Singh et al. 

Fig. 1. Overall workflow summary of all the methods. The first step is the acquisition of the data, and the imaging format can be chest X-ray (CXR) or CT scan. The 
second step is preprocessing, such as image resizing and data augmentation. Then, the preprocessed data are trained using one of the three methods. The trained 
model is used for classification and evaluation. 

Fig. 2. Stepwise diagrammatic representation of transfer learning by Chowdhury et al. [46]. The first step is the acquisition of the patients’ data from an X-ray 
imaging machine. Both two-class classification and three-class classification are performed. Second, in the image resizing (preprocessing) step, the input layer of the 
deep learning method is fit. Data augmentation is performed in one of the experiments. Then, transfer learning is performed on various deep learning architectures. 
Finally, the trained model is saved, and classification is performed. 
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[66]. 
A novel CNN with one convolutional block with a 16-filter con-

volutional layer, batch normalization and ReLU activation and two fully 
connected layers with softmax classification is proposed by Maghdid 
et al. [67]. The pretrained Alexnet on the ImageNet dataset is compared 
with the proposed model. A set of tailored CNN models that are based on 
established architectures is proposed by Ref. [68]. Each detected image 
can belong to one of three classes, namely, normal, viral pneumonia and 
bacterial pneumonia. Additionally, an estimator for the infection rate is 
provided from the predictions. 

A custom CNN model that accepts concatenated features from two 
models (Xception and ResNet50V2) and passes them through a con-
volutional layer and a classification layer is proposed by Ref. [69]. 
Similarly, deep features are extracted from MobileNet as the base model, 
and they are input into a global pooling layer and a fully connected 
layer. Then, the feature vector is input into the classifier for classifica-
tion by Ref. [70]. Three types of techniques are tested, namely, 
fine-tuning, transfer learning and training from scratch. As in Refs. [69, 
70], a deep convolutional neural network architecture, namely, CoroNet 
[71], is used to classify X-rays into four classes: normal, bacterial 
pneumonia, viral pneumonia and COVID-19 positive. The architecture is 
based on Xception as the base; however, a dropout and two fully con-
nected layers are used. The Darknet-19 [72] based architecture, which is 
used for general object detection, is called the DarkCovid net [73]. It 
uses fewer layers than Darknet-19 with average pooling and softmax for 
classification, and transfer learning on the ImageNet dataset is 
performed. 

A four-phase method for COVID-19 detection is implemented by 
Ozyurt [74]. The feature extraction technique is emphasized by using 
techniques such as exemplar-based pyramid feature generation, ReliefF, 
and iterative principal component analysis (PCA) analysis. The final 
stage is classification using a deep neural network (DNN) and an arti-
ficial neural network (ANN). CovXNet is a novel CNN architecture with 
depthwise convolutional layers [75]. Not only is this novel architecture 
trained from scratch but also different modifications, such as transfer 
learning and fine-tuning, are designed to compare the performances of 
various methods. Both binary classification and multiclass classification 
are performed on chest X-rays by unique CNN architectures without 
transfer learning by Karakanis et al. [76]. 

3.3. Other approaches 

A pretrained model is used to extract the deep features of the images 
of a prepared custom dataset [77]. Then, the extracted deep features are 
input into a linear support vector machine (SVM) and OneVsAll SVM 
classifier for classification. Eleven established model architectures that 
are pretrained on the ImageNet dataset [28] are used to extract the deep 
features: AlexNet, DenseNet201, GoogleNet, InceptionV3, ResNet18, 
ResNet50, ResNet101, VGG16, VGG19, XceptionNet, and 
InceptionResNetV2. 

A slightly different approach is applied by the authors for the clas-
sification of X-ray images [77]. Similar to Ref. [77]., features are 
extracted from three networks, namely, VGG-16, GoogleNet and 
ResNet-50 [78], for the classification of CT images. The features are 
fused, and to reduce the redundancy of the features, the t-test method is 
used to rank the features based on frequency. The final constructed 
feature vector is input into a binary SVM classifier for classification. A 
depthwise separable convolution neural network (DWS-CNN) is used to 
extract the features from the patient’s X-ray images. The extracted fea-
tures are input into a deep support vector machine (DSVM) for classi-
fication. Data acquisition occurs through Internet of things 
(IoT)-enabled devices. The raw data are passed through a Gaussian filter 
before feature extraction and classification [79]. A pretrained VGG16 
network is used, and the output is upsampled to a depthwise separable 
convolutional network, which is followed by a shallow 3D CNN block 
and spatial pyramid pooling for COVID-19 detection [80]. 

A hierarchical classification method in place of flat classification is 
another proposed variation [81]. Hierarchical classification considers 
the relationships between classes, conducts local classification and 
trains models to perform the classification. Since the dataset is small 
even after customization, to avoid underfitting or overfitting of the 
model, the available data are expanded using data augmentation tech-
niques. The EfficentNet [82] architecture family is used as the base 
model for the classification, which is extended by adding batch 
normalization and dropout, followed by three fully connected layers and 
classification using softmax. Additionally, instead of training from 
scratch, transfer learning on ImageNet dataset weights is carried out. 

ResNet50 is used as the base model for classifying the image into 
three classes: normal, bacterial pneumonia and viral pneumonia [83]. If 
the prediction is viral, the image is input into DenseNet169 to further 
classify it as COVID or not. This is similar to hierarchical classification 
except that a single model is used for the full overflow, in contrast to 
Ref. [81]. Global average pooling (GAP) and SE-Structure are used to 
increase the performance of the model. Contrast limited adaptive his-
togram equalization (CLAHE) and the MoEx structure that is formed 
from normalization are used for image enhancement to help increase the 
accuracy. A gradient class activation map (Grad-CAM) is used for visu-
alization to help doctors [84]. U-Net is used to segment the lung in the 
image, which is also provided as input to the DenseNet model. A 
workflow that is similar to Ref. [83] is proposed by Gozes et al. [85]. 
First, lung segmentation using U-Net is performed to extract the ROIs. 
The ROIs are provided as input for classification, and Grad-CAM is used 
for visualization. 

A preprocessing step, which includes contrast and edge enhancement 
using histogram equalization (HGE), application of the Perona–Malik 
filter (PMF), and elimination of noise by unsharp masking edge 
enhancement, is conducted before the detection of coronavirus infection 
[86]. This preprocessing can help the model learn and generalize better. 
An ensemble-based method is employed for detection by training the 
VGG, ResNet, and DenseNet architectures. An ensemble of the best 
model predictions is used to obtain the final prediction. 

COVID-MobileXpert is a deep learning-based hardware-friendly 
model with a knowledge transfer and distillation framework [87]. 
DenseNet-121 is used by the Attending Physician (AP) and Resident 
Fellow (RF) networks, and MobileNetv2, ShuffleNetV2 and SqueezeNet 
are used by the Medical Student (MS) network. The MS network has 
been designed to facilitate the deployment of the model on devices. 
Transfer learning is conducted on the AP and RF networks, and the RF 
network is used to train the MS network through knowledge distillation. 

An ensemble method with three steps, namely, feature extraction 
using Alexnet, feature selection using trial and error and classification 
using the SVM algorithm, is performed. The results are compared with 
those of other deep learning methods, and the proposed solution has 
higher overall accuracy [88]. A multitask method is proposed by Rah-
man et al. [89], along with a new dataset, for image enhancement, 
segmentation, and classification. 

Fig. 3 presents an overview summary of all the methods that are 
currently available for this application. 

4. Datasets 

The size of the data is the key factor for the performance of any deep 
learning model. However, since COVID-19 is a recent disease, only a 
limited number of datasets are publicly available. There is a repository 
of COVID-positive lung X-ray images that is constantly updated [90], 
solely for classification purposes. It also contains metadata and anno-
tations of the lung segments. Additionally, this repository contains only 
a limited number of non-COVID images. Another commonly used 
dataset in this context is from Kaggle.2 Dr. Paul Mooney created a lung 

2 www.kaggle.com. 
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image dataset with 5,863 pediatric images under three classes (normal, 
viral pneumonia and bacterial pneumonia).3 Apart from these, the RSNA 
Pneumonia Detection Challenge dataset,4 SIRM datasets,5 Covid Chest 
X-ray dataset [92], and Chexpert dataset [93] are notable datasets that 
are used for COVID classification. Another important consideration is 
that some of the methods use binary classes (COVID+ and COVID-) 
whereas others use more than two classes (normal, COVID, viral pneu-
monia and bacterial pneumonia) for classification. 

The COVIDx datasets that are introduced in COVID-Net [60] include 
13,975 CXR images across 13,870 patient cases that have been selected 
and combined from publicly available datasets. The dataset consists of 
images in three classes, namely, normal, non-COVID infection and 
COVID infection. A detailed study and the steps for generating the 
dataset can be found in Ref. [94]. A custom COVID-Xray-5k dataset is 
built with 2,031 training images and 3,040 test images [41]. This dataset 
is a combination of COVID + images from the COVID Chest X-ray dataset 
[92] and ChexPert [93].6 

Two datasets are used in Ref. [35] to evaluate transfer learning on 
various models. A combination of normal, COVID and bacterial pneu-
monia images from various sources, such as [90], and [95], are com-
bined into one dataset with 504 normal images, 700 bacterial 
pneumonia images and 224 confirmed COVID images. However, to 
fine-tune and improve the performance of the models, another class, 
namely, viral pneumonia, is added to create another dataset. Dataset 2 
consists of 504 normal images, 224 confirmed COVID images, 400 
bacterial pneumonia infection images and 314 viral pneumonia infec-
tion images. A black background is added, and the images are rescaled to 
dimensions of 200 × 266. Even after all these efforts, the number of 
samples in the dataset is small, and the classes are not balanced with the 
minimum number of images for confirmed COVID cases. 

A few images that represent each class from the most commonly used 
datasets, namely [90,96], are presented in Fig. 4 [90]. has COVID+ and 
COVID-images, while [96] has normal, bacterial pneumonia, and viral 
pneumonia images. Table 1 summarizes in detail the most commonly 
used publicly available datasets. 

Similarly [35,77], develop two datasets for model training and 
testing. The first dataset consists of 25 COVID + images, excluding 
MERS, ARDS and SARS, and 25 COVID-images. The second dataset 

consists of 133 COVID + images, which include Middle East respiratory 
syndrome (MERS), acute respiratory distress syndrome (ARDS), and 
SARS images and 133 COVID-images from Refs. [90,97]. Four datasets 
are used for experiments in Ref. [38], namely, [90,92,93,98]. The ex-
periments are conducted separately, and the classes and the images are 
combined. Three datasets, namely [90,92,99], are used in Ref. [81]. 
Multiple classes other than pneumonia are used, which include thorax 
diseases with COVID + images from Refs. [90,99,100]; pneumonia im-
ages from Ref. [101]; and other thoracic disease images from Ref. [92]. 
To add diversity, data augmentation is conducted. 

A dataset with a total of 1300 images, namely, 310 normal, 330 
bacterial pneumonia, 327 viral pneumonia and 284 COVID images, is 
used in Ref. [71]. COVID-positive images are obtained from Ref. [90], 
and normal, bacterial and viral pneumonia images are obtained from 
Ref. [91]. 

In [46], four datasets are combined. COVID images are collected 
from Refs. [90,100,101] by the authors of [46]. Normal and viral 
pneumonia images are collected from Ref. [91]. A two-class dataset is 
created. 

Images from 5 sources are combined in Ref. [67]. [73] uses normal 
and pneumonia images from Ref. [92] and COVID images from 
Ref. [90]. To obtain a balanced dataset, only 500 random images from 
Ref. [92] for both classes are selected. Fivefold cross-validation is con-
ducted with two experiments – binary and three-class classification..7 

[68] uses [91] with images from normal, bacterial pneumonia and 
viral pneumonia for training, and testing is performed on COVID images 
from Ref. [90]. It is assumed that any infections that are caused by 
COVID-19 are due to viruses; thus, the model has to predict the 
COVID-positive images under the viral pneumonia class. Covid images 
from Ref. [90] and pneumonia, no findings and normal images from 
Ref. [99] are used to form a dataset in Ref. [47]. 

[36] uses 50 COVID infection images from Ref. [90], 50 normal 
healthy images from Ref. [91], 100 COVID images from Ref. [90], and 
1431 pneumonia infection images from Ref. [92] in Ref. [61]. A total of 
130 COVID-19 and 130 normal X-ray images from Refs. [90,96,97] are 
used in Ref. [37]. A dataset that combines [90,91] is used in Ref. [69]..8 

Eighty normal images from Refs. [102,103] and 116 images from 
Ref. [90], along with data augmentation, are used in Ref. [63]. In 
Ref. [51], 624 images with two classes [101] are used [101]. is used in 
Ref. [52] for binary classification using data augmentation [42]. uses 
[90,104] for COVID and normal images, respectively. In Ref. [42], 25 

Fig. 3. Methods and approaches. The surveyed literature works are grouped into three categories, namely, transfer learning and fine-tuning, novel architectures, and 
other approaches. Three branches are included in the figure, and the methods under each category are listed. 

3 https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia/ 
version/2.  

4 www.kaggle.com/c/rsna-pneumonia-detection-challenge.  
5 https://www.sirm.org/category/senza-categoria/covid-19/.  
6 https://github.com/shervinmin/DeepCovid. 

7 https://github.com/muhammedtalo/COVID-19.  
8 https://github.com/mr7495/covid19. 
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normal and 25 COVID images are used [90,100,105]. are used to obtain 
135 COVID images, and 320 pneumonia images from Ref. [106] are 
collected to form the dataset in Ref. [43]. To balance the dataset, only 
102 images from both classes are considered, and 10-fold 
cross-validation is performed as the dataset is small. 

First [92], is used to train COVID-CAPS. Then, transfer learning is 
performed on COVIDx [94] in COVID-CAPS [62]. The COVIDx dataset is 
used in Ref. [86]. Balanced and unbalanced datasets are considered for 
experiments. CXR images and noisy snapshots of the lung images are the 
inputs that are used in Ref. [87]. Normal and pneumonia images are 
obtained from Ref. [18], and COVID images are obtained from Ref. [90]. 
Microsoft Office Lens is used to capture snapshots of the images on the 
PC screen to create the noisy snapshot dataset. The captured images are 
RGB images, which are converted to 8-bit grayscale images [78]. uses 53 
COVID images from Ref. [100]. Two patch datasets are obtained from 
these 53 images by selecting the COVID-infected and noninfected re-
gions in the CT images. Two patch sizes are considered: 16 × 16 and 32 
× 32. A total of 3000 patches from COVID infection images and 3000 
no-finding patches are used to form the dataset. 

A few images that represent each class from the most commonly used 
datasets, namely [90,96], are presented in Fig. 4 [90]. uses COVID+ and 
COVID-images, and [96] uses normal, bacterial and viral pneumonia 
images. Table 2 summarizes the primarily used publicly available 

datasets. 

5. Evaluation 

As in any other classification tasks, the metrics that are used to 
evaluate the models are accuracy and precision, which are also called 
positive prediction value (PPV) and negative prediction value (NPV), 
respectively; specificity; recall, which is also called sensitivity; and F1- 
score; these are the most commonly used measures. To calculate these 
measures, four main metrics are used: (a) correctly identified diseased 
cases (true positives, TP), (b) incorrectly classified diseased cases (false 
negatives, FN), (c) correctly identified healthy cases (true negatives, 
TN), and (d), incorrectly classified healthy cases (false positives, FP). 
The equations for calculating accuracy, specificity and sensitivity are 
presented in 1, 5, and 4. 

Accuracy =
TP + TN

TP + TN + FP + FN
(1)  

Precision
/

PPV =
TP

TP + FP
(2)  

NPV =
TN

TN + FN
(3)  

Recall
/

Sensitivity =
TP

TP + FN
(4)  

Specificity =
TN

TN + FP
(5)  

F1 − Score =
2 ∗ Precision ∗ Recall

Precision + Recall
(6) 

Table 1 summarizes the methods and the accuracies that are realized 
in various papers. Additionally, methods for binary classification are 
presented in the table. Fig. 5 presents a detailed comparison of the 

Fig. 4. (a). Example images from two classes, namely, COVID+ and COVID-, from the [90] dataset. (b). Example images from three classes, namely, normal, viral 
pneumonia and bacterial pneumonia, from the [91] dataset. 

Table 1 
Summary of major publicly available datasets.  

Dataset Size Type Classes 

cohen Regularly updated Chest X-ray and CT images 5 
Paul Mooney 5856 Chest X-ray 3 
Kaggle 97 Chest X-ray and CT images 2 
COVIDx 104,009 CT images 3 
ChestXray-8 108,948 Chest x-ray images 3 
CheXpert 224,316 Chest radiographs 5 
Kaggle 2 2909 Chest X-ray images 4  
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results of novel architectures and other approaches. 
The receiver operating characteristic (ROC) curve and area under the 

ROC curve (AUC) are the other evaluation metrics that are commonly 
used. The ROC curve is used to show the performance of the proposed 
model by plotting the true positive rate (TPR), which is also called the 
recall, against the false-positive rate (FPR), at various thresholds. The 
equation for calculating FPR is presented in Equation (7). Lowering the 
classification threshold results in the classification of more items as 
positive, thereby increasing both the number of false positives and the 
number of true positives. AUC is an aggregate measure for evaluating a 
model at various possible thresholds. It is the two-dimensional area 
under the ROC curve between (0,0) and (1,1). AUC is the probability 
that the model ranks a random positive example higher than a random 
negative example. 

FPR =
FP

FP + TN
(7) 

Accuracy, by default, is the common metric that is used by almost 
every method in the study except in Refs. [7,38,41,70,86], and [87]. 

Specificity and sensitivity are the measures used in Refs. [7,35,37,41,46, 
48,52,60–63,70,73,77,78], and [85]. Precision/PPV, recall and f1-score 
are used in Refs. [37,42,46–48,51,52,60,73,78,81,83,86], and [85]. 
Additionally, a statistical analysis among the models is performed using 
the false-positive rate, F1, MCC and kappa measures in Ref. [77]. 
ROC-AUCs are used to measure the model performance in Refs. [38,41, 
46,47,62,83], and [60]. [69] uses the accuracy of all classes, accuracy of 
each class, precision, recall and specificity. Overall accuracy, classwise 
precision, recall and F-measure are the measures that are used in 
Ref. [71]. CPU (%), memory (MB), energy and AUC are used in Ref. [87]. 
The Matthews Correlation Coefficient (MCC) [107] is the extra metric 
that is used in Ref. [78]. 

6. Discussion and future direction 

From Table 2, Salman et al. [37] realize the best performance in 
terms of accuracy, precision, specificity, sensitivity, NPV and F1-score, 
with values of 100%. This method uses InceptionV3 as the model with 
transfer learning. However, the use of the same InceptionV3 architecture 

Table 2 
Comparative analysis of the methods in terms of accuracy, precision/PPV, recall/sensitivity, specificity, NPV and F1-score.  

Method Model/Backbone Accuracy Precision Sensitivity Specificity NPV F1-score 

[35] VGG19 98.75 – 92.85 98.75 – – 
MobileNetV2 97.40 – 99.10 97.09 – – 
Inception 86.13 – 12.94 99.70 – – 
Xception 85.57 – 0.08 99.99 – – 
InceptionResNetV2 84.38 – 0.01 99.83 – – 

[36] InceptionV3 95.4 73.4 90.6 96.0 – 81.1 
ResNet50 96.1 76.5 91.8 96.6 – 83.5 
ResNet101 96.1 84.2 78.3 98.2 – 81.2 
ResNet152 93.9 74.8 65.4 97.3 – 69.8 
InceptionResNetV2 94.2 67.7 83.5 95.4 – 74.8 

[37] InceptionV3 100 100 100 100 100 100 
[41] ResNet18 – – 98.0 90.7 – – 

ResNet50 – – 98.0 89.6 – – 
SqueezeNet – – 98.0 92.9 – – 
DenseNet121 – – 98.0 75.1 – – 

[42] VGG19 90.0 83.0 100 – – 91.0 
DenseNet201 90.0 83.0 100 – – 91.0 
ResNetV2 70.0 100 40.0 – – 57.0 
InceptionResNetV2 80.0 100 60.0 – – 75.0 
XceptionNet 80.0 100 60.0 – – 75.0 
MobileNetV2 60.0 100 20.0 – – 33.0 

[46] VGG19 99.6 99.2 98.6 99.8 – 98.9 
ResNet18 99.6 99.6 99.6 99.3 – 99.6 
DenseNet201 99.7 99.7 99.7 99.55 – 99.7 
SqueezeNet 99.4 99.4 99.4 99.84 – 98.4 
MobileNetV2 99.65 99.65 99.65 99.26 – 99.65 
ResNet101 99.6 99.6 99.6 99.31 – 99.6 
InceptionV3 99.40 98.80 98.33 99.7 – 98.56 

[47] ResNet 89.0 67.0 89.0 85.0 – 76.0 
InceptionV3 88.0 90.0 88.0 90.0 – 85.0 
InceptionResNetV2 95.0 97.0 96.0 94 – 96.0 
DenseNet169 92.0 94.0 96.0 95.0 – 95.0 
NASNetLarge 98.0 95.0 91.0 98.0 – 98.0 

[48] Inception 89.5 71.0 88.0 87.0 95.0 77.0 
[51] AlexNet 96.1 96.52 95.37 – – 95.94 

ResNet18 99.0 98.97 98.97 – – 98.97 
GoogLeNet 96.8 98.63 98.31 – – 94.46 
SqueezeNet 97.8 93.6 95.88 – – 98.47 

[52] CNN 84.18 94.05 78.33 93.07 – 85.66 
VGG16 86.26 87.73 85.22 87.36 – 86.46 
VGG19 85.94 80.39 90.43 82.35 – 85.11 
ResNet50 96.61 98.46 94.92 98.43 – 96.67 
MobileNetV2 96.27 98.06 94.61 98.02 – 96.30 
InceptionV3 94.59 93.75 95.35 93.85 – 94.54 
InceptionResNetV2 96.09 98.61 93.88 98.53 – 96.19 
DenseNet201 93.66 99.01 89.44 98.89 – 93.98 
Xception 83.14 95.77 76.45 94.34 – 85.03 

[56] VGG19+CNN 98.05 98.43 98.05 99.5 99.3 98.24 
ResNet152V2 95.31 95.31 95.31 98.4 98.4 95.31 
ResNet152V2+GRU 96.09 96.06 96.09 98.7 98.7 96.09 
ResNet152V2+Bi-GRU 93.36 93.35 93.16 97.8 97.8 93.26  
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in Refs. [36,46,47], and [52] did not produce the same results as in 
Ref. [37]. It is observed that Salman et al. use data augmentation with 
two classes of 130 images and 260 images in total. The models that 
produce the second- and third-best results are Denset201 and MobileNet 
V2 in Ref. [46], which are designed by Chowdhury et al. The second and 
third best results are not far from the first result of 100%. DenseNet201 
achieves 99.7% accuracy, which is the second-best result. MobileNetV2 
realizes an accuracy of 99.65%, which is only 0.05% less than the 
second-best accuracy and 0.35% less than the best accuracy results. 

Apart from accuracy, other evaluation metrics are used, namely, 
precision, recall/sensitivity, specificity, and F1-score. Hemdan et al. 
[42] produce a precision of 100%. Similar to accuracy, Denset201 
produces the second-best result with 99.7% precision, and MobileNetV2 
has the third-best precision of 99.65%. DenseNet201 and MobileNetV2 
produce the second-best results in terms of sensitivity and F1-score. The 
sensitivity and F1-score values for DenseNet201 and MobileNetV2 are 
99.7% and 99.65%, respectively. However, DensetNet201 and Mobile-
Net V2 do not produce results with higher specificity. In terms of spec-
ificity, SqueezeNet realizes the second-best value of 99.84%, and VGG19 
produces the third-best values of 99.8%, with a mere difference of 
0.04%. NPV values are not used by many methods. The best NPV value 
of 100% is produced by Inception V3 in Ref. [37]. Better results are 
produced by the combination of VGG19 and CNN, which realizes 99.3%, 
and the combination of ResNet152 V2 and GRU, which realizes 98.7% 
[56]. 

In summary, most of the methods utilize transfer learning on estab-
lished architectures for the classification of lung images. Even if novel 
architectures are proposed, due to scarcity of available image data, 
transfer learning on the ImageNet dataset is considered [60,71]. 
Different network architectures are used by different methods. Out of all 
of them, Inception, DenseNet, MobileNet, SqueezeNet and the VGG 
family outperform the other families. 

To effectively detect coronavirus infection, an easy, fast, and accu-
rate application that can be deployed in hand-held devices has to be 
developed. Most of the architectures that are used in the literature have 
many layers and, hence, huge numbers of parameters to store and 
compute. The ResNet50 architecture has 53 convolutions and one fully 
connected layer with over 23 million trainable parameters [108]. per-
formed a detailed analysis on the memory requirements of each model 
before and after deployment in a hand-held device chip. The memory 

requirement of the ResNet model is so large that it is expensive and 
impractical to deploy the trained model on a mobile device. Memory is 
compromised in the place of accuracy. The feasibility and portability of 
the application for the detection of coronavirus is affected. 

Accuracy is the common metric that is used to evaluate the perfor-
mances of models. VGG19 shows satisfactory performance with an ac-
curacy of 98.75%. In addition, VGG19 has fewer parameters and a 
shallower model, which makes it easily deployable even in mobile ap-
plications and mobile devices. Although some of the other approaches, 
such as deep feature extraction [78] and hierarchical classification [81], 
have been tested, they did not achieve better performance in 
comparison. 

As discussed earlier, deep learning methods need large amounts of 
data to perform well. Although most of the methods have tried to 
overcome the shortage of data with various data augmentation methods, 
there is no proof of real-time detection. There is no proven evidence on 
the effectiveness of data augmentation in real-life and live images for the 
detection of coronavirus. Creating a public dataset with possible classes 
requires help from medical experts, which is time-consuming. Since the 
availability of public datasets is low, studies have tailored custom 
datasets by combining two or three repositories based on the applica-
tion. The popular representations are [90] for COVID images and [96] 
for normal, bacterial and viral pneumonia images. 

A preprocessing step for resizing the input image to fit the archi-
tecture is conducted before training and testing the model. Careful 
consideration must be taken when dealing with medical images. Medical 
images are easily prone to noise, and this noise has to be removed before 
passing them to the model; otherwise, the model will learn the noise 
[109]. This may affect the performance of the model. An effective pre-
processing step for removing artifacts and noise is essential for 
improving the model performance. 

The major advantage in using the deep learning models is the ease of 
using them without any requirements for manually picking the features. 
However, in the case of medical images, the selection and use of features 
were of higher importance than any other tasks. The features that are 
selected by the deep learning models are not interpretable by medical 
professionals, and hence, the reliability is not certain; hence, it is unclear 
how the application can help them. 

The privacy and security of confidential materials such as X-ray 
images, patient information and other details are of the utmost 

Fig. 5. Graphical representation of the accuracy results for novel architectures and other approaches.  
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importance. 
In the future, more publicly available datasets with lung images can 

be collected and constructed for future use. Without the availability of 
quality data, the performance of the deep learning models cannot be 
improved. Other research directions include constructing and anno-
tating data and providing metadata information. 

7. Conclusion 

The COVID-19 pandemic is a novel pandemic that is caused by the 
coronavirus, and the only preventive measures that are available thus 
far are social distancing and early detection. For early detection and 
prevention of spread, deep learning models are trained to detect and 
classify lung images. Since the spread of the COVID-19 pandemic started 
recently in the last quarter of 2019, limited data are available for 
training deep learning models. To overcome this scarcity, researchers 
created custom datasets by combining many repositories. Transfer 
learning on established architectures, novel architectures with transfer 
learning on the ImageNet dataset, and other approaches, such as deep 
feature extraction using a deep learning architecture and hierarchical 
classification methods, are the methods that are available in the study. 
Among these available methods, transfer learning performs the best, and 
out of all the architectures, InceptionV3, DenseNet201, and Mobile-
NetV2 realize higher accuracy, while SqueezeNet and VGG19 show 
better specificity. Although vaccine drives are occurring all around the 
world, supply chain logistics and fear of the vaccine are some of the 
major issues. The RT–PCR test that is currently used for the detection of 
coronavirus is expensive, time-consuming, and less sensitive. Chest X- 
rays, CT scans, and ultrasound images of the lungs are primarily 
considered for detecting coronavirus detection by health care officials. 
Deep learning methods can facilitate coronavirus detection using images 
at early stages. The best results of 100% accuracy, 100% precision, 
100% specificity, 100% sensitivity, 100% NPV, and 100% F1-score show 
the higher reliability of the deep learning methods. 
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