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Toward the ultimate goal of affordable and non-invasive screening of peripheral occlusive
artery disease (PAD), the objective of this work is to investigate the potential of deep
learning-based arterial pulse waveform analysis in detecting and assessing the severity
of PAD. Using an established transmission line model of arterial hemodynamics, a
large number of virtual patients associated with PAD of a wide range of severity and
the corresponding arterial pulse waveform data were created. A deep convolutional
neural network capable of detecting and assessing the severity of PAD based on the
analysis of brachial and ankle arterial pulse waveforms was constructed, evaluated for
efficacy, and compared with the state-of-the-art ankle-brachial index (ABI) using the
virtual patients. The results suggested that deep learning may diagnose PAD more
accurately and robustly than ABI. In sum, this work demonstrates the initial proof-of-
concept of deep learning-based arterial pulse waveform analysis for affordable and
convenient PAD screening as well as presents challenges that must be addressed for
real-world clinical applications.

Keywords: peripheral artery disease, cardiovascular disease, deep learning, machine learning, pulse wave
analysis, arterial hemodynamics, ankle-brachial index, convolutional neural network

INTRODUCTION

Peripheral artery occlusive disease (PAD) is a highly prevalent vascular disease associated with
high morbidity and mortality risks. It was estimated that >8 million and >200 million people
were suffering from PAD in the United States (in 2000) (Allison et al., 2007) and globally (in
2010) (Fowkes et al., 2013), and the number of PAD patients is projected to sharply increase
with societal aging. It makes a significant adverse impact on morbidity and quality of life, and
also carries significant mortality implications as a powerful predictor of coronary artery disease
and cerebrovascular disease (Golomb et al., 2006). Nonetheless, PAD is underdiagnosed with low
primary care awareness (Hirsch et al., 2001).
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In clinical practice today, PAD diagnosis necessitates
angiography techniques (Guthaner et al., 1983; Romano
et al., 2004; Cavallo et al., 2019). These techniques are not
ideally suited to affordable and convenient PAD detection
and severity assessment. The current gold standard is the
digital subtraction angiography, which is an invasive technique.
Other non-invasive imaging-based angiography techniques
including the computed tomography angiography and magnetic
resonance angiography require X-ray radiation and expensive
equipment not appropriate for affordable settings. The ankle-
brachial index (ABI) is a relatively low-cost technique and is
widely used for PAD screening. However, it is often criticized
for its limited accuracy and robustness in diagnosing PAD
(Nelson et al., 2012).

Machine learning (ML) is increasingly exploited in
cardiovascular disease (CVD) detection and prognosis. In
particular, ML has exhibited promising efficacy in heart disease
detection and prediction (Dogan et al., 2018; Abdar et al.,
2019; Vallée et al., 2019) as well as CVD risk and CV death
prognosis (Ambale-Venkatesh et al., 2017; Steele et al., 2018;
Alaa et al., 2019). Recent reports increasingly exploit deep
learning (DL) to capitalize on its ability to automatically
select characteristic features, especially in conjunction with
medical imaging techniques (Abdolmanafi et al., 2018;
Poplin et al., 2018; Zhang et al., 2019). In contrast to the
large body of existing work on ML-based CVD detection
and CV mortality prediction, relatively small number of
work on ML applications to PAD is available, including
detection and mortality prognosis using electronic health
record as well as genomic and imaging data (Ross et al., 2016;
Arruda-Olson et al., 2018).

The analysis of arterial pulse waveforms [called hereafter the
pulse waveform analysis (PWA)] may play a complementary
role to ML in PAD diagnosis. In fact, our prior work shows
that model-based PWA has the potential to estimate CV risk
predictors (Ghasemi et al., 2018) and diagnose CVD (Ebrahimi
Nejad et al., 2017) using diametric arterial pulses. A recent work
illustrated the theoretical feasibility of PAD diagnosis (including
detection, localization, and severity assessment) using a hybrid
model- and ML-based analysis of central aortic and peripheral
arterial pulses (Xiao et al., 2016a). A practical advantage of
PWA is that it may be relevant to affordable PAD screening
and diagnosis with convenient arterial pulse measurements at the
extremity locations (e.g., arm and ankle).

Despite the complementary value of DL and PWA in
advancing the diagnosis of PAD (and even other CVDs), the
fusion of DL and PWA for PAD diagnosis has never been pursued
to the best of our knowledge. In fact, the state-of-the-art of DL-
based PWA appears to be limited to rudimentary classification of
CV health state (e.g., hypertension, atherosclerosis, and diabetes
mellitus) (Li et al., 2019). Hence, DL-PWA fusion is a novel
conceptual idea worthy of pursuit in the context of CVD
diagnosis (including PAD).

Toward the long-term goal of affordable and non-invasive
PAD screening and diagnosis, the objective of this work is
to investigate the potential of DL-based arterial PWA in
detecting and assessing the severity of PAD. Using an established

transmission line (TL) model of arterial hemodynamics, a large
number of virtual patients associated with PAD of a wide range of
severity and the corresponding arterial pulse waveform data were
created. A deep convolutional neural network (CNN) capable of
detecting and assessing the severity of PAD based on the analysis
of brachial and ankle arterial pulse waveforms was constructed,
evaluated for efficacy, and compared with the state-of-the-art ABI
using the virtual patients.

This paper is organized as follows. Section “Materials
and Methods” presents a multi-branch TL model of arterial
hemodynamics used in this work, creation of virtual PAD patients
together with the corresponding arterial pulse waveforms to
investigate DL-based PWA for PAD diagnosis, a DL-based PWA
approach based on the CNN for PAD detection and severity
assessment, and data analysis methods to evaluate the efficacy
of the DL-based PWA approach. Section “Results” presents
results, which are discussed in section “Discussion.” Section
“Conclusion” concludes this work with future directions.

MATERIALS AND METHODS

Transmission Line Model of Arterial
Hemodynamics
We used a multi-branch TL model of arterial hemodynamics
developed in a prior work (Figure 1; He et al., 2012). In brief, the
model is composed of 55 TLs, each of which represents an arterial
segment characterized by segment-specific viscous, elastic, and
inertial properties. In each TL, the propagation of arterial blood
pressure (BP) and flow (BF) waves is dictated by the propagation
and reflection constants as well as the arterial length:

pO = pI(1+ 0)
/(

eγl
+ 0e−γl

)
qO = qI(1− 0)

/(
eγl
− 0e−γl

) (1)

where pI and pO are BP waves at the inlet and outlet of the artery,
qI and qO are BF waves at the inlet and outlet of the artery, γ

is the propagation constant, 0 is the reflection constant, and l is
the arterial length. BP and BF waves at the inlet of the artery are
related by the input impedance of the arterial segment:

pI = qIZI = qIZC

(
eγl
+ 0e−γl

)/(
eγl
− 0e−γl

)
(2)

where ZI and ZC are the input impedance and characteristic
impedance of the artery, respectively. If an arterial segment
is terminated by a bifurcation, its load impedance is given
by the parallel connection of the input impedances associated
with the two descendent arteries. If an arterial segment is
connected to a single descendent artery, its load impedance
is given simply by the input impedance associated with the
descendent artery. If an arterial segment itself is a terminal artery
connected to a peripheral load, its load impedance is given by
the impedance associated with the load. Full details of the TL
model is provided in He et al. (2012). This model was validated
with physiological data and the results of other studies, and was
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FIGURE 1 | Transmission line (TL) model of arterial hemodynamics consisting of 55 TLs, each of which represents an arterial segment characterized by
segment-specific viscous, elastic, and inertial properties.

used in the study of arterial stenosis and arterial viscoelasticity
(Xiao et al., 2016a,b, 2017).

Creation of Virtual PAD Patients
We created a large number of virtual patients to investigate
the potential and challenges in DL-based PWA for PAD
diagnosis using the aforementioned multi-branch TL model. To
create realistic virtual patients, we considered three layers of
variabilities: inter-individual, intra-individual, and PAD severity.
First, we considered the inter-individual variability in the
arterial hemodynamics associated with the virtual patients by
widely varying five anatomical and physiological parameters
in the multi-branch TL model: arterial length, diameter, and
thickness, arterial elasticity, and peripheral load resistance. These
parameters were varied up to ±20% around the nominal values
reported in He et al. (2012) in an increment of 10%, which
resulted in a total of 55 = 3125 virtual patients associated
with 55 distinct arterial hemodynamic properties. Second, we
considered the PAD severity variability in each virtual patent by
widely varying the degree of the artery occlusion in the multi-
branch TL model. In this exploratory work, we limited our
focus to PAD occurring in the abdominal aorta, which is one
of the most common PAD sites. In each of the 3125 virtual
patients, we included PAD by varying diameter associated with
the abdominal aorta. We considered PAD severity of 0–80% in
an increment of 10% for training and validation datasets and in

an increment of 1% for test dataset, where severity is measured
as the degree of artery area occlusion (0% implies no occlusion
while 100% implies complete occlusion). This resulted in a total of
3125× 9 = 28,125 virtual patients, associated with distinct arterial
hemodynamics and PAD, as the basis to construct training and
validation datasets and 3125 × 81 = 253,125 virtual patients,
associated with distinct arterial hemodynamics and PAD, as the
basis to construct test dataset. Third, we considered the intra-
individual variability in the arterial hemodynamics in each virtual
patient to account for the uncertainty due to model imperfection
as well as random anatomical and physiological variations. We
assumed that the five anatomical and physiological parameters
in the multi-branch TL model used to account for the inter-
individual arterial hemodynamic variability have log-normal
distributions around the individual-specific values as mean values
with coefficient of variation of 0.01 in each virtual patient. Finally,
we constructed training and validation datasets by sampling
100 and 10 times from each of the 28,125 virtual patients
equipped with random anatomical and physiological variations,
and likewise constructed test dataset by sampling 10 times from
each of the 253,125 virtual patients equipped with random
anatomical and physiological variations. Then, we created arterial
BP and BF waveforms associated with each of these samples by
inputting a representative heart blood flow waveform used in He
et al. (2012; Figure 2) to the multi-branch TL model characterized
by the sample-specific anatomical and physiological parameters
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(including PAD severity). In this way, training and validation
datasets were composed of 2,812,500 and 281,250 arterial BP
and BF waveform data samples corresponding to 28,125 virtual
patients, while test dataset was composed of 2,531,250 arterial
BP and BF waveform data samples corresponding to 253,125
virtual patients.

PAD Diagnosis via Deep Learning-Based
Pulse Waveform Analysis
We developed our DL-based PWA approach to PAD diagnosis
using the training and validation datasets constructed in section
“Creation of Virtual PAD Patients.” Specifically, we constructed
a deep CNN that can predict PAD severity by the analysis of
arterial pulse waveforms. We in particular selected brachial and
ankle BP waveforms as inputs to our deep CNN in order to make
our approach compatible to the state-of-the-art ABI technique,
so that (i) our approach and ABI can be directly compared and
(ii) the potential for real-world application of our approach is
maximized. Details follow.

Our deep CNN was built upon the AlexNet (Krizhevsky et al.,
2012; Han et al., 2017; Wang et al., 2019), which was regarded
as appropriate in dealing with 1-D arterial pulse waveforms
associated with less complexity than 2-D images relative to other
deeper CNN architectures such as ResNet (He et al., 2016) and
DenseNet (Huang et al., 2017). To obviate extensive tuning of
hyper-parameters, we adopted the original AlexNet architecture
(five convolution layers and three fully connected layers), but
with modest modifications (Figure 3). First, we employed the
LeakyReLU as the activation function for the entire network to
promote stable convergence in the training phase (Goodfellow
et al., 2016). Second, we employed batch normalization in all
the convolution layers to promote stable back propagation of
gradient as well as regularization (Goodfellow et al., 2016). Third,
we reduced the size of the fully connected layer to 64 to match it
to the number of latent features outputted by the last convolution
layer in our CNN. Using the network architecture thus specified,
we constructed the deep CNN in such a way that brachial and
ankle arterial pulses are convoluted independently (Figure 3).
For this purpose, brachial and ankle arterial pulses undergo
channel-wise concatenation so that these arterial pulses can be
convoluted separately from each other by a shared kernel in the
convolution layer. In this way, discriminative features of PAD
severity embedded in the brachial and ankle arterial pulses can
be extracted independently while computational efficiency can
be gained with the use of shared kernels. In addition, mutual
interactions between the discriminative features associated with
the two arterial pulses can be exploited in the fully connected
layer of the network.

To train the deep CNN, we used NVIDIA Titan Xp GPU and
PyTorch libraries. We used the mean squared error loss between
the true vs. model-predicted PAD severity as the cost function.
We used the ADAM optimization (α = 0.9, β = 0.999) with initial
learning rate of 0.0002. To assess the robustness of the deep CNN,
we examined the sensitivity of the cost function with respect to
the local perturbations in the hyper-parameters including the
number (increased by 1.5 and 2 times) and size (increased by 1

and 2) of kernels in the convolution layer. Note that the deep
CNN thus trained with the above regression cost can be used to
both detect and assess the severity of PAD. In particular, it can
be used to detect PAD simply by labeling PAD in terms of PAD
severity (i.e., classifying a subject as PAD patient if the subject’s
PAD severity exceeds a pre-specified PAD severity threshold).

Evaluation
We evaluated our DL-based PWA approach to PAD diagnosis
and compared its efficacy with the state-of-the-art ABI technique,
in terms of PAD detection and severity assessment efficacy, using
the test dataset constructed in section “Creation of Virtual PAD
Patients.” Details follow.

First, we evaluated our approach for its PAD detection
performance. We considered a range of PAD severity threshold
levels in labeling healthy subjects and PAD patients (10–70%, in
an increment of 10%). For each PAD labeling threshold level,
we randomly selected 2000 virtual patients from test dataset
(consisting of 253,125 virtual patients; see section “Creation
of Virtual PAD Patients”) so that the selected patients include
equal number of healthy subjects and PAD patients (i.e., 1000
healthy subjects and 1000 PAD patients; for example, in case of
40% PAD severity threshold for labeling, 1000 virtual patients
with <40% PAD severity were randomly chosen to form healthy
subjects while 1000 virtual patients with≥40% PAD severity were
randomly chosen to form PAD patients). Then, we evaluated
our approach and ABI technique using the 20,000 arterial BP
and BF waveform data of these 2000 virtual patients (see section
“Creation of Virtual PAD Patients”) by (i) classifying each arterial
BP and BF waveform data sample into healthy or PAD category
based on the PAD severity predicted by the deep CNN when the
brachial and ankle BP waveforms in the sample were inputted
and the ABI value computed from the waveforms, (ii) aggregating
the classification results across all the 20,000 data samples
associated with all the 2000 virtual patients, and (iii) computing
the sensitivity and specificity as well as the accuracy of PAD
detection. In the context of PAD detection, sensitivity was defined
as the proportion of the 10,000 PAD patient samples which were
actually detected as such (with the PAD severity predicted to be
higher than the PAD labeling threshold), while specificity was
defined as the proportion of the 10,000 healthy subject samples
which were actually detected as such (with the PAD severity
predicted to be lower than the PAD labeling threshold). Accuracy
was defined as the proportion of the 20,000 test samples whose
labels were classified correctly.

Second, we evaluated our approach for its PAD severity
assessment performance. We randomly selected 2,000 virtual
patients from test dataset (consisting of 253,125 virtual patients;
see section “Creation of Virtual PAD Patients”) so that the
selected patients are distributed uniformly across all the PAD
severity levels (1–80% in an increment of 1%, which amounts to
25 virtual patients per PAD severity level). Then, we evaluated
our approach and ABI technique using the 20,000 arterial BP
and BF waveform data samples of these 2000 virtual patients
(see section “Creation of Virtual PAD Patients”), in terms of the
Bland-Altman statistics between the true PAD severity vs. the
PAD severity predicted by our deep CNN and ABI. To map
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FIGURE 2 | Representative heart blood flow waveform used as input to the multi-branch transmission line (TL) model of arterial hemodynamics associated with
virtual patients.

FIGURE 3 | Deep convolutional neural network (CNN) architecture for PAD diagnosis via deep learning-based arterial pulse waveform analysis. CONV-n (h, l) × k:
nth convolution layer with height h, length l and the number of kernel k. LeakyReLU (a): LeakyReLU activation with slope a on negative inputs. FC-n × m: nth fully
connected layer with the number of node m.

ABI value to PAD severity, we pre-calibrated the ABI values
to the corresponding PAD severity level based on a polynomial
regression model relating ABI to PAD severity (which was
obtained from the nominal virtual patient characterized by the
nominal anatomical and physiological parameter values). Third,
we analyzed the latent feature space associated with our deep
CNN using the t-distributed stochastic neighbor embedding (t-
SNE) algorithm. This analysis was conducted to examine the
presence of a smooth manifold relating the latent features to
PAD severity. We applied t-SNE to visualize the input space and
the space of latent features at the last convolution layer into 2-
dimensional space. Then, we investigated the distributions of
the input and latent features in the 2-dimensional space for a
connected manifold in the direction of PAD severity. Fourth,
we analyzed our deep CNN using the gradient-weighted class
activation mapping (GradCAM) algorithm (Selvaraju et al., 2017)
to interpret the discriminative input features exploited by our
deep CNN in predicting PAD severity. We applied GradCAM to

visualize the discriminative features (i.e., regions) in the brachial
and ankle arterial BP waveforms which largely contributed in
predicting PAD severity. Then, we assessed the physiological
relevance of the input features exploited by the deep CNN in
diagnosing PAD by comparing these discriminative features and
the available clinical knowledge on the relationship between PAD
severity and arterial pulse waveforms.

To derive a robust estimate of detection and diagnosis
performance, we repeated the above evaluation 10 times and
reported the average values of the sensitivity, specificity, and
accuracy as well as the Bland-Altman statistics.

RESULTS

Figure 4 presents brachial and ankle BP waveforms
corresponding to (a) nominal virtual patient, (b) nominal
virtual patient with intra-individual variability, and (c) all the
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FIGURE 4 | Brachial (upper panel) and ankle (lower panel) blood pressure (BP) waveforms corresponding to (A) nominal virtual patient (i.e., virtual patient with
nominal anatomical and physiological parameter values), (B) nominal virtual patient with intra-individual variability, and (C) all the virtual patients with inter- and
intra-individual variability in the test dataset, all associated with varying PAD severity levels.

virtual patients with inter- and intra-individual variability in
the test dataset, all associated with varying PAD severity levels.
Table 1 summarizes the PAD detection performance of our
approach and ABI (measured in terms of detection sensitivity,
specificity, and accuracy), both corresponding to varying PAD
severity threshold levels for labeling of healthy subjects and PAD
patients. Figure 5 shows the receiver operating characteristic
(ROC) curves associated with our approach and ABI, both
corresponding to varying PAD severity threshold levels for
labeling of healthy subjects and PAD patients. Figure 6 shows
the Bland-Altman plots between true PAD severity vs. PAD
severity predicted by our approach and ABI. Figure 7 presents
the 2-dimensional t-SNE visualization of the input and latent
feature spaces associated with the fully trained and validated
deep CNN, while Figure 8 presents discriminative input features
of our deep CNN localized by GradCAM associated with low and
high PAD severity levels.

DISCUSSION

PAD is a highly prevalent CVD with profound morbidity and
mortality implications, but it is frequently undiagnosed due to
the limitations associated with the cost, comfort, and accuracy
of existing angiography and ABI techniques. In this work,
we investigated an affordable, convenient, and accurate PAD
screening and diagnosis approach via DL-based PWA. Using a
large number of virtual patients created with a validated multi-
branch TL model of arterial hemodynamics, we illustrated its
potential and challenges to overcome.

Validity of Virtual Patients
The virtual patients created with the multi-branch TL model of
arterial hemodynamics could reproduce the clinically observed

TABLE 1 | PAD detection performance of the deep learning-based pulse
waveform analysis approach and ankle-brachial index, both corresponding to
varying PAD severity threshold levels for labeling of healthy subjects
and PAD patients.

Labeling threshold 10% 20% 30% 40% 50% 60% 70%

DL Sensitivity 0.97 0.96 0.94 0.95 0.93 0.92 0.85

Specificity 0.99 0.99 0.99 0.99 0.99 0.99 0.99

Accuracy 0.99 0.98 0.97 0.97 0.96 0.95 0.91

AUC 0.99 0.99 0.99 0.99 0.99 0.99 0.99

ABI Sensitivity 0.96 0.94 0.73 0.64 0.60 0.58 0.59

Specificity 0.50 0.50 0.64 0.75 0.91 0.99 0.99

Accuracy 0.50 0.51 0.68 0.68 0.66 0.64 0.65

AUC 0.73 0.74 0.76 0.79 0.83 0.88 0.92

DL, deep learning-based pulse waveform analysis approach; ABI, ankle-brachial
index.

trends in the shape of the arterial pulse waveforms in response
to varying degree of PAD severity. In particular, the multi-branch
TL model predicted that ankle BP pulse undergoes the following
morphological changes with an increase in the PAD severity
level: (i) systolic peak flattens; (ii) secondary diastolic peak
disappears; (iii) pulse amplitude decreases; (iv) crest time (time
interval between diastolic trough and systolic peak) increases;
and (v) pulse width at half amplitude increases (Figure 4). It
also predicted that brachial pulse amplitude increases, which
contributes to a decrease in ABI with an increase in the PAD
severity level. These predictions are consistent with a number of
existing clinical observations (Carter, 1968; Davies et al., 2014;
Sumpio and Benitez, 2015; Dhanoa et al., 2016; Mao et al., 2017;
Sibley et al., 2017) at least from qualitative standpoint. In sum,
it was concluded that the virtual patients used in our work
can produce realistically plausible arterial pulse waveforms with
respect to varying degree of PAD severity, which provided a solid
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FIGURE 5 | Receiver operating characteristic curves associated with the deep learning-based pulse waveform analysis approach and ankle-brachial index (ABI),
both corresponding to varying PAD severity threshold levels for labeling of healthy subjects and PAD patients. (A) DL-based pulse waveform analysis approach. (B)
Ankle-brachial index.

FIGURE 6 | Bland-Altman plots between true PAD severity vs. PAD severity predicted by (A) deep learning-based pulse waveform analysis approach and (B)
ankle-brachial index (ABI).

basis to investigate the strengths and weaknesses of our DL-based
PWA approach to PAD screening and diagnosis especially in
comparison with the widely used ABI technique.

PAD Detection and Severity Assessment
Efficacy
Our approach boasted robust PAD detection performance
superior to the ABI technique against a wide range of PAD
severity threshold levels for labeling of healthy subjects and PAD
patients (Table 1 and Figure 5). The sensitivity, specificity, and
accuracy values computed at the PAD classification threshold
levels identical to the labeling threshold values [note that (i)
the deep CNN was calibrated to the true PAD severity as part
of training, and (ii) a PAD severity level can be mapped to its
corresponding ABI by using the polynomial regression model
relating ABI to PAD severity in section “Evaluation”] were
consistently higher in our approach than the ABI technique
(Table 1). Our approach also boasted PAD severity assessment
performance largely superior to the ABI technique, as indicated

by its much smaller limits of agreement between the true
vs. predicted PAD severity levels in comparison to its ABI
counterparts (Figure 6). Overall, it appears that ABI is susceptible
to the inter-individual variability in anatomical and physiological
parameters which affect the systolic peak values associated with
brachial and ankle arterial pulses, whereas our approach can cope
with those confounding factors via highly sophisticated analysis
of the two arterial pulse waveforms to exploit morphological
characteristics beyond systolic peak values. The PAD detection
and severity assessment performance remained consistent against
repeated tests: the sensitivity, specificity, and accuracy values
exhibited small coefficients of variation of the order of 10−3

across the 10 repeated tests outlined in section “Evaluation.”
Lastly, the deep CNN appeared to be robust against modest
perturbations in its hyper-parameters in that the alteration in the
cost function with respect to the hyper-parameter perturbations
considered in this work was small (<2.3%). This suggests that the
AlexNet architecture used in this work was adequate, if not ideal.

Our approach exhibited a tendency for slight underestimation
of PAD severity, especially at high PAD severity levels
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(Figure 6A). This may explain its imperfect sensitivity relative
to specificity at high PAD labeling threshold (Table 1), because
underestimation of PAD severity in general makes the deep CNN
conservative in detecting PAD. In contrast, the ABI technique
suffered from a tendency for severe overestimation of PAD
severity in low-severity PAD and also severe underestimation of
PAD severity in high-severity PAD (Figure 6B). This may explain
its deteriorating sensitivity and improving specificity (and the
suboptimal accuracy as a whole) with respect to the increase in
the PAD labeling threshold (Table 1). In our virtual patients,
ABI tended to remain at a normal constant level up to ∼50%
PAD severity level, beyond which it started to sharply decrease
(not shown). Hence, the sensitivity of ABI is high in low PAD
labeling thresholds (since it overestimates the severity in low
PAD severity regime) but is low in high PAD labeling thresholds
(since it underestimates the severity in high PAD severity regime).
For the same reason, the specificity of ABI is low in low PAD
labeling thresholds but is high in high PAD labeling thresholds.
It is worth noting that this trend is in accordance with prior
clinical observations on the low sensitivity and high specificity
of ABI in detecting symptomatic PAD patients (Stein et al., 2006;
Wikström et al., 2008).

Latent Feature and Interpretability
Analysis
Two inherent challenges associated with DL is its susceptibility
to overfitting and lack of transparency. We employed (i) t-SNE
to examine if our deep CNN was properly trained and (ii)
GradCAM to examine if our deep CNN exploits appropriate
input features in diagnosing PAD.

The t-SNE visualization of the input and latent feature spaces
clearly illustrates that the deep CNN was properly trained to
capture the relationship between the latent features extracted
from the brachial and ankle pulse waveforms and PAD severity
(Figure 7). In particular, the input feature space contains a
number of small and scattered clusters associated with varying
PAD severity levels (Figure 7A), which presumably represent the
inter-individual variability associated with the virtual patients.
In contrast, the latent feature space clearly shows a manifold
smoothly connecting low (upper left) to high (lower right) PAD
severity levels (Figure 7B). Hence, it may be claimed that the
notable performance of the DL-based PWA approach originates
from its appropriate learning of the latent features indicative of
PAD severity rather than from overfitting to the data.

The discriminative input features localized by GradCAM
provide support for the transparency of the deep CNN
constructed in this work. Indeed, main discriminative input
features included (i) the systolic up-stroke and (ii) diastolic
down-stroke (including secondary peaks when exists) (Figure 8),
which are the regions in the brachial and ankle arterial pulses
in which salient morphological changes occur as PAD develops
according to the existing clinical literature (Carter, 1968; Davies
et al., 2014; Sumpio and Benitez, 2015; Dhanoa et al., 2016; Mao
et al., 2017; Sibley et al., 2017). Hence, it can be claimed that the
DL-based PWA approach may detect and assess the severity of
PAD by analyzing brachial and ankle arterial pulse waveforms

in a way similar to how experienced clinicians analyze them,
although the exact mechanisms underlying how the deep CNN
compiles and interprets the observed morphological changes into
PAD severity are unknown.

Limitations and Opportunities
All in all, this work demonstrated the proof-of-concept of
integrating DL and PWA for affordable and non-invasive PAD
screening and diagnosis. However, this work has a number of
limitations to be addressed. In addition, this work also sheds light
on outstanding opportunities toward its real clinical application.

First and foremost, this work was conducted using data
collected from virtual rather than real patients. We employed
a validated multi-branch TL model to create virtual patients.
We also showed that arterial pulse waveforms produced by
the virtual patients exhibit the morphological characteristics
observed in real PAD patients. Yet, discrepancy between virtual
vs. real patients may be inevitable at least to some extent, and
there are a few potential sources that can obscure the initial
success of this work when applied to real clinical data. In
particular, the inter- and intra-individual variability considered
in this work is somewhat ad-hoc. Furthermore, we accounted
for variability associated only with arterial anatomical and
physiological parameters but not cardiac parameters (such as
stroke volume and ejection duration). In the near term, the
efficacy of our approach against variabilities not considered
in this work may be investigated using the same virtual
patients. But ultimately, future work must confirm the proof-
of-concept obtained in this work using clinical data collected
from real patients. Regardless of this limitation, this work
may still have unique value as an exploratory study of DL-
based arterial pulse waveform analysis for PAD diagnosis
in a reasonably realistic yet resource-effective and controlled
setting. Indeed, our work may provide a strong justification
for conducting a (potentially large-scale and resource-intensive)
clinical data collection study for experimental investigation of
DL-based PWA approaches to PAD diagnosis (and perhaps
other CVDs as well).

Second, this work was limited to the detection and severity
assessment of PAD in a single arterial site. In contrast, an ideal
PAD screening and diagnosis tool is required to also localize PAD.
Hence, our approach must be extended to a technique capable of
simultaneously detecting, localizing, and assessing the severity of
PAD. This requirement may present additional challenge when
PAD at multiple sites with different levels of severity must be
diagnosed. Future work must investigate how to extend our
approach to also include PAD localization capability. A possible
initial strategy may be to leverage the deep CNN trained in this
work in conjunction with the multi-task learning, pre-training,
and continuation methods established in the DL domain so
as to extend the current deep CNN to also embed the ability
to localize PAD.

Third, this work assumed the availability of a large amount
of data associated with a wide range of variability in anatomical
and physiological characteristics as well as PAD severity levels,
which may not be practically realistic. For example, the majority
of PAD data may be associated with aged patients, and our
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FIGURE 7 | 2-dimensional t-distributed stochastic neighbor embedding (t-NSE) visualization of (A) input and (B) latent feature spaces associated with the fully
trained and validated deep convolutional neural network.

FIGURE 8 | Representative brachial and ankle pulse waveforms (solid lines) and discriminative features (dotted lines) of deep convolutional neural network (CNN)
localized by the gradient-weighted class activation mapping (GradCAM) associated with low (10%), medium (40%), and high (70%) PAD severity levels. (A) Brachial
arterial pulse. (B) Ankle arterial pulse.

approach when trained with such data may not generalize
well to young patients (who are associated with low PAD
incidence but screening/diagnosing whom is still crucial for CV
risk management). Likewise, our approach when trained with
data associated with one ethnic population may not generalize
well to another subject to a large inter-ethnic anatomical
and physiological discrepancies. Future work on coping with
limited data and enormous inter-individual variability must be
conducted. A possible initial strategy may be to exploit the
domain adaptation and transfer techniques as well as adversarial
training to guide the deep CNN work with latent features
invariant to ethnic, anatomical, and physiological characteristics.

Lastly, this work used arterial BP waveforms, which may not
be easy to measure non-invasively. Practically affordable non-
invasive arterial pulse waveforms (e.g., pulse volume recording
waveforms; Davies et al., 2014; Sumpio and Benitez, 2015;
Ghasemi et al., 2018) are typically measured at the skin level and
thus exhibit subtle morphological differences relative to arterial
BP waveforms (Lee et al., 2018). Hence, future work must be
conducted to investigate adverse effect of using non-invasive

arterial pulse waveform measurements on our approach as well
as innovative strategies to realize our approach using affordable
and non-invasive arterial pulse measurements.

CONCLUSION

This work demonstrated the proof-of-concept of a novel DL-
based PWA approach to PAD diagnosis. The results suggest
that PAD detection and severity assessment may be feasible
with data-driven analysis of arterial pulse waveforms. This work
also outlined outstanding opportunities and challenges toward
real-world deployment of our approach, including (i) validation
with data collected from real patients, (ii) PAD localization, (iii)
generalizable implementation with limited data and robustness
against confounding factors, and (iv) practical embodiment with
affordable and non-invasive arterial pulse waveforms. Future
work to explore and address these opportunities and challenges,
including the development of innovative DL-based PWA
algorithms capable of addressing the outstanding obstacles, may
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serve as key cornerstones to realize affordable and convenient
PAD screening and diagnosis.
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