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One of the more widely advocated solutions for slowing down the spread of
COVID-19 has been automated contact tracing. Since proximity data can be
collected by personal mobile devices, the natural proposal has been to use
this for automated contact tracing providing a major gain over a manual
implementation. In this work, we study the characteristics of voluntary
and automated contact tracing and its effectiveness for mapping the
spread of a pandemic due to the spread of SARS-CoV-2. We highlight the
infrastructure and social structures required for automated contact tracing
to work. We display the vulnerabilities of the strategy to inadequate
sampling of the population, which results in the inability to sufficiently
determine significant contact with infected individuals. Of crucial impor-
tance will be the participation of a significant fraction of the population
for which we derive a minimum threshold. We conclude that relying largely
on automated contact tracing without population-wide participation to con-
tain the spread of the SARS-CoV-2 pandemic can be counterproductive and
allow the pandemic to spread unchecked. The simultaneous implementation
of various mitigation methods along with automated contact tracing is
necessary for reaching an optimal solution to contain the pandemic.
1. Introduction
A relentless and damaging battle is being fought against the spread of
COVID-19. While several countries have managed to significantly slow down
its spread, severe measures have had to be taken to do so and at great cost to
the economic and social well-being of the nations. It is still not certain when
a significant control over the spread of SARS-CoV-2 can be attained. Recent
projections propose surveillance for the next few years [1], with several
measures that will need to be put in place to minimize the cost of the pandemic
to humankind. Automated contact tracing is one of these measures.

Contact tracing has been observed to be effective in previous pandemics (or
epidemics) like the Ebola virus outbreak in 2014–2015 [2]. This pre-emptive
method allows for the containment of the pathogen by isolating potentially
infected individuals that have been traced. Extensive studies of manual contact
tracing were done during the previous outbreak of the Ebola virus [3–5], SARS-
CoV and MERS-CoV [6]. More recently, mathematical models have been formu-
lated to study contact tracing assuming the disease spread to be quantifiable by
the SIR model [7]. However, the efficacy of automated contact tracing during
the SARS-CoV-2 pandemic requires a more detailed examination given the dis-
tinct difference in the prevalence of this pandemic from the ones in the recent
past and the different modes of transmission of the pathogen.

Manual contact tracing is not very effective against pathogens that spread
like the influenza virus but is more effective for containing smallpox and
SARS-CoV and partially effective in containing foot-and-mouth disease [8].
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The viral shedding patterns of SARS-CoV and MERS-CoV are
similar [9,10] and show almost no presymptomatic trans-
mission [11],1 while Ebola is known to be transmitted
through the bodily fluids of infected individuals after the
onset of symptoms [13]. On the other hand, influenza
shows a significant rate of viral shedding in the presympto-
matic stage [14]. The important transmission characteristics
of SARS-CoV-2 that set it apart from other HCoV pathogens
like SARS-CoV and MERS-CoV and from Ebola are:

— SARS-CoV-2 transmission is driven by presymptomatic
spreading like the influenza virus [15–17].

— The pathogen can be transmitted through the air in high
contamination regions and through contaminated dry sur-
faces for several days [15,18,19] leading to its high
transmission rates. This brings about additional challenges
when the disease cannot be contained within an isolated
envelope of a healthcare system.While a similar spreading
pattern is seen in SARS-CoV and MERS-CoV, this makes
SARS-CoV-2 more easily transmittable than Ebola.

— The ACE2 binding of SARS-CoV-2 is estimated to be rela-
tively stronger than SARS-CoV and might explain its
observed spreading characteristics [20–22].

In the early stages of the pandemic the reproduction
number R0, for SARS-CoV-2 was estimated to be 2.2–2.7
[23–27], similar to SARS-CoV.2 The dispersion parameter is
estimated to also be similar to that of SARS-CoV (close to
0.1), which could be causing superspreading [26,30–32].

In principle, automated contact tracing can be shown as
an effective means of containing SARS-CoV-2 [31]. However,
factors such as long delays from symptom onset to isolation,
fewer cases ascertained by contact tracing, and increasing
presymptomatic transmission can significantly impact how
effective automated contact tracing will be in practice. Nor-
mally, a significant contact is defined as being within 2 m
for at least 15 min.3 Keeling et al. demonstrated that this
can result in the detection of more than four out of five sec-
ondary infections but at the cost of tracing 36 contacts per
individual [33]. Changes to the definitions of a significant
contact can reduce the numbers traced. For example, if the
minimum time required to be considered a significant contact
is increased, the number of people needed to be traced will
decrease at the cost of not being able to identify potentially
infected individuals. Detailed modelling of SARS-CoV-2
transmission shows that the pandemic can be sustained just
by presymptomatic transmission and that automated contact
tracing can be used to contain the spread of the pathogen if
there are no significant delays to identifying and isolating
infected individuals and their contacts [34].

Considering all the factors that make contact tracing a differ-
ent game for SARS-CoV-2, in this paper, we will examine in
detail how much data and participation from the population
will be needed to make automated contact tracing effective.
This will give an estimate of the necessary scale of implemen-
tation of automated contact tracing and whether it will be
feasible. The model that we build with parameters that are
mostly independent of each other or factorized, will also allow
for the estimation of the effects of various mitigation methods
like the use of personal protective equipment (PPE) in enhancing
the efficacyof automated contact tracingwhichwediscuss before
the discussion section. In this work, we address voluntary
and automated contact tracing using proximity data alone
excluding methods such as the use of CCTV, credit card infor-
mation, logging of identities of individuals during vists to
locations and travels, etc., that have been successfully used by
many countries like Singapore [35], Taiwan [36], South Korea
[37] and China [34] for contact tracing.
2. Contact tracing for COVID-19
To judge the efficiency of contact tracing, it is crucial to deter-
mine whether an infectious disease can spread in the
presymptomatic stage or from asymptomatic individuals.
For a disease that can spread only in the symptomatic
stage, the infected individuals can spread the disease to
their contacts before they are isolated and to medical workers
after they are isolated with varying probabilities. Of signifi-
cance here is that after the initial period of ignorance of the
population about a rising pandemic, infected individuals
will be isolated with higher efficiency (even with manual con-
tact tracing) resulting in the curtailment of the spread of the
pathogen. How is contact tracing more effective in such dis-
eases? Since the mobility of the infected individual usually
sees a decline after the onset of symptoms, the number of
contacts at risk become limited to only those who are most
often in contact with the individuals and hence traceable
manually. This allows the implementation of a manual con-
tact tracing algorithm that identifies these neighbours and
isolates or tests them as suggested in reference [8]. This was
seen to be effective during the Ebola, MERS-CoV and
SARS-CoV outbreaks.

However, the spreading of SARS-CoV-2 follows a very
different pattern. With the prevalence of spreading of infec-
tion through presymptomatic and subclinical hosts, the
number of individuals that might need to be traced can be
very large. This has led to the belief that automated contact
tracing in a wider gamut should be implemented. Most of
the proposed solutions [31,33,34] require the use of historical
proximity data to trace contacts. In the context of COVID-19,
there are some obvious pitfalls in the algorithm:

— It is estimated that about 86% (95% CI: [82–90%]) of the
infected cases in China were undocumented prior to
the travel ban on 23 January 2020 generating 79% of
the documented infections [23]. A large number of these
undocumented cases experienced mild, limited or no symp-
toms and can hence go unrecognized. Similar results were
reported by other studies [38,39]. It is not possible to trace
all the contacts of these individuals since theywill bepartially
reported leading to incomplete coverage of contact tracing.

— While it is assumed that the SARS-CoV-2 spreads within
a proximity radius of r0 (assumed to be 2 m), not much is
known about the probability of transmission, pt when
two individuals come within this domain of contact for
a minimum contact time t0. Assuming pt to be large
will lead to an unreasonably large estimate of the
number of potential infections required to be traced in a
crowded region like supermarkets, which remain open
even during the period of social distancing. On the
other hand, assuming pt to be small will underestimate
the number of infected contacts, especially because
there might be other modes of transmission of SARS-
CoV-2 that are not being considered. By definition pt
depends on the dynamics of disease transmission when
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Figure 1. A depiction of automated contact tracing. The cross-section is denoted by the dashed circle and is of radius r0/2. Interactions occur from t = 0 to t = t0 + ϵ
where ϵ≪ t0. A will be confirmed as COVID-19 positive in the future and C will be notified having come in contact with A. E might be notified if E stays in contact with
A for a time period greater than t0.
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a healthy individual comes in significant contact with a
infected individual. Moreover, pt is not constant over r0
and also varies with the stage of infection the infected
individual is at [17]. Several other factors contribute to
the value of pt in addition to the contagiousness of the
disease including, but not limited to, the use of PPE,
public awareness of the disease, whether the surround-
ings are an open or a closed area, air circulation (freely
circulating as opposed to air conditioned), etc. [40].

The first pitfall can be alleviated by increasing the testing
rate of individuals for viral RNA in the hope that a larger
fraction of the asymptomatic or mildly symptomatic carriers
can be traced. Increasing awareness can also help. The
second pitfall can be alleviated when more detailed knowl-
edge of the spread of SARS-CoV-2 is available and with the
help of simulation of the spread of the disease in a popu-
lation. For the rest of the work, we will assume pt to be a
variable and r0 to be fixed to 2 m [33].

The real-world applicability of automated contact tracing
requires the examination of the effects of partial sampling of
the population. The assumption that we are working with is
that enrolment in automated contact tracing will be voluntary
and individuals remain free to do one of the following:

— Choose not to enrol in the programme by either not using
the application or the devices needed for tracing, includ-
ing discontinuity in participation.

— Choose not to report on their health condition which is
assumed to be voluntary.

Both types of occurrences have an effect of reducing the effi-
cacy of automated contact tracing but in slightly different
manners. In the first case, not subscribing to the service would
not only remove an individual from the pool that is being noti-
fied but it also removes them from the pool of individuals that
are reporting. In the second case, only the latter happens.
3. Modelling automated contact tracing
Since, in automated contact tracing, a significant contact has
to be less than r0 distance away for time t0, we describe
every individual by a circle with a radius of r0/2 which we
shall call the cross-section of the individual. The cross-section
is chosen such that any overlap between two cross-sections
can be taken as a significant contact between the two
respective individuals. Temporally, the cross-sections have
to overlap for a time t0 which is the threshold interaction
time that is assumed critical for an individual to infect
another by proximity. For the sake of simplicity and with
some loss of generality of our argument, we can assume
that the probability of getting infected, pt, is independent of
the degree of overlap of the cross-sections4 and for any
time t > t0 as is done normally in automated contact tracing.

Figure 1 gives a depiction of what automated contact tra-
cing would be for a group of individuals. In the left-most
panel, B and C are in contact with A at t = 0 but not with
each other. D is isolated from all of them. After a period of
time t < t0, B is isolated but C stays in contact with A. Then
at time t = t0 + ϵ, where ϵ≪ t0, we see that C is still in contact
with A, B remains isolated and E has come in contact with
both A and C. Using the methods of automated contact tra-
cing, if A reports as being tested as infected within 14 days
of the encounter with C, C will be deemed as having had sig-
nificant contact with A. E might also be deemed as such
depending on how long he maintains proximity with A,
but the proximity of E with C need not be counted even if
E spends t > t0 in contact with C (if only primary contacts
are traced) unless C reports as being infected too.

This method of automated contact tracing will work as long
as A and C (and possibly E) are enrolled in the service even if
B and D are not. However, D is completely isolated and by
remaining so for a long time is observing social distancing
from any other individual. B is representative of an individual
who observes partial social distancing. Hence, forD this service
is not necessary and for B it is of limited value. If C is not
enrolled in the service C will never get notified if A gets
tested as infected. C might get confirmed as infected or
become an asymptomatic carrier and continue contaminating
others. If A does not enrol in this service then C never gets noti-
fied leading to the same conclusions but E might get notified if
C declares being infected and E is enrolled in the service.

An estimated 45% of person–person virus transmissions
occur from individuals who are in the presymptomatic
phase [34]. Prevalence of subclinical infections of SARS-
CoV-2 further reduces the effectiveness of contact tracing.
With automated contact tracing using a definition of r0 = 2
m and t0 = 15 min more than 80% of the cases can be traced
[33] if every infected case is reported. In what follows, we
create a simplified model of automated contact tracing to
deduce the minimum fraction of the population that needs
to enrol in the programme for it to be effective.
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— Let N be the number of individuals in a population and fi
the fraction of the population that is infected, regardless
of whether they know it or not. Therefore, the true
number of infected individuals is fi N.

— If testing is conducted only whenmild or severe symptoms
are seen (i.e. excluding testing of asymptomatic cases), the
number of confirmed cases is rcfi Nwith rc being the fraction
of the infected that will be confirmed as infected by testing.

— Wedefine fe as the fraction of the population that is enrolled
for automated contact tracing and fc as the fraction of the
users that will confirm that they have been diagnosed posi-
tive. Hence, the number of individuals that have tested
positive, are using automated contact tracing and will con-
firm that they have been tested as infected is fcfercfiN.

— We define ac as the average number of individuals that a
contagious individual has significant contact with over
the period in which they are contagious, significant contact
being defined as lasting for a period of time greater than t0
andwithin a radius of r0. The period overwhich an individ-
ual is contagious is about 5 days on an average for those
who spread the disease in the presymptomatic phase and
can be longer for asymptomatic and sub-clinical cases [41].

Since only fe fraction of contacts are using the service, we can
estimate the number of individuals that can be traced as
fcfercfiNacfe. Note that we assumed fe and fc are uniform even
though rcfiN is not a random sample of the overall population
with the purpose of estimating thenumber in themost conserva-
tive scenario. In the real world, fewill be likely lower among the
set of individuals that actually get infected (and their immediate
contacts) and higher in the conjugate set due to different levels of
caution exercisedby the twogroups,which, in turn, results in the
decrease of the number of traceable contacts.5

To compute the number of individuals that need to be
quarantined or isolated since they are now at risk of being
infected from coming in contact with a contagious person,
we define the following.

— Since pt is defined as the probability of transmission of
infection within the proximity radius r0 being exposed
for a time greater than t0, the number of individuals
who are potentially newly infected is, on average,
ptfiNac, i.e. pt multiplied by the number of contacts of
the group of infected individuals.6

— Finally, we define fT as the fraction of the individuals at
risk of being infected that needs to be successfully quar-
antined to quell the spread of the pathogen. In addition
to other factors, fT also depends on the delay in isolating
potentially infected individuals [34].

Therefore, the number of individuals that should be
quarantined is fTptfiNac. For automated contact tracing to
work effectively, we have,

f2e fcrcfiNac � fTptfiNac: (3:1)
4. The game of big numbers
Equation (3.1) simply states that the number of individuals that
can be notified by automated contact tracing (on the left-hand
side) has to be greater than or equal to the number of individ-
uals who need to be notified (on the right-hand side). Note
that ac, the average number of contacts, drops out of the
inequality and hence, the inequality is independent of the
population density of the region since equation (3.1) is in
terms of fraction of the population and not the absolute
number of individuals. This simply implies that in a region
of denser population a larger number of people need to be
contacted and quarantined but leaves fe independent of the
population density. Since the right-hand side is the minimum
fraction of the population that needs to be traced we arrive at

fmin
e ¼

ffiffiffiffiffiffiffiffiffi
fTpt
fcrc

s
: (4:1)

The fraction fmin
e is the minimum fraction of the population

that needs to be enrolled in automated contact tracing for it
to be effective as a means of slowing down the spread of the
pandemic. In equation (4.1), pt depends on the spreading
dynamics of the pathogen determined by individual-to-
individual interactions and, therefore, also depends on the
mitigating measures taken at both the population level and
the individual level. Naively, in automated contact tracing, pt
is taken as one if the contact has lasted for over time t0 with
the subjects being less than r0 apart. This can be reduced by
use of PPE or other mitigation methods as we discuss later.
The parameter fT depends on the disease spreading dynamics
and can be estimated from modelling the disease spreading
among a population [34]. From both Hellewell et al. [31] and
Ferretti et al. [34], it is seen that 60–80% of the contacts need
to be successfully traced and quarantined instantly to contain
the outbreak over a period of time which makes fT∼ 0.6−0.8.
The slower the response to the identification of contact at
risk higher is fT for the same reduction rate of the reproduction
number. We assume that identification of contact at risk takes
less than a day in automated contact tracing. The parameter rc
is governed by the ability to identify infected individuals
through testing and depends on the protocols of the testing
programme and its coverage. On the other hand, fc is deter-
mined solely by the degree to which individuals are willing
and able to confirm that they have been tested positive.

Let us examine the limit pt = fc = rc = 1. This is the limit
where every significant contact is assumed to be at risk,
everyone who is enrolled in the automated contact tracing
programme reports as infected when tested positive and
every infected individual can be successfully identified by
testing. Then we arrive at the relation fmin

e ¼ ffiffiffiffiffi
fT

p
(blue

dotted line in the third from left panel of figure 2). Since fT
is the fraction of contacts that need to be successfully isolated,
it can be extracted from the abscissa of fig. 3 of ref. [34]. For
example, if 100% of the infected cases can be isolated, then for
a change in the epidemic growth rate by −0.1, one needs
fT � 60%. Hence fmin

e � 77%. It is intuitive that fmin
e scales

as the square root of fT since both the infected and the contact
at risk need to be enrolled and the probability that each are
enrolled is fe leading to fT / f2e . It gives the threshold which
fmin
e cannot exceed for any given fT.

Lastly, we define the effectiveness of the automated
contact tracing, η, as the ratio of the actual number of individ-
uals that will be notified (f2e fcrcfiNac) to the minimum number
of individuals that should be notified to quell the spread of
the disease ( fmin

e
2fcrcfiNac) and get

h ;
f2e

fmin
e

2 : (4:2)
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Figure 2. Percentage of the population that needs to be enrolled (fmine ) for automated contact tracing to be successful. Starting from the left, the solid and dashed
lines represent fc ¼ 100%, 80%, respectively, for the first panel, pt ¼ 35%, 15% for the second panel, rc ¼ 75%, 95% for the third panel and fT ¼ 50%, 90%
for the fourth panel. For the left two panels, the fraction of truly infected individuals that will be confirmed as infected by testing, rc is varied between 75% and
95%. For the right two panels, the fraction of people who will confirm they have been tested as infected if they are enrolled, fc is varied between 70% and 90%.
Three cases for the minimum fraction of the individuals at risk that need to be traced are considered with fT ¼ 50%, 70%, 90% in orange, green and red, respect-
ively, in the left two panels and similarly, three cases are considered for pt ¼ 15%, 25%, 35% in the right two panels. The blue dotted line in the third panel from
the left gives the threshold variation of fmine with fT when all other parameters are set to 1. The y-axes are identical for all panels. See text for more details.
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Figure 2 depicts how the fraction of the population that
needs to be enrolled for the automated contact tracing pro-
gramme to be successful (fmin

e ) varies with the four
factorized parameters. In the left-most panel of figure 2, we
show the minimum percentage of the population that needs
to be enrolled in automated contact tracing fmin

e (in %)
versus the transmission probability pt. We consider two
values for fc ¼ 80%, 100%, the fraction of individuals who
test positive and will confirm their symptoms to trigger auto-
mated contact tracing, by the solid and dashed lines,
respectively. The solid and dashed lines represent pt ¼ 15%,
25%, respectively. The bands are generated by varying the
fraction of infected individuals that can be confirmed as
infected by testing, rc, between 75% and 90%. The other
panels show the variation of fmin

e with fc, fT and rc.
If we take a closer look at equation (3.1) and the left-most

panel of figure 2 we see that even with a modest probability
of transmission pt (e.g. about 30%) quite a large fraction of the
population (about 40–60%) needs to be enrolled in automated
contact tracing even when we assume almost all of them will
be actively participating in confirming when they get
infected. Assuming all the traced contacts within radius r0
lasting for more than t0 period of time are going to be infected
is equivalent to stating pt ¼ 100%. From the panel on the
right, we can see how a fall in the fraction of individuals
that confirm that they are infected, fc, can increase fmin

e .
Even with quite low values of pt nearly half the population
needs to be enrolled in automated contact tracing.
Let us try to understand why the effectiveness of auto-
mated contact tracing seems to drop so drastically with the
enrolment fraction fe. From the left-hand side of equation
(3.1), we see that the effectiveness of automated contact tra-
cing drops as f2e . We see that η drops to 64% when
fe ¼ 0:8fmin

e and 25% when fe ¼ 0:5fmin
e . This nonlinearity

exists because fe not only reduces the number of infected indi-
viduals who can report their status but also the number of
individuals who can receive a notification that they have
come in contact with an infected person. The primary
reason behind this is the fact that the automated contact tra-
cing depends on voluntary participation whereas manual
contact tracing or the use of CCTV, credit card information
or identity logging at visited location to trace contact are
not voluntary in their current form of implementation.7

Furthermore, as seen in figure 2, when the percentage of
infected individuals who report that they have been tested as
infected, fc, is lower than 100%, automated contact tracing
becomes even less effective. In addition, the percentage of
cases that can actually be detected, rc, will realistically be less
than 100% for SARS-CoV-2 because of the prevalence of subcli-
nical cases that will escape detection and other clinical factors.
5. Assisted contact tracing
The necessary scale of implementation of automated contact
tracing appears to be too large for it to be considered an
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effective measure to slow down the ongoing pandemic. For
automated contact tracing to be a viable option, fmin

e has to
be as low as possible. To achieve this either the product fTpt
needs to be decreased or the product fcrc needs to be
increased as seen from equation (4.1).

— Both fT and ptdepend on the dynamics of the disease spread-
ing among humans. The fraction of traced cases that need to
be quarantined to stop the spread of the disease fT can be
reduced by extensive monitoring of the disease to make
sure infected cases are isolated as soon as possible and
their contacts are traced. Even a day or two of delays can
increase fTmaking automated contact tracing ineffective [34].

— Variations in pt can be caused by several factors some of
which are controllable. Since pt depends on the conta-
giousness of the disease and any protective measures
taken against the spread of the infection, pt can be
reduced by measures of limited social distancing, the
use of PPE and raising public awareness about the conta-
giousness of COVID-19. This can pose a significant
challenge in densely populated regions and regions
with poor living conditions and might lead to the break-
down of the applicability of automated contact tracing.

— fc is somewhatmore difficult to control assuming the report-
ing of thosewho are confirmed as infected is voluntary. This
can only be increased by increasing the population’s will-
ingness to contribute to automated contact tracing.

— rc is the parameter that is least under control since without
very large-scale testing, asymptomatic andmildly sympto-
matic cases will be difficult to find. This is especially true if
the infection can spread by means other than proximity
alone as might be the case for SARS-CoV-2 [15,18,19].

Thus we see that a combination of several measures along
with a large participation of the population in contact tracing
would be the optimal solution for avoiding extensive popu-
lation-wide social distancing measures and reducing the
cost to the economy and well-being of a nation and also
allow for greater freedom of movement during a pandemic.
6. Discussion
In ouranalysis,wehave inclined towards anoptimistic picture of
the spread of SAR-CoV-2. We have considered only spreading
due to proximity and not considered other means of spreading
like contaminated surfaces and aerosol that are common for
SARS-CoV-2 [15,18,19] and can increase pt. In figure 2, we
have taken a minimum rc of 75% when this can be even lower
if widespread testing is not conducted to identify subclinical
cases that can goundetected.Wehave also neglected the require-
ment for tracing secondary or tertiary contacts. In addition, we
have also ignored events where a large number of individuals
are infected in very a crowded location like public events for
which thresholds like r0 and t0 need to be modified. Despite
this optimistic picture, our analysis shows that a majority of
the population has to enrol and activelyparticipate in automated
contact tracing for the measure to work in the absence of active
social distancing measures.

We have not addressed the sociological aspect of selection
bias in the enrolment process. Diversity in socio-economic con-
ditions, awareness of technology and willingness to participate
in a community effort will create variation in representations
among the population. This can lead to the most vulnerable in
society getting the least benefit from the implementation of
automated contact tracing. Addressing the challenges of imple-
menting automated contact tracing indevelopingnationswhere
the necessary technologies might not be accessible to a large
fraction of the population lies beyond the scope of this work.

We have shown that in real-world scenarios, automated con-
tact tracing alone cannot contain a pandemic driven by a
pathogen like the SARS-CoV-2. Advocating it as such can lead
to exasperating the spread of the pathogen. The primary reasons
why such a strategy will not work as effectively as projected for
SARS-CoV-2 is because of a large degree of spreading from pre-
symptomatic and subclinical hosts, and the rapidity with which
the virus spreads through proximity alone if no additional
measures are taken to mitigate the spread. All of these conju-
gated with the vulnerability of automated contact tracing to
insufficient sampling due to limited participation among the
population and possibly incomplete reporting of infected cases
will lead to reduction in the efficacy of automated contact tra-
cing. A small fraction of the population being infected with
SARS-CoV-2 can quickly lead to a majority of the population
being needed to participate in the programme.

We put together all the factors of concern and show that
they follow a simple relationship. We further discussed how
factors like the transmission probability pt should be reduced
and the fraction of infected individuals that test positive, rc,
should be increased to assist in reducing the burden on auto-
mated contact tracing while keeping the entire process
voluntary. The strength of our model lies in the fact that we
separate the various parameters that individually contribute
to the efficacy of automated contact tracing. This allows for
each parameter to be addressed individually through
improved clinical intervention, logistics, mitigation strategies
and public awareness of automated contact tracing to increase
adoption of the method. While our focus in this paper is to
address the feasibility of automated contact tracing for contain-
ing the spread of SARS-CoV-2, equation (4.1) can be applied
for using automated contact tracing to contain other pathogens
too. Our analysis is also independent of the methods of
implementation of automated contact tracing and the defi-
nitions of r0 and t0. Therefore, our approach is quite general.

During the final stages of this work, a similar result was
reached by the authors of [42] using a branching process
model and arguments from statistical mechanics. They
reached a similar conclusion as we do in our paper showing
that nearly 75% to 95% of the population need to participate
in automated contact tracing for it to be effective. The results
in their work corresponds to ours when pt = fc = rc = 1 or
fe ¼

ffiffiffiffiffi
fT

p
. A more informed approach based to contact tracing

has also been suggested which leads to a lower fraction of the
population needing to be enrolled based on a probabilistic
model disease spread [43].

The trust in contact tracing stems from the effectivenesswith
which it was used to contain pathogens like Ebola, SARS-CoV
and MERS-CoV. However, the dynamics of the spread of
SARS-CoV-2 is very different from these pathogens. Hence,
the effectiveness of contact tracing in stopping the spread of
these pathogens should not be seen as a validation of the effec-
tiveness of automated contact tracing for SARS-CoV-2. Tomake
automated contact tracing work, a majority of the population
has to enrol for this service and actively participate in it. If this
cannot be established then other measures of mitigating the
spread of SARS-CoV-2 should be implemented in addition.
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As can be seen by the success of several nations in containing
the spread of COVID-19, only a judicious combination of
contact tracing with measures such as partial social distancing,
wideuse ofPPEanddisseminationof informationabout thedis-
ease can prove to be effective in slowing down the spread of the
ongoing pandemic.
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Endnotes
1One study suggested that MERS-CoV can be transmitted before the
onset of symptoms [12].
2Much higher reproductive rates have also been estimated with data
from Wuhan, China [28]. In general, there are variabilities in the esti-
mation of the reproduction number with time and containment
strategies [29].
3cf. https://www.cdc.gov/coronavirus/2019-ncov/php/contact-tra-
cing/contact-tracing-plan/contact-tracing.html
4This assumption is to mimic how automated contact tracing is
implemented through mobile devices where the probability of infec-
tion is not considered as variation depending on distance between
two users as long as it is closer than a physical proximity threshold
set by the contact tracing. In addition, pt as a function of distance is
not very well known as yet.
5The variations in fe within different demographic groups are not
accounted for in our work and this can potentially be correlated
with the way the disease spreads. Here, fe is the fraction of the
whole population that continuously use the service. Accounting for
these variations within our model is possible but requires more data.
6Here, we make a simplifying assumption that the disease has spread
to only a small fraction of the population and the probability of a
single healthy individual to randomly have significant contact with
two contagious individuals in a period of 14 days is negligibly
small in general. There will be outliers depending on the habits of
individuals but we can neglect them for this analysis.
7These effectively makes fe close to 100% for both those who have
been diagnosed as infected and their contacts.
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