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Abstract: The proximal fracture of the femur and hip is the most common reason for hospitalization in
orthopedic departments. In Italy, 115,989 hip-replacement surgeries were performed in 2019, showing
the economic relevance of studying this type of procedure. This study analyzed the data relating to
patients who underwent hip-replacement surgery in the years 2010–2020 at the “San Giovanni di
Dio e Ruggi d’Aragona” University Hospital of Salerno. The multiple linear regression (MLR) model
and regression and classification algorithms were implemented in order to predict the total length of
stay (LOS). Lastly, using a statistical analysis, the impact of COVID-19 was evaluated. The results
obtained from the regression analysis showed that the best model was MLR, with an R2 value of
0.616, compared with XGBoost, Gradient-Boosted Tree, and Random Forest, with R2 values of 0.552,
0.543, and 0.448, respectively. The t-test showed that the variables that most influenced the LOS,
with the exception of pre-operative LOS, were gender, age, anemia, fracture/dislocation, and urinary
disorders. Among the classification algorithms, the best result was obtained with Random Forest,
with a sensitivity of the longest LOS of over 89%. In terms of the overall accuracy, Random Forest
and Gradient-Boosted Tree achieved a value of 71.76% and an error of 28.24%, followed by Decision
Tree, with an accuracy of 71.13% and an error of 28.87%, and, finally, Support Vector Machine, with
an accuracy of 65.06% and an error of 34.94%. A significant difference in cardiovascular disease,
fracture/dislocation, and post-operative LOS variables was shown by the chi-squared test and
Mann–Whitney test in the comparison between 2019 (before COVID-19) and 2020 (in full pandemic
emergency conditions).

Keywords: data mining; length of stay; hip

1. Introduction

The proximal fracture of the femur and hip is the most common reason for hospital-
ization in orthopedic departments. Hip fractures put patients at risk of cardiovascular,
pulmonary, thrombotic, infectious, and bleeding complications that can lead to death [1].
The only strategy to prevent immediate negative outcomes is to proceed in a timely manner
with surgery. Despite the procedure, however, patients experience increased mortality,
health complications, and reduced quality of life [2–4].

Although hip fractures account for less than 20% of all osteoporosis-associated frac-
tures [5], considered second only to cardiovascular disease by the World Health Orga-
nization [6], they are often used as an indicator of the health of the population and to
evaluate the economic impact of this condition. In fact, they account for the majority of
morbidity-related and mortality-related health expenditure in men and women over the
age of 50 [7,8]. Specifically, globally, 1.3 million fractures were reported in the year 1990,
and this figure is estimated to reach 7–21 million by 2050, with an associated expenditure
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that will reach 9.8 billion USD in the United States and 650 million CAD in Canada [9,10].
These data are associated with the demographic trend, in recent years, of increasing life
expectancy, which has changed the age profile of the population. For example, in Italy, the
reference country for this study, an increase in life expectancy has been observed in recent
years, reaching 79.7 years for men and 84.4 for women [11], with a consequent increase
in chronic and degenerative diseases. In the country, about half of the population over 65
has degenerative pathologies of an arthritic nature, with a high impact on motor ability,
thus making prosthetic interventions in the orthopedic field among the most frequently
performed. In particular, an increase in hip-replacement surgeries (whose elective share
amounts to about 2/3) the last five years was recorded, from 104,425 in 2015 to 115,989
in 2019 (+11.1%). In 2020, due to the COVID-19 pandemic, with containment measures
such as lockdown and the blocking of elective surgery, there was a marked decrease in
the number of cases (N = 96,822), which was quantifiable as 19,167 fewer hospitalizations
(−16.5%) compared to the previous year, and a reduction compared to the previous trend
figure, which reached 18% (a value corresponding to approximately 21 thousand fewer
hospitalizations than expected) [12].

A health care process that involves an increasing number of patients and is transversal,
especially when considering patients who are admitted for traumatic fractures [9], must
involve effectiveness and efficiency controls to improve not only patient outcomes, but also
to ensure the proper use of resources.

A widely used indicator in the literature is the length of stay (LOS). The LOS is
an important performance indicator of hospital costs and management. An unnecessary
increase in LOS, in addition to affecting resources, exposes patients to nosocomial infections
and functional decline [13].

With this in mind, the following work intends to investigate the LOS of patients
who underwent hip arthroplasty in the years 2010–2020 at “San Giovanni di Dio e Ruggi
d’Aragona” University Hospital of Salerno (Italy). This study was born as an extension
of a previous work [14], in which we analyzed a limited number of patients, included
in this study, and a limited number of variables. The aim is to build a valid predictive
model capable of determining the duration of bed occupancy, based on patients’ clinical
and demographic variables, and understanding which are the main factors that influence
the total LOS. Finally, the impact of COVID-19 on patients undergoing this procedure
is analyzed.

Related Works

Several studies use advanced data processing in order to support doctors in the
prevention, diagnosis, and treatment of diseases [15–21] or the management of hospital
resources [22–26]. In the orthopedic field, many articles study the performance associated
with the flow of patients who are admitted for fractures of the lower limbs. For example,
Lefaivre et al. determined the effect of delayed surgery on discharge times, in-hospital
death, the presence of major and minor medical complications, and the incidence of sores
in hip fracture patients. Bracy et al. [27], on the other hand, showed how the institution
of orthopedic–hospitalist comanagement (OHC) improves the efficiency of hip-fracture
management, as measured by inpatient LOS and time to surgery [28]. Fisher et al. have
shown how early mobilization helps reduce the total LOS [29]. With the aim of reducing
the total LOS, Fast Tracks were born, a combination of clinical and organizational factors
optimized to reduce convalescence and perioperative morbidity, including functional
recovery with a consequent reduction in hospitalizations. Husted et al. highlighted the
benefits of orthopedic Fast Track in Denmark [30].

Furthermore, in Italy, several studies were conducted to investigate the epidemiology
of the problem [31,32] and the choice of prostheses [33], and to improve the process.
Scala et al. analyzed how with a Lean Six Sigma approach, a reduction in the total LOS
of 39% is achieved for patients admitted with fractures of the femur [34]. Latessa et al.
instead used the same methodology to implement Fast Track, with a statistically significant
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reduction of 12.7% in the LOS [35]. Although there are studies at national and international
level that use predictive algorithms for the study of the total LOS [36–39], there are no other
studies in the literature that analyze hip fractures in a large number of patients, including
multiple clinical variables and the impact of COVID-19. The hypothesis of this paper is
that particular clinical conditions or patient demographics may have a significant impact
on LOS and on which healthcare management needs to focus more, to achieve benefits
including cost containment considerations. In addition, the COVID-19 pandemic, with all
the protocols put in place, may have further affected the process under consideration.

2. Materials and Methods

This study analyzed the data relating to patients who underwent hip-replacement
surgery in the years 2010–2020 at the “San Giovanni di Dio e Ruggi d’Aragona” University
Hospital of Salerno (Italy). Specifically, all patients who had hip surgery as their primary
procedure were selected, with the following ICD-9 codes:

• 8151: total hip replacement,
• 8152: partial hip replacement,
• 8153: revision hip replacement

Using the hospital discharge forms, the following information was extracted for the
2515 patients included in the study:

• Age,
• Gender (Male/Female),
• Date of admission, discharge, and principal procedure,
• Main and secondary diagnoses,

Starting from this information, the following independent variables were obtained:

• Gender,
• Age,
• Pre-Operative LOS,
• Diabetes (yes/no),
• Hypertension (yes/no),
• Obesity (yes/no),
• Anemia (yes/no),
• Vitamin D deficiency (yes/no),
• Tumor (yes/no),
• Fracture/Dislocation (yes/no),
• Brain disorders (yes/no),
• Urinary disorders (yes/no),
• Cardiovascular disease (yes/no),
• Respiratory disease (yes/no),
• Anticoagulant therapy (yes/no).

Our data, provided by the Hospital’s Health Department, are completely anonymous,
and no personal information is linked or linkable to a specific person. The output is the
total LOS in days obtained as the difference between the date of discharge and date of
admission. All clinical variables were obtained by analyzing the main and secondary
diagnoses reported in the discharge form. Therefore, without a detailed characterization
of the clinical picture of each patient, the variables simply indicate the presence (1 Yes) or
absence (0 No) of conditions related to that comorbidity. The variable Fracture/Luxation
makes it possible to differentiate the proportion of elderly patients who underwent elective
surgery from those who suffered a traumatic event.

Figure 1 shows the distribution of all the variables in the dataset.
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Figure 1. Distribution of the features in the dataset.

2.1. Regression and Classification Models

The 15 variables defined above (i.e., gender, age, pre-operative LOS, diabetes, hyper-
tension, obesity, anemia, vitamin D deficiency, tumor, fracture/dislocation, brain disorders,
urinary disorders, cardiovascular disease, respiratory disease, and anticoagulant therapy)
were used as inputs for the study of total LOS, i.e., the output. The first processing in-
volved the implementation of the MLR model. To this end, IBM SPSS Statistics Version 26.0
software (IBM Corp., Armonk, NY, USA) was used. This software was also used to verify
all the preliminary hypotheses on residuals, autocorrelation, the presence of outliers, and
the multicollinearity. After this first processing, further regressive algorithms were used,
i.e., Random Forest RF, Gradient-Boosted Tree GBT, XGBoost, and Linear Regression LR.
RF is a supervised-learning algorithm in which multiple learning algorithms are combined
to improve performance. Although it can produce an overfitting, the resulting model is
accurate and powerful. GBT is a non-parametric statistical learning algorithm used for
both classification and regression problems. As RF, the decision model produced is a set
of simple forecasting models, typically decision trees, which are progressively added to
each step to improve the result obtained by the previous Weak Learner. The Decision Tree
(DT) is a tree-like decision model where the target value is predicted by simple decision
rules identified from the data. DTs are simple to understand and require little data prepa-
ration, but its disadvantages include overfitting and the creation of biased trees if some
classes dominate. XGBoost algorithm is a gradient-boosting algorithm, built through the
progressive addition of decision trees in order to improve the performance of the previous
tree. In addition, models are fitted using any arbitrary differentiable loss function and
gradient descent optimization algorithm. This gives the technique its name, “gradient
boosting”, since the loss gradient is minimized as the model is fit, in a similar manner to a
neural network. LR is a model that assumes a linear relationship between output and input.
Different techniques can be used to prepare or train the linear regression equation from
data, the most common of which is called Ordinary Least Squares. Learning, in this case,
means estimating the value to be attributed to the coefficients, starting from the available
data. Next, the classification algorithms, i.e., Random Forest (RF), Decision Tree (DT),
Gradient-Boosted Tree (GBT), and Support Vector Machine (SVM) were implemented. SVM
algorithm finds a hyperplane in an N-dimensional space (N—the number of features) that
has a maximum margin, i.e., the maximum distance between data points of both classes.
To this end, a loss function is used. SVM is effective in high dimensional spaces but it does
not directly provide probability estimates. The other algorithms are defined above. This
second part was developed with Knime Analytics Platform. For all algorithms, the dataset
was broken down into training set and test set, at 80% and 20%, respectively.
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2.2. Statistical Analysis

To analyze the impact of COVID-19 on the sample under examination, two sub-groups
were extracted:

• Group 1: Patients discharged in 2019 and, therefore, before COVID-19.
• Group 2: Patients discharged in 2020 in full pandemic.

Statistical tests were implemented to identify any differences in the two groups. Before
proceeding with the selection of the statistical tests, the Kolmogorov–Smirnov test was
performed which showed the non-normality of the two distributions. For this reason, the
Mann–Whitney U (MW) and chi-squared test with a 95% confidence interval were used.

3. Results

Preliminary to the elaboration, the hypotheses underlying the implementation of
the MLR model were verified. The Durbin–Watson test had an output of 1.934. The test
always has a value ranging between 0 and 4. A value of 2.0 indicated that there was no
autocorrelation detected in the sample. Continuing with the analysis of the residuals,
from the graph showing “standardized expected value regression” on the x-axis against
“standardized residual regression”, shown in Figure 2, a random distribution around zero
was observed, which supported the hypothesis of homoscedasticity. The residuals therefore
had a constant variance.
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Figure 2. Homoscedasticity of the data.

Concluding the residual analysis, the Quartile–Quartile plot (Q–Q plot) presented in
Figure 3 was used to evaluate the distribution trend. If the two sets came from a population
with the same distribution, the points were expected to fall approximately along this
reference line. The greater the departure from this reference line, the greater the evidence
for the conclusion that the two data sets came from populations with different distributions.
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Although the curve did not exactly retrace the ideal line, the slight variation did not
affect the good performance of the model.

Before implementing the model, the absence of multicollinearity was tested using the
Pearson correlation and the tolerance and variance inflation factor (VIF), while the presence
of outliers was determined through the calculation of Cook’s distance. Table 1 shows the
results of the Pearson correlation.

The results of the Pearson correlation showed that the LOS had the highest correlation
with the pre-operative LOS, included by definition in LOS, while for the other variables,
the correlation was always lower than 0.7.

For the tolerance and VIF, the former always assumed a value greater than 0.2, while
the latter was always less than 10, suggesting the absence of multicollinearity. Lastly,
Cook’s distance was always less than 1.

Having verified the hypotheses, the MLR model was implemented.
Table 2 shows an R2 value just above the 0.5 threshold, showing that it was quite

representative of the specific case study. Table 3 shows the details of the coefficients and
the t-test applied to the variables with a significance of 95%.

The results of the t-test highlighted that gender, age, pre-operative LOS, anemia,
fracture/dislocation, and urinary disorders were significantly correlated with the total
LOS. Standardized coefficients help to compare the effect of each individual independent
variable to the dependent variable. In this case, assuming the value 0 when comorbidities
were absent, a patient with anemia conditioned the dependent variable more by having
the highest beta coefficient associated with it, if the pre-operative LOS was excluded. In
addition, according to the beta column, women (gender: 1 male/2 female) with advanced
age, as this was a continuous variable, significantly influenced the dependent variable of
the model.
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Table 1. Pearson correlation.
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LOS 1.000 0.054 0.137 0.772 −0.027 −0.104 −0.023 0.049 −0.054 0.069 0.248 −0.009 0.046 0.109 0.024 0.002

Gender 0.054 1.000 0.182 −0.010 −0.008 0.080 0.029 0.104 0.040 −0.008 0.055 0.011 −0.035 −0.016 −0.085 −0.029

Age 0.137 0.182 1.000 .088 0.060 0.189 −0.018 0.126 0.115 −0.005 0.095 0.119 0.077 0.218 0.054 0.064

Pre-operative LOS 0.772 −0.010 0.088 1.000 −0.064 −0.161 −0.022 −0.064 −0.101 0.072 0.260 −0.019 0.005 0.078 −0.002 −0.008

Diabetes −0.027 −0.008 0.060 −0.064 1.000 0.202 −0.020 0.090 0.036 0.052 −0.024 0.028 0.033 0.066 0.079 0.068

Hypertension −0.104 0.080 0.189 −0.161 0.202 1.000 0.062 0.174 0.130 −0.039 −0.142 0.058 0.062 0.177 0.112 0.066

Obesity −0.023 0.029 −0.018 −0.022 −0.020 0.062 1.000 0.007 −0.011 −0.006 −0.031 −0.019 0.028 0.004 −0.014 0.031

Anemia 0.049 0.104 0.126 −0.064 0.090 0.174 0.007 1.000 0.154 0.033 −0.029 0.090 0.089 0.063 0.055 0.066

Vitamin D deficiency −0.054 0.040 0.115 −0.101 0.036 0.130 −0.011 0.154 1.000 0.001 −0.052 0.125 0.005 0.072 0.083 0.024

Tumor 0.069 −0.008 −0.005 0.072 0.052 −0.039 −0.006 0.033 0.001 1.000 0.017 0.004 0.024 0.042 0.105 −0.018

Fracture/Dislocation 0.248 0.055 0.095 0.260 −0.024 −0.142 −0.031 −0.029 −0.052 0.017 1.000 −0.041 −0.019 0.202 −0.042 −0.050

Brain disorders −0.009 0.011 0.119 −0.019 0.028 0.058 −0.019 0.090 0.125 0.004 −0.041 1.000 −0.018 0.040 0.038 0.014

Urinary disorders 0.046 −0.035 0.077 0.005 0.0033 0.062 0.028 0.089 0.005 0.024 −0.019 −0.018 1.000 0.067 0.008 0.027

Cardiovascular disease 0.109 −0.016 0.218 0.078 0.066 0.177 0.004 0.063 0.072 0.042 0.202 0.040 0.067 1.000 0.040 0.183

Respiratory disease 0.024 −0.085 0.054 −0.002 0.079 0.112 −0.014 0.055 0.083 0.105 −0.042 0.038 0.008 0.040 1.000 0.025

Anticoagulant therapy 0.002 −0.029 0.064 −0.008 0.068 0.066 0.031 0.066 0.024 −0.018 −0.050 0.014 0.027 0.183 0.025 1.000

Sig. (1-tailed)

LOS 0.003 0.000 0.000 0.089 0.000 0.120 0.007 0.003 0.000 0.000 0.326 0.011 0.000 0.110 0.465

Gender 0.003 0.000 0.308 0.341 0.000 0.071 0.000 0.023 0.340 0.003 0.284 0.040 0.218 0.000 0.071

Age 0.000 0.000 0.000 0.001 0.000 0.190 0.000 0.000 0.402 0.000 0.000 0.000 0.000 0.004 0.001

Pre-operative LOS 0.000 0.308 0.000 0.001 0.000 0.132 0.001 0.000 0.000 0.000 0.177 0.394 0.000 0.451 0.352

Diabetes 0.089 0.341 0.001 0.001 0.000 0.160 0.000 0.036 0.005 0.117 0.082 0.048 0.000 0.000 0.000

Hypertension 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.026 0.000 0.002 0.001 0.000 0.000 0.000

Obesity 0.120 0.071 0.190 0.132 0.160 0.001 0.354 0.289 0.373 0.060 0.169 0.083 0.421 0.235 0.060
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Sig. (1-tailed)

Anemia 0.007 0.000 0.000 0.001 0.000 0.000 0.354 0.000 0.050 0.076 0.000 0.000 0.001 0.003 0.000

Vitamin D deficiency 0.003 0.023 0.000 0.000 0.036 0.000 0.289 0.000 0.482 0.005 0.000 0.392 0.000 0.000 0.114

Tumor 0.000 0.340 0.402 0.000 0.005 0.026 0.373 0.050 0.482 0.194 0.420 0.118 0.017 0.000 0.183

Fracture/dislocation 0.000 0.003 0.000 0.000 0.117 0.000 0.060 0.076 0.005 0.194 0.021 0.166 0.000 0.017 0.006

Brain disorders 0.326 0.284 0.000 0.177 0.082 0.002 0.169 0.000 0.000 0.420 0.021 0.189 0.022 0.028 0.236

Urinary disorders 0.011 0.040 0.000 0.394 0.048 0.001 0.083 0.000 0.392 0.118 0.166 0.189 0.000 0.352 0.090

Cardiovascular disease 0.000 0.218 0.000 0.000 0.000 0.000 0.421 0.001 0.000 0.017 0.000 0.022 0.000 0.022 0.000

Respiratory disease 0.110 0.000 0.004 0.451 0.000 0.000 0.235 0.003 0.000 0.000 0.017 0.028 0.352 0.022 0.107

Anticoagulant therapy 0.465 0.071 0.001 0.352 0.000 0.000 0.060 0.000 0.114 0.183 0.006 0.236 0.090 0.000 0.107
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Table 2. Multiple linear regression model.

R R2 Adjusted R2 Std. Error of the Estimate

Model 0.785 0.616 0.613 3.726

Table 3. Coefficients of MLR model.

Unstandardized Coefficients Standardized Coefficients
t p-Value

B Std. Error Beta

(Constant) 4.405 0.522 - 8.442 0.000

Gender 0.609 0.162 0.048 3.762 0.000

Age 0.020 0.007 0.040 2.960 0.003

Pre-operative LOS 1.011 0.017 0.760 57.908 0.000

Diabetes 0.221 0.257 0.011 0.862 0.389

Hypertension −0.166 0.178 −0.013 −0.933 0.351

Obesity −0.624 1.250 −0.006 −0.499 0.618

Anemia 1.130 0.173 0.084 6.537 0.000

Vitamin D deficiency 0.127 0.430 0.004 0.295 0.768

Tumor 0.328 0.705 0.006 0.465 0.642

Fracture/dislocation 0.593 0.196 0.040 3.020 0.003

Brain disorders −0.159 0.261 −0.008 −0.610 0.542

Urinary disorders 1.115 0.433 0.032 2.572 0.010

Cardiovascular disease 0.348 0.176 0.027 1.983 0.048

Respiratory disease 0.632 0.335 0.024 1.888 0.059

Anticoagulant therapy −0.116 0.470 −0.003 −0.248 0.804

In addition to the MLR model, further regression algorithms were tested. Table 4
shows the results obtained in terms of R2 and root mean squared error.

Table 4. Results of regression algorithms.

LR RF GBT XGBoost

R2 0.552 0.448 0.543 0.552

Root mean squared error 3.843 4.497 3.883 3.843

Among the algorithms, XGBoost and LR had the best performance, with an R2 value
of 0.552, followed by GBT, with 0.543, and, finally, RF, with 0.448. However, even the best
value of R2, obtained with XGBoost/LR, did not improve the performance of the MLR
model. The results obtained with the best algorithms used are shown in graphic form in
Figures 4 and 5.

After the regression models, four different classification algorithms were tested. For
implementation, the LOS was divided into three categories, as indicated below:

1. LOS ≤ 6 days.
2. 6 days < LOS ≤ 12 days.
3. LOS > 12 days.

Table 5 shows the results obtained.
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Table 5. Performance metrics of all selected algorithms.

Performance Metrics Class DT GBT RF SVM

Accuracy (%) Overall 71.13 71.76 71.76 65.06

Error (%) Overall 28.87 28.24 28.24 34.94

Precision (%)

1 65.35 69.49 55.04 63.46

2 61.58 60.93 80.68 61.29

3 89.19 89.66 75.14 67.69

Sensitivity (%)

1 64.34 63.57 76.34 76.74

2 71.02 74.43 59.17 32.39

3 76.30 75.14 89.66 89.60

Specificity (%)

1 87.39 89.68 84.94 83.67

2 74.17 72.19 85.71 88.08

3 94.75 95.08 87.09 75.74

F-measure (%)

1 64.84 66.40 63.96 69.47

2 65.96 67.01 68.27 42.38

3 82.24 81.76 81.76 77.11

With an accuracy of 71.76% and an error of 28.24%, RF and GBT had the best perfor-
mance, followed by DT, with an accuracy of 71.13% and an error of 28.87%, and, finally,
SVM, with an accuracy of 65.06% and an error of 34.94%. For all the algorithms, optimal
results were not achieved in all three categories. The results, however, showed a high
ability to predict longer LOS, which weigh heavily on healthcare costs. The details of the
classification for the best algorithm are shown in Table 6.

Table 6. Random Forest confusion matrix.

Real/Predicted 1 2 3

1 71 20 2

2 57 142 41

3 1 14 130

To analyze the global feature importance, a Global Surrogate Random Forest was used.
Global Surrogate Random Forest is a Random Forest model trained to approximate the
predictions of already implemented RF models. Random Forest is trained on standard
pre-processed input data with optimized parameters “tree depth”, “number of models,”
and “minimum child node size”. The surrogate model was trained successfully. Specifically,
focusing on class 3, that is, the one to which the longest stay corresponded, which was the
one that was of greatest relevance to health management, the model returned an accuracy
of 0.942, and the overall significance characteristic shown in Figure 6.

Among the variables that most affected the model from class 3, in accordance with the
specific procedure analyzed, excluding the pre-operative LOS, were age, fracture/dislocation
and vitamin D deficiency. Gender, anemia, and urinary disorders, which in the MLR model
were significantly related to total hospitalization, in this case, had a non-significant impact
and were included in the variable, other.

Lastly, the impact of COVID-19 on the model parameters was analyzed. Specifically,
the pre-COVID-19 (year 2019) and during-COVID-19 (year 2020) data were compared using
statistical analysis. The results are reported in Table 7.
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Table 7. Analysis of COVID-19 impact.

Variable 2019
N = 272

2020
N = 185 p-Value

Age

Mean 77.76 78.22 0.800

Gender

Male 88 59
0.918

Female 184 126

Pre-operative LOS

Mean 3.05 3.14 0.066

Post-operative LOS

Mean 7.70 7.09 0.040

Diabetes

No 233 155
0.582

Yes 39 30

Hypertension

No 159 101
0.413

Yes 113 84

Anemia

No 168 117
0.749

Yes 104 68

Obesity

No 268 185
0.098

Yes 4 0

Vitamin D deficiency

No 225 154 0.884

Yes 47 31

Tumor

No 264 180
0.880

Yes 8 5

Fracture/dislocation

No 262 142
0.000

Yes 10 43

Brain disorders

No 218 155
0.325

Yes 54 30

Urinary disorders

No 261 177
0.883

Yes 11 8

Cardiovascular disease

No 192 101
0.000

Yes 80 84

Anticoagulant therapy

No 257 178
0.396

Yes 15 7

Respiratory disease

No 243 174
0.080

Yes 29 11

LOS

Mean 10.75 10.22 0.240
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The statistical tests highlighted a significant difference in cardiovascular disease,
fracture/dislocation, and post-operative LOS.

4. Discussion

In this study, a set of variables was analyzed in order to be able to predict the LOS
for hip-replacement surgery. The analysis was conducted at “San Giovanni di Dio e Ruggi
d’Aragona” University Hospital of Salerno (Italy), analyzing the data recorded from 2010
to 2020.

4.1. Results of Regression and Classification Models

This work is an extension of a previous work, published by the same research group,
in which MLR and ML algorithms were used to investigate the LOS only for the years
2019–2020 [14]. Using this previous article as a reference, the same tools were used in this
study. The results obtained for the regression models showed that the best was MLR, with
an R2 value of 0.616, which was slightly lower than the previous result, of 0.687. The model
was therefore quite representative of the case study in which it was implemented. The
statistical test instead showed that the variables that most influence the model, with the
exception of the pre-operative LOS, which by, definition depends on it, were gender, age,
anemia, fracture/dislocation, and urinary disorders. This result was in line with those
previously reported in the literature. For example, Ricci et al. [40] and Latessa et al. [35]
highlighted a different LOS according to gender, while Scala et al. [34] showed an influence
of cardiovascular diseases. Husted et al. [41], on the other hand, showed that age, sex,
comorbidity, and pre- and post-operative hemoglobin levels influence post-operative out-
comes in general, including LOS and patient satisfaction, while Calgue et al. [42] showed
that significant effects are also due to the type of fracture.

The classification models did not show significant results for the three categories
envisaged by the work. With an accuracy of 71.76% and an error of 28.24%, RF and GBT
had the best performance, which did not reach the accuracy of over 83% obtained by GBT
in [14]. Although the model as a whole could not be validated, the confusion matrix showed
the high capacity of the model in predicting cases with LOS greater than 14 days. This is
strategically important for healthcare facilities, as these are the cases that have the greatest
impact on resource consumption and healthcare costs.
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4.2. COVID-19’s Impact

The impact of the SARS-CoV-2 pandemic on the sample was analyzed. Comparing
the same variables for the year 2019 (pre-COVID-19) and the year 2020 (during COVID-19),
the statistical tests highlighted a significant difference in terms of cardiovascular disease,
fracture/dislocation, and post-operative LOS. In particular, there was an increase in the
number of patients undergoing surgery with cardiovascular comorbidities or a diagnosis
of fracture/dislocation. This, unlike the results reported in the literature [35,41,42], did
not cause an increase in postoperative LOS, which actually decreased. This phenomenon
can be explained both by the protocols put in place to contain the pandemic and limit the
time spent in hospital and by the reduced number of beds, which were mostly dedicated to
COVID patients.

4.3. Uniqueness of the Present Study, Clinical Implications, and Limitations

The strength of the work is that it considers a large number of data and variables that
help to further characterize the sample, also including the changes caused by the pandemic.
The ability to understand which variables have the greatest impact on the LOS can help
healthcare managers to allocate resources or implement specific pathways, such as fast
tracks [30], for privileged access to treatment and the elimination of inefficiencies.

However, this work is not without limitations. In particular, the effect that multiple
procedures have on LOS is not considered, and the results cannot be generalized, since
this is a single-center study. In addition, variables that could be used to analyze the
socioeconomic status of the patients were not included, and the data source, hospital
discharge records, did not allow the precise characterization of the degree of severity of the
comorbidities studied.

5. Conclusions

In this study, the data of 2515 patients undergoing hip-replacement surgery at “San
Giovanni di Dio e Ruggi d’Aragona” University Hospital of Salerno (Italy) in the years
2010–2020 were processed using regression and classification models. Both elaborations
showed that the variables that most influenced the LOS were age and the presence of
fracture/dislocation. These results, together with the good performance of the models,
could be used by healthcare managers to create specific pathways, according to the age
or the main diagnoses that lead to interventions. This can help both bed management,
through LOS prediction and turnover planning, but also all other hospital resources. The
analysis of the impact of COVID-19, therefore, could be an important pointer to capture
the inadvertent positive effects of the pandemic from an organizational perspective, such
as the establishment of specific protocols that led to the effective and efficient use of
hospital facilities.

Future developments will include the implementation of additional data processing
and classification techniques, focusing in more detail on patients’ pathways and how they
have changed due to the pandemic. Furthermore, additional variables will be included in
the models in addition to the specific characterization of those already provided.
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