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Abstract

3D-domain swapping is one of the mechanisms of protein oligomerization and the proteins
exhibiting this phenomenon have many biological functions. These proteins, which undergo
domain swapping, have acquired much attention owing to their involvement in human dis-
eases, such as conformational diseases, amyloidosis, serpinopathies, proteionopathies
etc. Early realisation of proteins in the whole human genome that retain tendency to domain
swap will enable many aspects of disease control management. Predictive models were
developed by using machine learning approaches with an average accuracy of 78% (85.6%
of sensitivity, 87.5% of specificity and an MCC value of 0.72) to predict putative domain
swapping in protein sequences. These models were applied to many complete genomes
with special emphasis on the human genome. Nearly 44% of the protein sequences in the
human genome were predicted positive for domain swapping. Enrichment analysis was per-
formed on the positively predicted sequences from human genome for their domain distribu-
tion, disease association and functional importance based on Gene Ontology (GO).
Enrichment analysis was also performed to infer a better understanding of the functional
importance of these sequences. Finally, we developed hinge region prediction, in the given
putative domain swapped sequence, by using important physicochemical properties of
amino acids.

Introduction

Computational methods for classification, annotation and prediction of biologically important
questions are rapidly improving our knowledge of protein sequence-structure-function rela-
tionships. Detailed analysis of such relationships of protein improves our understanding of
sequence features and its role in different biological pathways and diseases. Understanding the
mechanism of protein oligomerization can influence many aspects of protein research such as
drug discovery. This will also add to the existing pool of knowledge regarding amyloid forma-
tion and aggregation-related diseases.

3D-domain swapping is one of the mechanisms of protein oligomerization and is also
known to be involved in protein aggregation processes. 3D-domain swapping was first
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reported as a mechanism of oligomerisation in RNase A by Crestfield and coworkers n 1962
after lyophilization in 50% acetic acid [1]. The term 3D-domain swapping was first introduced
in 1994, to explain a dimeric structure of diphtheria toxin protein [2]. In 3D-domain swapping,
intertwined dimeric or oligomeric structures are formed by exchanging a structural element or
complete domain of one of the monomeric units of the protein with the other. This exchange
of structural element or complete domain results in gain of intermolecular interactions at the
cost of similar intramolecular interactions. Peculiar characteristics of 3D-domain swapped
oligomers which differentiate it from other side-by-side oligomers are ‘swapped domain’ and
‘hinge region’, please see Fig 1 for detail (Fig 1). Swapped domain is a structural part of the
protein that gets exchanged between monomeric subunits, and this could be a whole globular
domain or a supersecondary structure. Non-swapped domain is the counterpart of the
swapped domain. The interface between swapped domain of one subunit and non-swapped
domain of another subunit is known as “swapped domain interface (SDI)”. The newly formed
interface between two non-swapped domains is referred as “non-swapped domain interface
(NSI)”. The region of the protein, which connects swapped domain with non-swapped domain,
is referred as the “hinge region”. Hinge region, being the most flexible region in the protein
structure, plays an important role in the mechanism of domain swapping as it allows the move-
ment of swapping domains. The hinge region mostly adopts loop conformation, but rarely also
found as secondary structures based on the composition of the amino acids present in the
hinge region sequences. There are several examples to show the importance of hinge region in
domain swapping: for instance, shortening of hinge region increases the propensity of domain
swapping by making it harder for the protein chain to fold back on itself [3]. Other condition
for increasing the probability of domain swapping is by introducing more flexibility into hinge
region either by mutation or by lengthening it. For example, in case of Chymotrypsin inhibitor
2, insertion of polyglutamine in the hinge region resulted in domain swapped dimer and higher
order oligomer formation [4].
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Fig 1. Cartoon representation of 3D-domain swapping. The region which connects the swapped domain
with non-swapped domain part of the protein is known as “hinge region” and is marked in dark red color.
There is a newly formed interface between non-domain swapped regions of the two monomeric units. The
domain swapped interface is present both in monomer and the domain swapped molecule.

doi:10.1371/journal.pone.0159627.g001
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Three classes of domain swapping viz., bonafide domain swapping (BDS), quasi-domain
swapping (QDS) and candidates for 3D-domain swapping (CDS) have been identified by
Eisenberg and others in 2002 [5]. Most important class is the bonafide domain swapping,
where a protein molecule exists in monomeric as well as in domain-swapped form e.g. Cyano-
virin-N is present as monomer [6] and also as a dimer [7]. Second class is the quasi-domain
swapping where a protein is present in the oligomeric form, but only its close monomeric
homologue (not its monomer) is present, e.g. human cystatin C dimer [8] and chicken cystatin
monomer [9]. The third class includes the candidates for 3D-domain swapping, in which pro-
tein structure of domain swapped form is present, but their monomers or monomeric homolo-
gous are not present, e.g. phosphoenol pyruvate mutase dimer [10].

3D-domain swapping is further classified on the basis of position of the swapping domain
in the protein structure into three groups viz., N-terminal domain swapping, C-terminal
domain swapping and the less common central domain swapping.

Collection of such protein structures which are involved in 3D-domain swapping in the
form of database is of great help to researchers for further analysis and detailed study of this
phenomenon [11]. To date, approximately >2000 crystal structures of 3D-domain-swapped
oligomers have been reported [12]. From the available literature, it is known that 3D-domain
swapped molecules have great biological significance in deposition diseases or conformational
diseases [13][14], involved in misfolding related diseases such as amyloidosis [15] [1], serino-
pathies [16] and proteinopathies [17]. 3D-domain swapping is also proved to be a mechanism
for regulating biological functions and as an evolutionary strategy to create protein complexes
[18].

In recent times, various computational and experimental studies were employed to under-
stand the mechanism of 3D-domain swapping in detail. Sequence and structural features were
used to predict 3D-domain swapping from protein sequence earlier [19]. 3D-domain swapping
events were predicted in protein sequences by using a SVM-based classifier derived from
sequence and structural features and an accuracy of 76.33 form training and 73.81 from test
data [20] were obtained. As we discussed the importance of the hinge region in domain swap-
ping, an attempt was made earlier by our group to identify the hinge region by using domain-
swapped oligomers and their homologous structures given their three-dimensional coordinates
[21]. A meta-analysis of a literature-curated dataset of human gene products, with structural
information and involved in 3D-domain swapping, was also performed earlier to obtain insight
about the functional repertoire, pathway associations and disease implications of proteins
involved in 3D-domain swapping [22].

Here, we present a computational approach towards prediction and genome-wide analysis
of 3D-domain swap protein from mere sequence information by using machine learning
approaches such as Random Forest (RF) [23] and support vector machine (SVM) classifier. RF
is used for the prediction, as a binary classifier, because of its ability to combine several random
decision trees and achieving a high rate of accuracy, and also since it can be effectively applied
to larger dataset. Further, RF and SVM models were used to classify the protein sequences at
the whole genome level of human and few other genomes into 3D-domain swapping and non
3D-domain swapping sequences. Positively predicted sequences from human genome were
analyzed in detail for their distribution at protein domain family level, biological pathways and
the involvement of these proteins in diseases.

Due to diverse structural, functional, structural and pharmaceutical implications, the pre-
diction of proteins with a potential to engage in 3D-domain swapping from mere sequence
information would be a great advantage in identifying plausible drug targets for therapeutic
control of such diseases. Technical limitations of structural elucidation of proteins at such high
number, and in higher oligomeric conformations by using crystallography or NMR
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experiments set the need to develop computational methods. In this work, we have restricted
our feature extraction only to sequence space and it is the first attempt of this kind. Finally, we
predict hinge regions for the domain-swapped proteins by using a sliding window approach
based on the peculiar physicochemical features of residues in the hinge region.

Results

3D-domain swapped protein molecules are often associated with aggregation diseases or pro-
teinopathies in humans. Till now, no comprehensive study has been reported to analyze pro-
teins involved in 3D-domain swapping from a genome-wide perspective. We have performed
the initial investigation of putative 3D-domain swapped proteins at the level of protein
domains, Gene Ontology, KEGG pathways and Disease Ontology.

Classification results by RF and SVM models

Training was performed on a dataset containing 2000 protein sequences comprising of positive
(1000) and negative (1000) datasets. We have performed five-fold cross validation on testing
dataset. The RF prediction model achieved an accuracy of 81.7% with 81.5% of sensitivity,
81.8% of specificity and a MCC value of 0.64. The SVM prediction model achieved an accuracy
of 73.9% with 61.9% of sensitivity, 85.9% of specificity and MCC value of 0.61 (Table 1). We
have also analyzed the problematic cases such as false positives and false negative ones. The
reasons for these cases of false positives and false negatives could be like: (1) central loop
swapped entries with missing residues, (2) small hinge region, (3) domain swapped oligomer
with elaborate interface or (4) intertwined domain swapped proteins and multiple hinge
regions. In case of central loop swapping with missing residues, multiple hinge regions are
involved and the swapped loop region exhibits majority of the characteristics of the hinge
region, posing severe challenge on the prediction. In another problematic case, where inter-
twined structure is present, multiple loops are present hence, it is hard to predict correctly.

Prediction results on well-known dataset of 3DSwap and human
aggregation-related proteins by RF and SVM models

Performance of prediction using an independent validation dataset of the well-known cases of
3D-domain swapping from 3DSwap database resulted in 100% accuracy (S1 Table). For
another dataset of 136 aggregation-related, reviewed human protein sequences from UNI-
PROT, 99 were predicted as positive for 3D-domain swapping. Out of 99 positively predicted
sequences, 50 have homologues in Protein Data Bank, with identity more than 90%, and 29
sequences have homologues of known structure with identity range of 30-90%. For the rest of
the 20 sequences, there are no homologues in the Protein Structural Databank. Sequences
which are predicted as domain swapping and have structural homologues were manually ana-
lyzed to confirm 3D-domain swapping in these structures.

Further analysis of these sequences reveals that 27 out of 99 sequences (3D-domain
swapped predicted sequences) are enzymes and 12 of them contain kinase domains. We also

Table 1. Prediction assessment of RF and SVM models on testing dataset.

S. No. Parameters RF SVM
1 Accuracy 81.7% 73.9%
2 Sensitivity 81.5% 61.9%
3 Specificity 81.8% 85.9%
4 MCC value 0.64 0.61

doi:10.1371/journal.pone.0159627.1001
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1 >90% 50

2 30-90% 29

3 <30% 8

4 Withoutany hit | 12

Fig 2. Workflow of 3D-domain swap prediction and analysis of aggregation-related sequences from the human genome. Out of 136
aggregation-related sequences, 99 were predicted as to be involved in domain swapping and its distribution in different Pfam domain families was
plotted in the pie chart. All the positively predicted sequences were searched for their structural homologues.

doi:10.1371/journal.pone.0159627.9002

analyzed the domain distribution of these positively predicted sequences (Fig 2). Pkc like
superfamily, also known as PKC, is most populated in this dataset. The members of PKC Pfam
family phosphorylate the hydroxyl groups of serine and threonine of other proteins and hence
control the function of these proteins. Ig superfamily is the second most populated Pfam pro-
tein family, followed by NBD sugar kinase, amongst the positively predicted protein sequences.

Prediction results on few of the non-model genomes from animal and
plant kingdoms

RF and SVM models were applied on five plant genomes and three non-plant genomes includ-
ing the human genome, for prediction of 3D-domain swapping. Common prediction results
from both the models range from a minimum of 15.5% in O. tenuiflorum to maximum of
44.2% for Homo sapiens (considering only reviewed genome sequences) (Table 2). Consensus

Table 2. 3D-domain swapping prediction results on different genomes.

S. Genomes Total reviewed Positive prediction by | Positive prediction by Consensus Positive prediction (RF and

No. sequences RF SVM SVM)

1 A. thaliana 12033 7694 (64%) 6330 (53%) 4058 (33.7%)

2 M. truncatula 186 48 (26%) 66 (35%) 39 (20.9%)

3 S. tumerosum | 400 208 (52%) 165 (41.3%) 146 (36.5%)

4 S. 423 183 (43%) 132 (31.2%) 108 (25.5%)
lycopersicum

5 O. tenuiflorum | 36841 9419 (26%) 7540 (21%) 5706 (15.5%)

6 M. tuberculosis | 421 229 (54.3%) 134 (31.8%) 119 (28.2%)

7 B. thuriensis 393 246 (62.5%) 199 (50.6%) 170 (43.3%)

8 H. sapiens 20247 11507 (56.7%) 12396 (61.2%) 8945 (44.2%)

doi:10.1371/journal.pone.0159627.1002
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positive predictions on few of the plant genomes used in this study are A. thaliana (33.7%), M.
truncatula (20.9%), S. tumerosum (36.5%), S. lycopersicum (25.5%), and O. tenuiflorum
(15.5%). Non-plant genomes on which these prediction models were applied are M. tuberculo-
sis (28.2%), B. thuriensis (43.3%) and H. sapiens (44.2%). The numbers in brackets represent
percentage of consensus positive domain swapping sequences.

Prediction results on the human proteome

We have performed 3D-domain swapping prediction on gene products in the human genome
for reviewed and unreviewed entries, separately. Out of 20,247 reviewed entries in the human
proteome, 57% of these (i.e., 11,507) are predicted as 3D-domain swapped by RF model and
61% (i.e., 12396) sequences are predicted as positive by SVM method, thereby identifying 44%
of the sequences which were predicted positive by both the methods. In case of the entire set
(reviewed and unreviewed) consisting of 115,830 sequences, 24% of these are predicted positive
for domain swapping.

Detailed analysis of 3D-domain swap predicted sequences of the human
proteome

In the case of sequences positively predicted sequences by both RF and SVM methods (44%), a
detailed analysis of the presence of domains was carried out and 2346 domain architectures were
observed. Domain distributions of these sequences were also examined and it was observed that
protein kinases, Immunoglobulin-like domain and cadherin domains are most populated (S2
Table). Other populated Pfam domain families in these sequences are shown in Fig 3A.

Further, these positively predicted sequences were enriched in 254 metabolic pathways. Pro-
tein ubiquitination and protein glycosylation pathways have a maximum number of sequences
from 3D-domain swap predicted dataset (Fig 3B). Top enriched 3D-domain swap predicted
sequences in different protein families were plotted (Fig 3C). Functional annotation and
enrichment analysis was performed by using Gene Ontology terms for biochemical activity
(Fig 4) and it resulted in 40 GO terms with fold enrichment ranging from 1.2 to 1.5 with signif-
icant E- values. The terms with maximum fold enrichment are cation channel activity
(GO:0005261), metal ion transmembrane transporter activity (GO:0046873), gated channel
activity (GO:0022836), ion channel activity (GO:0005216), ATPase activity (GO:0016887),
adenyl nucleotide binding (G0:0030554), adenyl ribonucleotide binding (GO:0032559), ATP
binding (GO:0005524), purine nucleoside binding (GO:0001883), nucleoside binding
(G0:0001882), protein serine/threonine kinase (GO:0004674) and substrate-specific channel
activity (GO:0022838).

For the disease association and biological pathway of these positively predicted sequences,
Reactome database was also consulted. The major diseases associated with the predicted
sequences are classified into 18 groups (Table 3), few of the most enriched groups based on Z-
score are abnormal metabolism in phenylketonuria (0.33), defects in vitamin and cofactor
metabolism (0.29), signaling by EGFR in cancer (0.26), disease associated with visual transduc-
tion (0.26), signaling in FGFR (0.25) etc. Surprisingly, Amyloidosis is not enriched in disease
association section in this dataset and it may be since our dataset contains only reviewed entries
from human proteome. Most of these entries are from signaling pathways leading to cancers.
Other possibility is that domain swapping is not strongly associated with amyloidosis. All the
biological pathways prevalent in this dataset are grouped into 34 biological pathways (Table 4).
Some highly prevalent pathways based on Z-score are reproduction (0.34), neuronal system
(0.30) and cell-cell communication (0.28). The full list of genes, enriched for Reactome terms
are available at http://caps.ncbs.res.in/download/Human_pred/reactome/
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Fig 3. Function annotations of domain-swapped predicted sequences of human genome at three
different levels. (A) Different Pfam protein families having maximum number of domain swapped predicted
sequences from human genome. (B) Maximum number of protein sequences present in these biological
pathways. (C) Distribution of these sequences in different protein families.

doi:10.1371/journal.pone.0159627.g003

Hinge region prediction
On the basis of experimentally reported hinge regions and swapped region of domain swapped

protein structures, we found that the average hinge region is of 6.7 residues (ranging from one
to 66 residues). A similar analysis was also performed on the length distribution of swapped
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Fig 4. Preferred Gene Ontology (GO) terms in positively predicted sequences from human genome. Human genome is used as reference
point and WEGO pilotting tools is used. List of the GO terms as cellular component and biological functions, corresponding to X-axis labels, are

provided in S1 File.

doi:10.1371/journal.pone.0159627.g004

domain in the known cases of domain swapping. Swapped domains are of an average size of 26
residues, ranging from 5 to 316 residues. Well-known examples of domain swapping were used
for the study of hinge regions and were mapped back to structures as case study (Fig 5). Some
of the case study examples chosen are seminal ribonuclease (11BA), promyelocytic leukemia

Zinc finger protein PLZF (1BUO) and SH3 Domain (1AO]J).

Seminal ribonuclease retains an o+ fold, where the N-terminal region is engaged in 3D-
domain swapping. This protein belongs to pancreatic ribonuclease domain family by Pfam
database. Similarly, promyelocytic leukemia Zinc finger also belongs to o-and-f class and POZ
fold according to SCOP database. It is a homodimer with N-terminal type of 3D-domain

Table 3. Disease association of 3D-domain swapped predicted protein sequences of human genome. Normalization (Z score) was calculated based
on domain swapped entries, in whole human genome (8945/20247).

S. No. Disease Distribution Z-score FDR
1 HIV infection 109/229 0.21 1E°
2 Influenza infection 37/153 0.11 1E°
3 Latent infection of Homo sapiens with Mycobacterium tuberculosis 14/68 0.09 1E°
4 Uptake and actions of bacterial toxins 24/44 0.24 1E°
5 Signaling by EGFR in cancer 110/189 0.26 1E°
6 Signaling in FGFR 110/191 0.25 1E°
7 Abnormal metabolism in phenylketonuria 3/4 0.33 9.9
8 Mucopolysaccharidosis 62/123 0.22 1E°
9 Disease associated with visual transduction 55/92 0.26 1E°
10 PI3K/AKT signaling in cancer 55/107 0.23 1E°
11 Signaling by NOTCH1 in cancer 39/73 0.24 1E°
12 Glycogen storage diseases 144/265 0.24 1E°
13 Defects in vitamin and cofactor metabolism 59/90 0.29 10E™
14 Signaling by TGF-beta receptor complex in cancer 38/70 0.24 1E°
15 Disease of glycosylation 122/229 0.23 1E°
16 Signaling by WNT in cancer 87/212 0.18 1E°
17 Processing-defective Hh variants abrogate ligand secretion 28/64 0.19 1E°
18 Metabolic disorders of biological oxidation enzymes 317/616 0.23 1E°

doi:10.1371/journal.pone.0159627.1003
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Table 4. Distribution of genes in different biological pathways in positively predicted sequences of human proteome. Normalization (Z score) was
calculated based on domain swapped entries in whole human genome (8945/20247).

S.No. Pathway Distribution Normalized (Z) score FDR
1 Binding and uptake of ligands by scavenger receptors 16/195 0.04 1E°
2 Cell cycle 267/525 0.22 1E°
3 Cell-cell communication 87/138 0.28 1E°
4 Cellular response to stress 87/236 0.16 1E°
5 Chromatin organization 94/208 0.20 1E°
6 Circadian Clock 21/55 0.17 1E°
7 Developmental biology 282/531 0.23 1E°
8 Disease 977/1,991 0.22 1E°
9 DNA repair 57/115 0.22 1E°
10 DNA replication 49/105 0.21 1E°
11 Extracellular matrix organization 137/271 0.22 1E°
12 Gene expression 495/1,196 0.18 1E°
13 Homeostasis 303/512 0.26 1E°
14 Immune system 665/1,451 0.20 1E°
15 Membrane trafficking 115/206 0.25 1E°
16 Metabolism 865/1,585 0.20 1E°
17 Metabolism of proteins 332/692 0.21 1E°
18 Muscle contraction 24/51 0.21 1E°
19 Neuronal system 194/280 0.30 1E°
20 Organelle biogenesis and maintenance 156/332 0.21 1E°
21 Programmed cell death 77/162 0.21 1E°
22 Reproduction 20/26 0.34 9.9E™
23 Signal transduction 894/2,094 0.19 1E°
24 Transmembrane transport of small molecules 387/624 0.27 1E°

doi:10.1371/journal.pone.0159627.t004

swapping. The normalized score (please see Methods for details) predicts the hinge region, as
“NPSHPTGLLCK?” (nineth to nineteenth residue of the protein sequence). These 11 residues at
the N-terminal of the protein structure obtain maximum score and it also agrees with the
experimentally demarcated hinge region in crystal structure. The prediction results were
mapped on sequences based on cumulative maximum scores.

This prediction tool was applied to all the 3D-domain swapped predicted sequences (8945)
of human genome. Prediction results of known examples of 3DSwap database were mapped on
sequences based on cumulative maximum scores to continuous three residues. The regions
with maximum score were called as first level of prediction. On the basis of these scores other
putative hinges are also demarcated. For the first level, coverage of 67.8% was achieved, when
the predicted best hinge was considered for calculation. When the second best hinge region on
the protein sequence was also included, along with the best hinge region, a coverage of 71.3%
was achieved.

Challenges in hinge prediction at genome level

Although we have achieved a fairly good accuracy in the prediction of hinge region, there are
many challenges which hinder this algorithm in achieving very good accuracy. Few of the chal-
lenges faced in this analysis are explained in this section. 3D-domain swapping mechanism
was observed in almost all types of the proteins [11]. There was huge variability observed in
number of subunits, position of swapped domain, type of swapped domain etc. in such mole-
cules from one case to another. Besides these deviations, several other features arise, such as

PLOS ONE | DOI:10.1371/journal.pone.0159627 July 28,2016 9/20
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Fig 5. Case study on three different proteins of known structures. The blue circle shows that these are experimentally known hinge regions
(shown in red in left) that agree with our predictions. (A) Ribonuclease, Seminal (PDB code: 11BA), (B) Promyelocytic leukemia Zinc finger protein
PLZF (PDB code: 1BUO) and (C) SH3 Domain (PDB code: 1AQJ). Complete list is provided in S3 Table.

doi:10.1371/journal.pone.0159627.9005

incomplete data (e.g. absence of coordinates of residues for significant region in protein struc-
ture), central loop swapped entries, small hinge region, domain swapped oligomer with elabo-
rate interface, intertwined domain swapped proteins and multiple hinge regions pose severe
challenges and were hard to address considering small frequency of occurrence. Small hinge
regions, generally less than five residues, are difficult to predict since the cumulative scores
could result in false positives (S1 Fig).

In case of central loop swapping, multiple hinge regions are involved and the swapped loop
region exhibits majority of the characteristics of the hinge region. Hence, it is difficult to decide
precise boundaries between swapped central loop and hinge region. In another problematic
case, where intertwined structure is present, multiple hinge regions are present. Hence, it is
almost impossible to identify hinge region in intertwined oligomers, even after manual obser-
vation by using visualization tools. These peculiar characteristics of the domain swapped mole-
cules add to the difficulty of hinge prediction form mere sequence information of protein
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molecules. Besides, there is an inherent level of incomplete information, since the protein
sequence space is much more vast than structural space.

Disorder region prediction on the entire 3D-domain swap predicted
sequences

There were only nine sequences predicted as completely disordered out of 11507 3D-domain
swap predicted sequences by RF method. A total of nine percent (1040) of sequences have
more than or equal to 50% disordered regions. The result shows that most of the sequences are
well structured as found in globular proteins.

Discussion and Conclusion

Early identification of 3D-domain swap proteins on genome scale would help in better manage-
ment of disease caused by protein aggregation and other protein domain swap related phenom-
ena. Machine learning approaches, classifiers (RF and SVM models) have been developed to
predict domain swapping at the genome level from mere protein sequence information. An accu-
racy of 81% and 74% were achieved for the two methods, respectively. These prediction models
were applied to several complete genomes with a special emphasis on the human genome. To
our knowledge, this is the first attempt to predict domain swapping at the genome level. Almost
44% of the sequences of the human genome were predicted as putatively involved in domain
swapping. We observed the same trend when we applied these two models to different genomes.

Functional annotation of all the positively predicted sequences from the human genome
were carried out in terms of their distribution in different Pfam protein families, Gene Ontol-
ogy, Biological pathways and Disease associations. These positively predicted sequences were
dispersed in many Pfam protein families with different Gene Ontology annotations and in sev-
eral pathways with substantial disease associations. Our approach helped us to understand
enriched protein domains, Gene Ontology terms, biological pathways and Disease Ontology in
putatively predicted protein sequences and their role in mediating various human diseases.
Protein kinases, immunoglobulin-like domains and cadherin domains are most populated
domain families observed in this dataset of sequences positively predicted for domain swap-
ping. Few of the highly enriched human diseases in the positively-predicted dataset are, abnor-
mal metabolism in phenylketonuria, defects in vitamin and cofactor metabolism, signaling by
EGFR in cancer etc. The gene ontology terms for cation channel activity, metal ion transmem-
brane transporter activity, gated channel activity, ion channel activity, ATPase activity etc.
have maximum fold enrichment under the biochemical activities.

We have also developed a hinge region prediction tool, mainly based on important physico-
chemical properties of the residues in the hinge region. Further distribution of these molecules
across structure, sequence and function families shows generic nature of this mechanism empha-
sizing the fact that this mechanism occurs independent of sequence, structure and function.

Hinge region prediction was performed based on the important features of amino acids pres-
ent in this region. This prediction tool is applied to all the predicted (8945) 3D-domain swapped
sequences from human genome. Few of the peculiar features considered in this study are as (a)
residues in the hinge region prefer to be small, but not hydrophobic or aliphatic in nature. (b)
They are found less often in o-helices, and more often in turns or random coils. (c) Active site
residues were found to coincide significantly with hinges. (d) Hinges are also more likely to occur
on the protein surfaces than in core. (¢) Propensity of amino acid residues in the hinges. (f)
Hinge regions in domain swapped structures acquire distinguishing structural features.

Hinges retain extended loop conformation in the domain-swapped form and are always in
proximity with the other subunit. Considering extended conformation and proximity to the
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other protomer, hinge residues forms very few or no intramolecular interactions but shows
high degrees of intermolecular interactions. This characteristic of hinge residues is very crucial
in deciding precise boundaries of hinge region, when structural coordinates are known.

The reliable prediction of which genes, and which regions of the genes, might be engaged in
domain swapping could be useful for the design of bioengineering experiments and also to rec-
ognise potential target genes in various diseases.

Materials and Methods
Creation of positive and negative datasets

High quality domain-swapped dataset was obtained from 3DSwap+ database (manuscript
under revision). In this updated version of the database, which is an automated and manually
curated one, 2057 PDB entries of 3D-domain swapping protein entries are present with their
sequence, structural and functional features.

For the creation of negative dataset, Best Representative Profile (BRP) approach was used,
which assigns a best representative sequence (BRS) and also a BRP to a Pfam protein family
[24]. All the monomeric structures (10,313) of PDB were taken at 30% sequence identity cut
off. The 10,112 sequences of corresponding structures were searched against all the BRPs of
Pfam [25] using HMMER [26], [27] at an E-value of 0.001. The sequences which were assigned
to single Pfam protein family by BRP approach were provided as input to DIAL for the detec-
tion of structural domains in these sequences. The sequences which are made up of only single
domain were assigned as negative dataset for domain swapping (Fig 6). There were 3200
sequences, assigned to only single domain by DIAL and used as negative dataset.

Comparing positive and negative datasets

ProteinOrtho version 5.06, an orthology detection tool [28] was used to compare the positive
and negative datasets. At default parameters, it was found that only 42 sequences (1%) have
bidirectional edges out of 4000 sequences (2000 negative and positive sequences each). To
check if the positive dataset (training dataset) has any bias towards the genome in which they
are present, we have performed distribution analysis of these 2000 positive sequences in differ-
ent taxonomic groups.

Features used for model generation

A total of 439 sequence features was used for training the model. Out of 439 features, 39 were
physicochemical features of amino acids extracted from AAINDEX database [29] and 400
were dipeptide features. These features were predicted as best features by WEKA software [30].
Features used in prediction model are listed in (Table 5).

Work flow of model generation

For the generation of the prediction model, 2000 sequences from 3DSwap+ were used as posi-
tive dataset and 2000 sequences created by BRP approach were used as negative dataset. A Perl
script was used to extract the numerical values based on AAINDEX of all the features of amino
acid residues. All the numerical values of positive and negative sequences were saved in two
comma separated values (csv) files. These two files were given as input to RF and SVM classifi-
ers to generate models for the purpose of classification and a confusion matrix of 2*2 with True
Positive (TP), True negative (TN), False Positive (FP) and False Negative (FN) values for train-
ing dataset was also generated (Fig 7). The confusion matrix for the testing datasets were calcu-
lated based on the prediction results.
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Fig 6. Workflow to generate negative dataset from monomeric structures of protein database (PDB).
BRP approach was used to find the sequences form Pfam families which do not have known examples of
domain swapping (please see Methods for details). DIAL was used for prediction of domain swapping in the
given sequences.

doi:10.1371/journal.pone.0159627.g006

Five-fold Cross-validation of testing dataset

Evaluation of the prediction results was performed on a five-fold cross-validation method for
the testing dataset. Cross-validation is a statistical technique for estimating the performance of
a machine learning based prediction model. Fivefold cross-validation refers to an implementa-
tion of k-cross validation method (here k = 5). The original dataset is randomly divided into
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Table 5. List of the features used for model generation for prediction of domain swapping.

S.No Features Number of feature
1 Propensity of amino acids in hinges 1
2 Hydrophobic index 1
3 Average flexibility indices 1
4 Residue volume 1
5 Transfer free energy surface 1
6 Normalized frequency of alpha helix 1
7 Normalized frequency of extended structure 1
8 Steric parameter 1
9 Polarizability parameter 1
10 Chou-Fasman parameter of coil conformation 1
11 Average volume of buried residue 1
12 Normalized frequency of beta turn 1
13 Normalized frequency of alpha helix 1
14 Normalized frequency of beta sheet 1
15 Normalized average of hydrophobicity scales 1
16 Partial specific volume 1
17 Normalized frequency of turn 1
18 Size 1
19 Relative mutability 1
20 Solvation free energy 1
21 Molecular weight 1
22 Positive charge 1
23 Negative charge 1
24 Composition 1
25 Polarity 1
26 Normalized relative frequency of extended structure 1
27 Average accessible surface area 1
28 Percentage buried residues 1
29 Percentage of exposed residues 1
30 Net charge 1
31 Normalized frequency of coil 1
32 Amino acid composition of total proteins 1
33 Optimized propensity to form reverse turn 1
34 Side chain orientational preference 1
35 Bulkiness 1
36 Isoelectric point 1
37 Normalized flexibility parameters 1
38 Amphiphilicity index 1
39 Linker propensity index 1
40 Composition based (Di-amino acid) 20*20 =400
Total features 439

doi:10.1371/journal.pone.0159627.t005

five derived datasets. Of these five datasets, a single one is retained as validation data for testing

the classifier and remaining (5-1) derived datasets are used for training. The process is

repeated five times (folds) with each of the derived datasets used only once as the validation
data. These results from five-fold cross-validation datasets were averaged to obtain a final sin-
gle estimation of statistical parameters.
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Statistical Assessment of the machine learning classifiers

The RF and SVM models were evaluated using few of important statistical assessment features
viz., Accuracy, sensitivity, specificity and Mathew’s Correlation coefficient (MCC). These mea-
surements are expressed in terms of the fraction of true positives (TP), false negatives (FN),
true negatives (TN) and false positives (FP).

1. Sensitivity. Sensitivity refers to the percentage of sequences correctly predicted as “swap-
ping” by the models.

Sensitivity = _IP
- TP+FN

2. Specificity. Specificity refers to the percentage of sequences correctly predicted by the mod-
els as “non- swapping”.

TN
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Fig 7. Overall workflow of the method used in this study and creation of positive and negative datasets. Feature selection by WEKA, and
prediction model creation by Random Forest and Support Vector Machine. Genome-wide association study of sequences predicted to undergo
domain swapping in the human genome.

doi:10.1371/journal.pone.0159627.9007
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3. Matthew’s correlation coefficient (MCC). The MCC provides a combined measure of
sensitivity and specificity. MCC ranges from -1 to 1. A value of MCC = 1 indicates the
best correlation or possible prediction while MCC = -1 indicates the worst possible pre-
diction or anti- correlation. Finally, MCC = 0 would be expected for a random prediction
scheme.

(TP % TN) — (FP % FN)
V{(TN 1 EN)(TP + ENJ(IN + FP)(TP t FP)}

MCC =

4. Accuracy. Accuracy refers to the percentage of correct prediction out of the total number of
predictions.

(TP + TN)
(TP + FP + TN + FN)

Accuracy =

Applying the model for prediction well-known cases of 3DSswap
database and aggregation related proteins from human proteome

The RF and SVM models were applied to 137 reviewed, aggregation-related protein sequences
from human proteome. These proteins are associated with different diseases such as amyloid
forming proteins. The positively predicted 3D-domain swapping sequences were searched
against PDB for their structural homologous at an E-value of 0.001.

Applying RF and SVM models to few other genomes of animal and plant
kingdom

Prediction models were applied on different genomes like Mycobacterium tuberculosis
(Mtb), Homo sapiens and Bacillus thuriengenesis (Bth) and also on few plant genomes as
Solanum tuberosum (Stu), Ocimum tenuiflorum (Ote), Medicago sativa (Msa) and Arabi-
dopsis thaliana (Ath). All the protein sequences of these genomes were downloaded from
UNIPROT.

Proteome-wide prediction of human 3D-domain swapping

All the 20247 reviewed entries of the human genome were downloaded from UNIPROT to pre-
dict 3D-domain swapping at the complete proteome level (S3 Table). For these sequences,
numerical values of each feature were extracted and the RF and SVM models were run against
these values.

Enrichment analysis of 3D-domain swapped predicted proteins from
human proteome

Detailed analysis of these 3D-domain swapped predicted protein sequences (S4 Table) from
human proteome was performed at different levels. Firstly, we studied disease association of
these sequences based on information provided on UniProtROT database by mapping the
accession codes of these sequences to disease association. The enrichment analysis of protein
domains for these sequences were analyzed for Pfam domain information by using DAVID
tool [31]. We also studied their functional importance and involvement in different biological
processes from their Gene Ontology (GO) information by using DAVID tool [31]. Detailed
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analysis of these sequences in terms of pathways and biological processes was performed using
REACTOME database [32], which is an open-source, open-access, manually curated, peer-
reviewed database of human pathways and processes. These annotations were plotted by using
online server WEGO [33].

Disorder region prediction on the entire 3D-domain swap predicted
sequences

Espritz-an efficient online server for detection of protein disorder [34] was applied on all the
3D-domain predicted sequences from human proteome using default parameters.

Hinge region prediction from protein sequences of 3D-domain swapped
sequences

Hinge region prediction has been performed in the 3D-domain swapped predicted sequences
by using a novel algorithm based on important features. The distribution of hinge region and
swapped domain lengths were analyzed for the known examples of 3D-domain-swapped pro-
tein structures. On the basis of analysis done on the known examples of 3D-domain swapped
molecules of 3DSwap+ database (~2000 entries), a minimum hinge size of three residues and
maximum of seven residues were found. Six physicochemical features form hinge region
sequences were employed in this algorithm. These features are (1) Propensity of amino acids in
the hinges [21], (2) Average flexibility index [35], (3) Normalized frequency of extended struc-
ture [36], (4) Normalized frequency of coil [37], (5) Normalized frequency of beta turn [38],
and (6) Relative mutability [39]. In this algorithm, we have used a sliding window approach of
five and a score is assigned to all the residues starting from third residue to last-but-third resi-
dues. These scores are plotted against the residue number by an automated Perl script, which is
called into R prompt. The average best score of the consecutive three residues is taken into con-
sideration. There were five best hinge regions marked in the result file based on the average
best score of three consecutive residues.

The normalization of the score was done by following formula:

N
X-Y

Where,

N = Normalized score of each residue

S = Cumulative score of a residue in the sequence

X = Maximum score in the sequence

Y = Maximum score of any residue in the given sequence

Performance of hinge prediction tool
The coverage of the tool was calculated using following formula:

Rh

C =
Rh +W

Where,

C = Coverage

Rh = Number of proteins in, which whole or part of identified hinge region overlaps with
reference hinge

W = Number of proteins in, which, identified hinge and reference hinge are totally different
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