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Summary

Cyclophilins (Enzyme Commission (EC) number 5.1.2.8) belong to a group of proteins that have
peptidyl-prolyl cis-trans isomerase activity; such proteins are collectively known as immunophilins
and also include the FK-506-binding proteins and the parvulins. Cyclophilins are found in all cells
of all organisms studied, in both prokaryotes and eukaryotes; humans have a total of 16
cyclophilin proteins, Arabidopsis up to 29 and Saccharomyces 8. The first member of the
cyclophilins to be identified in mammals, cyclophilin A, is the major cellular target for, and thus
mediates the actions of, the immunosuppressive drug cyclosporin A. Cyclophilin A forms a
ternary complex with cyclosporin A and the calcium-calmodulin-activated serine/threonine-
specific protein phosphatase calcineurin; formation of this complex prevents calcineurin from
regulating cytokine gene transcription. Recent studies have implicated a diverse array of
additional cellular functions for cyclophilins, including roles as chaperones and in cell signaling. 
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Gene organization and evolutionary history
The terms ‘cyclophilin’ and ‘peptidyl-prolyl isomerase’
(PPIase) are almost synonymous today, but the identifica-
tion of the first protein that showed PPIase activity over 20
years ago [1] was independent of the purification of
cyclophilin A (CypA) from bovine thymocytes as an intracel-
lular protein with a high affinity for the immunosuppressive
drug cyclosporin A (CsA) [2]. It was not until five years later
that the 18 kDa protein with PPIase activity and CypA were
found to be one and the same [3,4]. Along with the discover-
ies of other PPIase proteins (immunophilins), such as the
parvulins and the FK-506-binding proteins (FKBPs, which
bind the immunosuppressant drug FK-506), additional
cyclophilins have subsequently been identified and the
cyclophilins were found to constitute a protein family. All
cyclophilins share a common domain of approximately 109
amino acids, the cyclophilin-like domain (CLD), surrounded
by domains unique to each member of the family that are

associated with subcellular compartmentalization and func-
tional specialization [5,6]. 

Cyclophilins have been found in mammals, plants, insects,
fungi, and bacteria; they are  structurally conserved
throughout evolution and all have PPIase activity. There
are 7 major cyclophilins in humans - hCypA (also called
hCyp-18a, 18 denotes molecular mass of 18 kDa), hCypB
(also called hCyp-22/p, 22 kDa), hCypC, hCypD, hCypE,
hCyp40 (40 kDa), and hCypNK (first identified from
human natural killer cells) - and a total of 16 unique proteins
[7,8]. Drosophila has at least 9 cyclophilins [7] and the
plant Arabidopsis thaliana has 29 putative cyclophilins
[9], whereas 8 cyclophilins, Cpr1-Cpr8, have been found in
Saccharomyces cerevisiae (reviewed in [6]). Little is
known about the genomic structure of human cyclophilin
genes; they are generally not linked to each other in
the genome. 



What is peptidyl-prolyl isomerization and why does it
require a catalyst? The peptide bond has a partial double-
bond character, and like all double bonds with similar com-
binations of side chains, it can exist in two distinct isomeric
forms: cis and trans. The lower energy-state trans peptide
bonds, whose side chains are 180 degrees opposite each
other, are sterically favored, and the ribosome is thought to
synthesize peptide bonds in this form. In many proteins
containing proline, however, the bonds preceding each
proline (peptidyl-prolyl bonds) also occur in the cis form,
with the side chains adjacent to each other; both de novo

protein folding and the refolding processes following cellu-
lar membrane traffic necessitate isomerization to the cis

form. Spontaneous isomerization of peptidyl-prolyl bonds
requires free energy and is a slow process, particularly at
lower temperatures, and it constitutes a rate-limiting step
in folding. Cyclophilins stabilize the cis-trans transition
state and accelerate isomerization, a process that is consid-
ered important not only in protein folding but also during
the assembly of multidomain proteins (Figure 1) [10].
Regardless of their origin, the structural conservation of
cyclophilins throughout evolution and the PPIase activity of
all members underlines the importance of this enzymatic
reaction. 

Cyclophilins also have varying degrees of affinity for the
immunosuppressive drug CsA, a cyclic 11-amino-acid peptide
produced by the fungus Tolypocladium inflatum. CypA, in
particular, is the major intracellular receptor for CsA [2]. In
mammals, the CsA-CypA complex binds to and inhibits cal-
cineurin, a calcium-calmodulin-activated serine/threonine-
specific protein phosphatase. The inhibition of calcineurin

blocks the translocation of nuclear factor of activated T cells
(NF-AT) from the cytosol to the nucleus, thus preventing the
transcription of genes encoding cytokines such as inter-
leukin-2 [11,12]. In the yeast S. cerevisiae, inhibition of the
calcineurin homolog by the complex between CsA and the
cyclophilin A homolog Cpr1 prevents recovery from
pheromone-induced growth arrest [13]. In the human-path-
ogenic fungus Cryptococcus neoformans, inhibition of the
calcineurin homolog Cna1 by a complex of CsA with either of
the cyclophilin A homologs Cpa1 or Cpa2 prevents growth at
elevated temperatures [14,15]. 

Characteristic structural features
The 18-kDa archetypal cyclophilin CypA is cytosolic and
found in all tissues in mammals, whereas other cyclophilins,
whether they have a CLD alone or in combination with other
domains, are found in the endoplasmic reticulum (ER), the
mitochondria, or the nucleus. The crystal structures of
several cyclophilins have been determined (reviewed in [16]).
Human CypA has an eight-stranded antiparallel �-barrel
structure, with two � helices enclosing the barrel from either
side (Figure 2). Seven aromatic and other hydrophobic
residues form a compact hydrophobic core within the barrel,
usually in the area where CsA binds. A loop from Lys118 to
His126 and four � strands (�3-�6) make up the binding site
for CsA [17,18]. The overall structure of hCypB resembles that
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Figure 1
A schematic illustration of the trans and cis isomers of the peptide bond
between proline (on the left of each structure shown) and another amino
acid (P1, on the right). The interconversion between the two forms is
catalyzed by cyclophilins and other peptidyl-prolyl isomerases (PPIases)
[7]. The carbon atoms of the proline are indicated by Greek letters; P2
indicates a third amino acid on the other side of the proline. The peptide
bond has some double-bond character and is planar.
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Figure 2 
The structure of the ternary complex between the drug cyclosporin A
(CsA), human cyclophilin A (CypA) and human calcineurin [37]. The
CsA-CypA binary complex lies at the base of the helical arm of the
catalytic subunit of calcineurin (CnA) that binds the regulatory subunit
calcineurin (CnB); it nestles in a hydrophobic groove in intimate contact
with both subunits, at a region unique to calcineurin and not found in
other phosphatases, and this intimate contact gives the interaction high
specificity. Reproduced with permission from [37].
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of hCypA,  the main difference being in the two loop regions
(residues 19-24 and 152-164) and at the amino and carboxyl
termini [19]. Murine CypC also has a structure similar to that
of hCypA, differing mainly in the conformation of three
surface loop regions [20]. The large cyclophilin Cyp40 con-
sists of a CLD with a  structure similar to that of hCypA linked
to tetratricopeptide repeats (TPRs), which are also found in
proteins involved in stress responses. Structural analysis
reveals that the TPR domain of Cyp40 consists of seven
helices of variable lengths incorporating three TPR motifs.
Cyp40 crystals come in two shapes: in the monoclinic form,
the carboxy-terminal residues protrude beyond the body of
the TPR domain to form a charged helix, whereas in the
tetragonal form two of the TPR helices are straightened to
form one extended helix [21]. 

Localization and function
Cyclophilins can be found in most cellular compartments of
most tissues and encode unique functions. In mammals,
CypA and Cyp40 are cytosolic whereas CypB and CypC have
amino-terminal signal sequences that target them to the ER
protein secretory pathway (reviewed in [7,16]). CypD has a
signal sequence that directs it to the mitochondria [22,23];
CypE has an amino-terminal RNA-binding domain and is
localized in the nucleus [24] and Cyp40 has TPRs and is
located in the cytosol [25]. Human CypNK is the largest
cyclophilin, with a large, hydrophilic and positively charged
carboxyl terminus, and is located in the cytosol [26,27]. 

The yeast cyclophilin Cpr1 is a homolog of hCypA that shares
65% identity in amino-acid sequence and is present in the
cytoplasm and also enriched in nuclei [28,29]. Cpr2, Cpr3,
and Cpr5 have amino-terminal signal peptides directing
them to the ER (Cpr2 and Cpr5 [30,31]) or the mitochondria
(Cpr3 [32,33]; Figure 3). Cpr4 and Cpr8 contain a single
CLD domain plus a long amino-terminal signal peptide and
are located in vacuoles [34]. Lastly, Cpr6 and Cpr7 are
homologs of the human Cyp40 protein and have long
carboxy-terminal TPR repeats; they associate functionally
with homologs of heat-shock proteins and other protein
chaperones [35]. The primary structures and localizations of
the yeast cyclophilins, as well as their mammalian orthologs,
are summarized in Figure 3.

Functions of mammalian cyclophilins
The immunosuppressive action of CsA is exerted via a
ternary complex between CsA, CypA and calcineurin. The
crystal structure of the complex has recently been deter-
mined to a resolution of 2.8 Å (Figure 2) [36,37]. Binding of
the CsA-CypA complex to calcineurin increases the com-
plex’s stability, and the complexed proteins remain resistant
to proteolytic cleavage [38]. Upon binding of CsA to CypA,
the charges and hydrophobic surfaces of the drug-protein
complex become more congruent with the binding site on
calcineurin. The CsA-CypA complex binds at the interface

between the catalytic and regulatory subunits of calcineurin
(Figure 2). Most importantly, CsA-CypA binding to cal-
cineurin inhibits the phosphatase activity and biological
function of calcineurin [11,13,39,40].

Several protein-folding processes depend on the catalytic
and/or chaperone-like activities of cyclophilins. For example,
CypA promotes both the formation and the infectivity of
virions of the human immunodeficiency virus (HIV)-1 [41-47].
CypA is incorporated into HIV-1 virions, where it interacts
with HIV-1 Gag, the polyprotein precursor of virion structural
proteins. A small region of the HIV-1 capsid protein containing
four conserved prolines has been shown to be important for
incorporation of CypA into virions [48,49]. 

A retina-specific cyclophilin of the fruit fly Drosophila

melanogaster, NinaA (an ortholog of mammal CypC), is
crucial for the folding of rhodopsin isoforms [50,51]. A muta-
tion in the gene encoding NinaA results in improper folding
of rhodopsin and subsequent abnormal expression of the
protein [50]. CypA is also important in the folding of neu-
ronal receptors. Using CsA to probe the expression of homo-
oligomeric receptors containing nicotinic acetylcholine
receptor subunit �7, Helekar and colleagues [52] concluded
that CypA might have a critical role in the maturation of
homo-oligomeric receptors by acting directly or indirectly as
a prolyl isomerase or as a molecular chaperone. 
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Figure 3 
Primary structures, localizations and mammalian orthologs of S. cerevisiae
cyclophilins [6]. Abbreviations: CLD, cyclophilin-like domain; ER, ER
retention signal; M, mitochondrial localization signal; SP, signal peptide;
TM, transmembrane domain; TPR, tetratricopeptide repeat.
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Cyclophilins can also act as modulators of protein function.
The mammalian cyclophilin Cyp40 is part of the steroid-
receptor complex and can form a dimeric complex with the
heat-shock protein Hsp90, a process not affected by CsA
[53,54]. In yeast, the Cyp40 homologs Cpr6 and Cpr7 also
associate with Hsp90 homologs and have analogous func-
tions [6]. A mammalian Cyp40 has been shown to regulate
the activity of the transcription factor c-Myb [55], whereas
CypA has been associated with YY1, a zinc-finger suppressor
of gene transcription [56], and Zpr1, an essential zinc-finger
protein [57]. In addition, the ER-specific cyclophilin CypB
can form a complex with the peptide hormone prolactin to
induce transcription of a range of genes [58].

Functions of yeast cyclophilins
Contrary to the expectation that the highly conserved
cyclophilins might be essential for protein folding, none of
the eight individual cyclophilins was found to be essential in
S. cerevisiae [59]. In fact, we showed that an octuplet
mutant lacking all eight cyclophilins was viable and that
there was little or no evidence for functional redundancy
[59]. Recent studies also reveal that Cpr1 has a role in modu-
lating the activity of two different histone-deacetylase com-
plexes (Sin3-Rpd3 and Set3C) and is important in enabling
the transcriptional events necessary during the switch from
mitotic to meiotic cell division in budding yeast [29,60,61].
This is in accord with our recent finding that Cpr1 is
enriched in the nucleus in yeast cells, and it reveals a clear
selective pressure for maintaining this highly conserved
enzyme [29].

The pathogenic yeast C. neoformans has two similar CypA-
related proteins, Cpa1 and Cpa2. In contrast to the viable
octuplet cyclophilin mutant strain of S. cerevisiae, Cpa1 is
required for growth of C. neoformans at elevated tempera-
tures and for full expression of fungal virulence, whereas
Cpa2 is dispensable for these functions in the presence of
Cpa1. Deletion of both the CPA1 and CPA2 genes leads to a
conditional synthetic phenotype, resulting in a defect in
growth and virulence [62]. In our current models, this role
of Cpa1 and Cpa2 is hypothesized to be independent of cal-
cineurin function, suggesting a novel role for cyclophilin A
homologs in the growth and virulence of this pathogen [62]. 

Frontiers
Recent studies have suggested a new role for cyclophilins in
cell signaling. For example, mammalian CypA has been
found to regulate the T-cell-specific interleukin-2 tyrosine
kinase Itk, which contains conserved Src homology 2 (SH2),
Src homology 3 (SH3), and kinase domains [63-65]. Itk is a
non-receptor protein-tyrosine kinase that has a role in the
maturation of thymocytes and is required for intracellular
signaling events leading to T-cell activation. Binding of CypA
to the SH2 domain of Itk results in conformational change
within the SH2 domain that alters ligand specificity [63].

Mutation of a proline residue in the SH2 domain disrupts
the interaction between Itk and CypA and specifically
increases the production of type 2 (Th2) cytokines (cytokines
produced by Th2 helper cells) [65,66].

In another example of a cyclophilin involved in cell signal-
ing, human CypB has been found to govern the activation of
interferon-regulatory factor-3 (IRF-3). IRF-3 is a member of
the group of interferon regulatory factors that induce inter-
feron-� once translocated into the nucleus. CypB interacts
with IRF-3 in the yeast two-hybrid assay. An RNA-interfer-
ence study of CypB indicates that the suppression of virus-
induced IRF-3 phosphorylation and other related events can
result in the inhibition of interferon-� [67]. 

Finally, the mitochondrially targeted cyclophilin CypD has
been found to play an important role in the mitochondrial
permeability transition, in which mitochondrial pores open,
leading to cell death [68-72]. By generating CypD-deficient
mice, several research groups have discovered that CypD
and the mitochondrial permeability transition are required
to mediate the cell death induced by calcium and oxidative
damage, but not to mediate conventional apoptosis involving
Bcl-2 family proteins [70-72]. Further exploration of the role
of CypD in mitochondrial function and its potential as a
novel drug target has been also discussed recently [8]. 
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