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A hallmark of cancer evolution is that the tumor may change its cell identity and improve its
survival and fitness. Drastic change in microRNA (miRNA) composition and quantities
accompany such dynamic processes. Cancer samples are composed of cells’mixtures of
varying stages of cancerous progress. Therefore, cell-specific molecular profiling
represents cellular averaging. In this study, we consider the degree to which altering
miRNAs composition shifts cell behavior. We used COMICS, an iterative framework that
simulates the stochastic events of miRNA-mRNA pairing, using a probabilistic approach.
COMICS simulates the likelihood that cells change their transcriptome following many
iterations (100 k). Results of COMICS from the human cell line (HeLa) confirmed that most
genes are resistant to miRNA regulation. However, COMICS results suggest that the
composition of the abundant miRNAs dictates the nature of the cells (across three cell
lines) regardless of its actual mRNA steady-state. In silico perturbations of cell lines (i.e., by
overexpressing miRNAs) allowed to classify genes according to their sensitivity and
resilience to any combination of miRNA perturbations. Our results expose an
overlooked quantitative dimension for a set of genes and miRNA regulation in living
cells. The immediate implication is that even relatively modest overexpression of specific
miRNAs may shift cell identity and impact cancer evolution.
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1 INTRODUCTION

Mature microRNAs (miRNAs) are non-coding RNA molecules that regulate genes through base
complementarity with their cognate mRNAs, at the 3′-untranslated regions (3′-UTR) (Moore et al.,
2015). Within cells, miRNAs act by destabilization of mRNAs and interfering with the translation
machinery (Chekulaeva and Filipowicz, 2009; Eichhorn et al., 2014). It was established that alteration
in the relative abundance of miRNAsmay lead to transition between cell states and the establishment
of cell identity (Peláez and Carthew, 2012).

The human catalog of miRNA includes about 2500 mature miRNAs derived from ∼1900 genes
(Kozomara and Griffiths-Jones, 2013). However, in each human cell, only a few dozens of miRNAs
are expressed in substantial amounts. The miRNA distribution has a long tail of lowly expressed
miRNAs. A reduced set of miRNA families (∼250 representatives) combines miRNAs with a
substantial overlap in binding properties. In reality, ∼60% of the human coding genes are postulated
as targets for miRNA regulation (Ha and Kim, 2014; Jonas and Izaurralde, 2015). Many miRNAs

Edited by:
Guangchao Li,

Guangzhou Bio-Gene Technology
Co., Ltd., China

Reviewed by:
Abbas Salihi,

Salahaddin University, Iraq
Fabrizio Ferrè,

University of Bologna, Italy

*Correspondence:
Michal Linial

michall@cc.huji.ac.il

†ORCID: Nathan Linial,
orcid.org/0000-0002-0918-3136;

Michal Linial, orcid.org/0000-0002-
9357-4526

Specialty section:
This article was submitted to
RNA Networks and Biology,

a section of the journal
Frontiers in Molecular Biosciences

Received: 08 September 2021
Accepted: 29 November 2021
Published: 21 December 2021

Citation:
Mahlab-Aviv S, Linial N and Linial M
(2021) miRNA Combinatorics and its

Role in Cell State Control—A
Probabilistic Approach.

Front. Mol. Biosci. 8:772852.
doi: 10.3389/fmolb.2021.772852

Frontiers in Molecular Biosciences | www.frontiersin.org December 2021 | Volume 8 | Article 7728521

ORIGINAL RESEARCH
published: 21 December 2021

doi: 10.3389/fmolb.2021.772852

http://crossmark.crossref.org/dialog/?doi=10.3389/fmolb.2021.772852&domain=pdf&date_stamp=2021-12-21
https://www.frontiersin.org/articles/10.3389/fmolb.2021.772852/full
https://www.frontiersin.org/articles/10.3389/fmolb.2021.772852/full
https://www.frontiersin.org/articles/10.3389/fmolb.2021.772852/full
https://www.frontiersin.org/articles/10.3389/fmolb.2021.772852/full
http://creativecommons.org/licenses/by/4.0/
mailto:michall@cc.huji.ac.il
https://doi.org/10.3389/fmolb.2021.772852
https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/journals/molecular-biosciences#editorial-board
https://doi.org/10.3389/fmolb.2021.772852


carry the potential for targeting hundreds of transcripts
(Rajewsky, 2006; Balaga et al., 2012). Looking from the
transcripts’ angle, at the 3′-UTR of an mRNA, there are tens
of predicted miRNA binding domains (MBS) (Landgraf et al.,
2007). Experimental results using CLIP-based deep sequencing
protocols provide quantitative amounts of miRNAs and mRNAs
in living cells (Li et al., 2014). Unfortunately, these protocols
suffer from poor consistency (Lu and Leslie, 2016).

The quantitative aspect of miRNAs within living cells is
understudied. It includes the stoichiometry on miRNA and
mRNAs and the combinatorics of MBS. For a given mRNA,
the composition and relative positioning of MBS along the
transcript dictate the potential of a fruitful interaction (Jens
and Rajewsky, 2015), but not necessarily the contribution of
any specific miRNA to the overall suppression of gene expression
(Agarwal et al., 2015). From the perspective of the miRNA, a
fundamental player in the regulation is AGO, the catalytic
component of the RNA silencing complex (RISC) within cells,
and its availability (Wen et al., 2011; Janas et al., 2012). This
many-to-many relation of the miRNA-mRNA network calls for
developing a probabilistic model that will capture the design
principle of miRNA regulation within the context of any cell type.

In this study, we present a stochastic, probabilistic model that
operates at the cellular level. Furthermore, we substantiate a
quantitative view on miRNA regulation that assesses the
impact of changes in the quantities and diversity of miRNAs
along with changes in cell behaviors. Technically, we applied the
iterative simulator (called COMICS) on a selected human cell
lines while exhaustively testing the outcome of in silico miRNA
overexpressionmanipulations. We confirm the robustness of cells
to the combinatorial effects of miRNA manipulations while
calculating the retention level of each mRNA at the end of a
simulation run (100 k iterations). We identify genes that are
sensitive to the rate of mRNA degradation (i.e., cell dynamics)
and others that respond to the actual elevation in the amounts of
expressed miRNAs. In this study, we expose overlooked
properties of miRNA regulation that are highly relevant to the
maintenance of cell identity and the progression of cancer.

2 METHODS

2.1 Probabilistic Map for miRNA-mRNA
Pairing
The probabilistic framework for the interaction between miRNAs
and their matched mRNAs was defined according to TargetScan
(Agarwal et al., 2015). Accordingly, a high probability of miRNA-
mRNA interaction (values ranging from 0 to 1) complies with
numerous features from the sequence, secondary structure, and
evolutionary conservation. Altogether, a complete miRNA-
mRNA interaction table includes 8.22 M pairs covering as well
poorly conserved interactions. We used a compressed version of
the interaction table that reports on evolutionarily conserved
miRNA pairs. This table includes 1,183,166 pairs which cover
18,953 genes and 289 miRNA families. Interaction scores were
mapped to binding probabilities according to TargetScan score:
p � 1–2̂score.

2.2 Normalizations ofmRNAExpression and
miRNA Families
For the mRNA expression profile, we extracted data from RNA-
seq experiments of HeLa cells that reliably report on 16,355
mRNAs and 539 miRNAs (Mahlab-Aviv et al., 2019). All genes
pass the minimum threshold of >�1 reads (for experimental
details see (Mahlab-Aviv et al., 2019)). Based on accepted
quantification, we define a cell to display a 2:1 ratio of
miRNAs to miRNAs, with a predetermined amount of 50 k
and 25 k miRNAs and mRNAs per cell, respectively. Applying
a strict threshold of ≥1 molecule per cell resulted in 110 miRNAs
and 3666 mRNAs. We limited the expression level to 5 mRNA
molecules per cell from a total amount of 25 k molecule (e.g.,
0.02%), to improve the robustness of the analysis. Following this
threshold, 753 genes remained for further analyses.

2.3 Probabilistic miRNA-mRNA Simulator
The input to COMICS (Competition of miRNA Interactions in
Cell Systems) includes a normalized number of molecules from
the RNA-seq results, and the values reported for the miRNA-
mRNA interaction probabilities (see above). In each run, a
random miRNA is chosen from the predetermined available
miRNAs distribution. Next, a target is randomly chosen
according to available targets’ distribution. mRNA that is
already bound by miRNA molecules can still be a putative
target for another miRNA if the two MBS do not overlap on
the same molecule. This is defined as a minimal legitimate
distance (≥50 nucleotides apart) between two neighboring
RISC. Upon a binding event, the free miRNA and mRNA
distributions are updated, with bound mRNA molecules
marked as occupied. An occupied molecule (i.e., at least one
bound miRNA) is removed after 1 k iterations following a
successful binding event (to mimic the destabilization, leading
to transcript degradation). Following mRNA removal, the bound
miRNAs return to the general pool of free miRNAs.

2.3.1 Configuration of COMICS
COMICS simulator supports a broad set of configurable
parameters (see Mahlab-Aviv et al., 2019) that provide a high
level of flexibility: 1) the number of total miRNAs; 2) the number
of mRNA molecules in the cell; 3) the number of iterations to
complete the run; 4) the number of iteration interval between the
miRNA-mRNA binding event and the mRNA removal; 5)
random removal of unbound mRNAs according to a
predetermined decay rate of the mRNAs; 6) addition of newly
transcribed mRNAs along with the iterations interval; 6)
incorporation of alternative miRNA-target mapping. It is also
possible to activate COMICS with a random set of genes, or a pre-
existing iteration as a starting point, before the simulation run. In
this study, we used default parameters. For mimicking cell
manipulation: 7) miRNAs or genes overexpressed according to
a selected multiplication factor. Specifically, we tested 7
multiplication steps (from x1 to x1000). If miRNA was
undetected in the naïve cell, an arbitrary starting amount of
0.02% (the equivalent of 10 miRNA molecules per cell) is
artificially added to the naïve cell (marked as x1).
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2.3.2 Analytical Methods
Statistical values for correlations were determined using standard
Python statistical package. For annotation enrichment statistics
and visualization, we used Gene Ontology platform (Huang et al.,
2007). Clustering was performed by k-means classification
method. We used the unsupervised Elbow method to test
consistency within clusters by the percentage of variance
explained. (i.e., the ratio of the between-group variance to the
total variance). A change in the slope indicates the preferred
number of clusters in that dataset. Standard statistical tests were
applied to provide p-value for protein set comparisons.

3 RESULTS

3.1 Assessment of a Probabilistic Approach
for Cell States
Our previous study modeled the outcome of the miRNA-mRNA
network in living cells by simulating the stochastic nature of
miRNA regulation (Mahlab-Aviv et al., 2019). We observed that
the relative ratio of miRNA tomRNA dictates the kinetics and the
steady-state of expressed genes as measured by tracing the mRNA
decay where no new expressed mRNA is considered.

In this study, we extend the analysis by clustering genes by
their distinct kinetics and by testing the sensitivity of gene classes
to changes in miRNAs’ relative quantities. The nature of miRNA
regulation in living cells is depicted by the absolute quantities,
composition, and stoichiometry of miRNAs and mRNAs (Balaga
et al., 2012). Systematic analysis of the miRNA-mRNA
interaction network shows that miRNA regulation operates

under tight stoichiometric constraints in living cells.
Classifying genes into sets that are unified by a common
property, reduces complexity, and provides new insights on
genes that are unified by their sensitivity to miRNA regulation.

Experimental data from HeLa cells for miRNAs and mRNAs
are extracted from repeated NGS experiments (Mahlab-Aviv
et al., 2019). A total of 539 miRNA types and 16,236
expressed mRNAs were mapped according to a predetermined
expression threshold. As the molecular interaction of miRNA and
mRNA within a cell is a stochastic process, we developed
COMICS as an iterative simulator that attempts to capture
such interactions (Mahlab-Aviv et al., 2019).

3.2 COMICS Performance
Figure 1 illustrates a scheme from a cellular perspective while
focusing on the probabilistic framework. COMICS iterations
capture the stochastic process in cells according to
predetermined quantities and partition of miRNAs and
mRNAs. The sampling process (Figure 1; Moore et al., 2015)
is driven by the distribution of miRNAs and mRNAs that can be
monitored experimentally (pink frames). Each mRNA is
characterized by the types and positioning of its miRNA
binding sites (MBS) on the transcript. The interaction table
contains estimates of the probability-based scores for any pair
of miRNA and MBS in the context of a specific mRNA. These
calculated probabilities do not account for the fact that the
expression of miRNAs and mRNAs are cell-type specific.

In each iteration, a miRNA is sampled randomly, according to
the cell’s miRNA abundance and composition. Next, one of its
target genes is chosen randomly according to the measured
expressed mRNAs distribution. In the following stochastic step

FIGURE 1 | Schematic procedure of the probabilistic nature of COMICS (see text).
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(Figure 1; Eichhorn et al., 2014), a randomly chosen miRNA and
its target get paired by the sparse table of miRNA-MBS
interactions (∼1.2 M pairs, see Section 2). Each miRNA-MBS
interaction is associated with a probabilistic score that is a proxy
for the level of confidence for that interaction and can be
considered the probability of effective binding for any specific
pair. Following a successful binding event, the distribution of the
miRNAs and the mRNAs get updated (Figure 1; Chekulaeva and
Filipowicz, 2009). Following a successful pairing, the status of the
mRNA becomes “ready for degradation”. Upon binding, it may
be engaged in the additional binding of miRNAs, but MBS
interactions at close physical proximity are excluded. Our
protocol supports cooperative binding on a target by imposing
a degradation delay (e.g., 1 k iterations) that allows multiple
miRNAs on the same mRNA. When an occupied mRNA is
removed from the system, all its bounded miRNAs return to
the miRNA pool. Consequently, the stoichiometry of miRNA to
mRNA changes gradually with an increase in miRNAs to free
mRNAs ratio. Note that additional variables that potentially
impact miRNA regulation were omitted from the model for
simplicity. These include cases in which binding of the
miRNA to its target does not convert into mRNA degradation,
instances of competitive endogenous RNA (ceRNA) (Thomson
and Dinger, 2016), mRNA with an alternative or edited 3′-UTRs
(Zhang et al., 2016), and subcellular partition of miRNAs (e.g.,
exosomes, nuclei, or cytoplasm) (Mahlab-Aviv et al., 2020).

The results of such a simulation are illustrated in Figure 1
(Peláez and Carthew, 2012). A decay rate for all genes is shown
and the non-target (blue) and the genuine targets (pink) are
signified with different dynamics and endpoints. Cell state is
defined as the retention levels (%) of the unbounded genes at the
end of the simulation run. The overall agreement of COMICS
simulator protocol with experimental results was confirmed
(Mahlab-Aviv et al., 2019).

The sensitivity of the values chosen to run COMICS was
assessed by changing the total molecules in a cell, the initial ratio
of miRNAs to mRNAs, the number of iterations required for

reaching a steady-state, and more (see detailed in Mahlab-Aviv
et al., 2019). Testing COMICS results by changing the input of
miRNA-mRNA interaction matrix (see Figure 1) is fundamental
for assessing the robustness of COMICS. To this end, we
activated COMICS under two different mRNA-miRNA pair
probabilities extracted from TargetScan and microRNA.org
(Betel et al., 2010). The latter provides a MirSVR score for
mRNA-miRNA pairs. The score is a result of a machine
learning method that was trained on numerous contextual
features allowing to rank MBS by their score for
downregulation extracted from confirmed target sites.

Figure 2 shows the results of the comparison between the use
of conservative TargetScan (see Section 2) and MirSVR scores
following 15,000 COMICS iterations. A strong correlation (0.93)
in using these alternative matrices confirmed the robustness of
the analysis (Figure 2A). This is substantiated by the large overlap
in COMICS results (at 100 k iterations) using these two
alternative interaction matrices as input (Figures 2B,C).

TarBase v8 (Karagkouni et al., 2018) compiles the current
knowledge on miRNA-target pairs from a broad range of
experimental methodologies and conditions. This resource also
includes cases on cell-type specific miRNA regulation. We
performed a COMICS run (100 k iterations) and found a
moderate correlation of the retention at the end of the run
(382 genes shared genes; Pearson correlation � 0.38, p-value �
5.3e-14). Such correlation was completely lost following miRNA-
mRNA pair randomization (Pearson correlation � 0.02).

We conclude that COMICS is quite robust to the use of a
particular interaction miRNA-MBS scores (Figure 2) and
corroborates with validated experimental knowledge on cell
regulation by miRNAs.

3.3 miRNA Expression Dominates Cell
Identity
Hundreds of cell lines were established for advancing cancer
research (Ghandi et al., 2019). Each of these cell types is

FIGURE 2 | Comparing COMICS results by applying MBS-miRNA interaction table from TargetScan and microRNA.org (A) Correlation plot following 15 k
iterations with r � 0.93. The interaction table from microRNA.org includes 1,097,065 pairs that covers 19,281 genes and 249 miRNAs, and TargetScan includes
1,183,166 pairs, 19,327 genes and 1741 miRNAs. Venn diagrams of the mRNAs (B) and miRNAs (C).

Frontiers in Molecular Biosciences | www.frontiersin.org December 2021 | Volume 8 | Article 7728524

Mahlab-Aviv et al. miRNA Combinatorics for Cell Identity

http://microRNA.org
http://microRNA.org
http://microrna.org/
https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


considered as a feature in the space of a multidimensional cell.
In recent years, mRNAs and miRNAs expression profiles
became available, thus providing a solid base to assess the
contribution of cell-specific molecular landscape to
tumorigenesis. The high correlation between biological
samples of miRNA profiles across different cell types and
platforms (e.g. (Lu et al., 2005)) was established. We utilize the
molecular landscape of established cell lines (HeLa and HEK-
293) that represent carcinoma lineages (of cervical and renal
cell, respectively) to evaluate the dependency of miRNAs
profile and COMICS outcomes.

To this end, we normalized the absolute RNA-seq data to
50 k of miRNA and 25 k of mRNA per cell and monitored
COMICS results along the run (100 k iterations). Assessment
of the miRNA regulation in the cellular context relies on: 1)
Expression of abundant miRNAs differs between cell lines
(Mahlab-Aviv et al., 2019). 2) Only a handful of miRNAs
account for 90% of the total cellular miRNA molecules in any
specific cell. Figure 3 shows the results from comparing the
trend of the gene expression by Pearson correlation across the
100 k iterations of a naïve cell and the cell in which the miRNA
profile had been switched to that of the other cell type.
Figure 3A shows the correlation between HeLa cells and
an in-silico hybrid in which the miRNA profile was
replaced with that of HEK-293 cells. Under such artificial
setting, the correlation is markedly reduced (Figure 3A, blue).
However, the reverse scenario in which the correlation
between HeLa and HEK-293 was measures (Pearson
correlation of 0.72, iteration � 0), we observed a
monotonic increase in the correlation from 0.72 to 0.81
along the simulation run. Figure 3B shows a similar trend
when the correlation of naïve HEK-293 is tested with respect
to a hybrid setting (HEK-293 with miRNA profile of HeLa).
The quantities of miRNAs in each of the two cell lines
(normalized values) are listed in Supplementary Table S1.

These results show that miRNAs largely dictate cell identity.
We conclude that the molecular composition of miRNAs
governs the dynamics and the steady state. Thus, tracing
cell behavior across the progression of the simulation is
informative.

3.4 Dynamic Gene Classes
Figure 4 shows the results from HeLa cells and following
k-means classification of genes according to their retention
profiles throughout the simulation run. Figure 4A presents
the clustering result for k � 5. We refer to each cluster as a
Dyn-class. The average behavior of the dynamic classes of all
genes is shown (total ∼750 genes). Genes are non-uniformly
associated with the different dynamic classes, with cluster #1
covering 69% of the genes and only <4% being associated with
the fast decaying cluster (cluster #5). Inspecting the decay rate
of the lower retention clusters (cluster #4 and #5, 7% of total
genes) show that despite differences in degradation rates, the
endpoint almost coincides. While cluster #1, the most stable
one, contains genes of the translation machinery, ribosomal
subunits, chaperones, and cytoskeletal components, Cluster
#5, with the lowest retention rate, contains genes that are
enriched in the annotation of transcription regulators and
splicing factors. We conclude that genes’ dynamics carries
valuable functional information while reducing the
complexity of the cell regulation model.

3.5 Exhaustive Perturbations of miRNAs
Accumulating evidence argues that an abrupt change in the
expression of specific miRNA (or a set of miRNAs) may lead
to a switch in cell identity tumorigenesis. Thus, we performed
a set of manipulations in HeLa cells using a systematic
approach covering all expressed miRNAs. We applied
COMICS simulations by in silico overexpression of each of
the 248 miRNA-MBS predictions (from TargetScan table, see

FIGURE 3 |miRNAs govern cell identity. The effect of miRNA expression of one cell type on gene expression (GE) of a different cell type is measured by Spearman
correlation of gene expression across the COMICS 100,000 iterations. (A) The correlation of HeLa regulated by its own miRNA expression profile (746 genes), with HeLa
gene expression regulated by the miRNA expression profile from HEK-293 (514 genes). (B) The correlation of HEK-293 regulated by its own miRNA expression profile
(516 genes), with HEK-293 gene expression regulated by the miRNA expression profile from Hela (514 genes). All correlation p-values are < 1e-15.
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Section 2). We multiply the basal abundance (x1) of each
miRNA family by the following factors: x3, x9, x18, x90, x300,
and x1000. For each such multiplication factor (f), final
retention was computed, and cell state at the end of the
COMICS run was monitored.

Figure 5 shows the pattern of the mRNA retention (%) for a
matrix of miRNAs (columns) and genes. The panels show Mfij
with factors x3, x9, x90, and x1000, where each of the listed
miRNAs was overexpressed by the indicated multiplication
factor. Therefore, each cell in the matrix Mfij is the final % of
retention of gene i after 100 k iterations of COMICS for the
overexpressed experiment of miRNA j (Figure 4). As the Mfij
matrix reveals, genes are naturally clustered by their final
retention level. For example, top “red” rows represent genes
that were very sensitive to manipulation by any miRNA type
(red � 0% retention; purple � 100% retention).

Several observations can be drawn from inspecting these matrices
(Figure 5): 1) Large number of coordinated behaviors is evident. This
is reflected by observing monochromatic rows across most miRNA
columns. 2) As the overexpression factor increases (towards x1000),
the pattern of the columns (i.e., specific miRNAs) becomes more
informative and distinct. This is qualitatively seen as the increasing
number of monochromatic columns at x90 and x1000 relative to
their number in themoderate overexpression setting (x3 and x9).We
present the result of the miRNA profile for overexpression of x300
(normalized) for 248 different miRNAs (Supplementary Table S2).

3.6 Perturbation by miRNA Overexpression
of Pair Ratio Classes
Given the observation that genes behave similarly for their
retention level at a broad range of Mfij, we tested the

possibility of classifying genes by their sensitivity to miRNA
abundance.

Following the relative changes of each gene retention by each
miRNA, and an overexpression factor, we computed the retention
ratio between any overexpression multiplications. Formally, we
computed the value of Mfij/Mkij. This is the ratio of the retention
of a specific gene (simulation at 100 k iterations) in a specific
miRNA overexpressed by factor f, and its retention in the same
miRNA overexpressed by factor k (Figure 6A). For visualization
purposes, a discretization was applied for which ratio is > 2 folds.
It implies that the retention of genes i in the overexpression of
miRNA j by factor f is higher than its retention where miRNA j
was overexpressed by factor k (Figure 6B, blue). However, a ratio
that is < 0.5 implies that in factor f the gene is more prone to
degradation for factor k (Figure 6B, red). Clusters with coherent
behavior with respect to the ratio of two consecutive
overexpression ratios were defined as OXR-classes.

Figure 6C illustrates the retention ratios of three selected
genes (for illustrative purposes). It is shown that following
overexpression of hsa-mir-155 the gene TPI1 (Triosephosphate
Isomerase 1) remains stable throughout all tested retention ratios.
As expected, TPI1 belongs to the dynamic class of genes that are
extremely stable in the system (according to the Dyn-class).
Different behavior is observed for ITGB1 (Integrin subunit
beta 1) whose expression is very unstable and sensitive to a
relatively minor change in amounts (the ratio of x18/x9). The
non-monotonic behavior of ITGB1 and DSTN (Destrin, actin-
depolymerizing factor) are evident.

Figure 6D illustrates the gene sensitivity as measured by the
retention rate of different genes in the case of hsa-mir-155 for 6
pairs of factors: (x1, x3), (x3, x9), (x9, x18), (x18, x90), (x90,
x300), and (x300, x1000). The results of COMICS retention for a

FIGURE 4 | Dynamic classification and analysis. (A) Dynamic classes of Hela cells along 100 k iterations of a single simulation run. (B) The distribution of number of
MBS per gene in the 5 dynamic classes (Dyn-class).
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specific miRNA overexpression were clustered by the K-means
clustering algorithm (a cluster must contain >5 genes). The
analysis reveals that OXR-classes display different sensitivity
patterns for the pair-overexpression retention ratio. Figure 6D
shows the partition of all genes into 5 clusters (marked #1 to #5).
The majority of the genes (∼71%, cluster #1, colored grey) are
indifferent to the levels of overexpression factors. However, the
rest (∼29%) of the genes are sensitive to some extent to the
overexpression factors that were used. For example, cluster #3
(Figure 6D, yellow) contains genes whose retention rate is
drastically decreased as the overexpression factor increases (f).
It is satisfying to note that most hsa-mir-155 expressed target
genes (52%) belong to cluster #3.

The illustration of Figure 6D was extended to show miRNAs
that are candidates for strong cell-behavior dependency. Figure 7
shows 4 selected miRNAs according to their OXR-class across a

6-consecutive matrix ratio. The selected represented miRNAs are
expressed at a different order of magnitudes. miRNAs that are
highly expressed (e.g., hsa-mir-7, 4.2% of total miRNA in the
cell), and others that are were analyzed and compared to low level
expressing miRNA (hsa-mir-123, 0.006%).

Figure 7 exhibits several behaviors associated with the OXR-
classes: 1) For all miRNAs, the largest OXR-class includes
82–91% of the analyzed genes. This cluster is quite stable,
implying that most genes are insensitive to perturbation
according to OXR. 2) The OXR-class that includes most
targets of the subjected miRNA, a monotonic decrease is
observed with a maximal effect seen for a ratio of the highest
overexpression pair. This is shown for hsa-mir-7 in cluster #2.
Note that for some miRNAs, no target is detected in the list of the
analyzed genes (e.g., hsa-mir-92). 3) Some OXR-classes show a
non-monotonic behavior that cannot be trivially anticipated, as

FIGURE 5 | Retention values following in silico overexpression from HeLa cells. Rainbow color code: red � 0 to purple � 100% retention level at the end of the
simulation run (100 k iterations). Each panel consists of 248 miRNAs (columns) and 750 genes (rows). The overexpression factors are indicated (x3 x9, x90, x1000). The
miRNAs (columns) are sorted alphabetically, matrices are clustered by genes.
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shown for hsa-mir-99 cluster #4. 5) Some clusters show extreme
increases or decreases in retention rates. The gene sets in such
clusters exhibit high sensitivity to a specific miRNA abundance,
as demonstrated for hsa-mir-132, cluster #3. Figure 7 illustrates
OXR-classes for 6-consecutive ratio-matrices. A complete
comparison and analyses are beyond this illustration. It
includes each miRNA (total 248), for 21 pairs the 7
overexpression factors tested.

4 DISCUSSION

The detailed quantitative considerations of miRNA and mRNA
govern the dynamics and the steady-state of a gene expressed in
cells (Bosson et al., 2014; Hausser and Zavolan, 2014). Cells’
behavior cannot be extracted from the direct measurements of
miRNAs or mRNAs (Landgraf et al., 2007; Arvey et al., 2010).
Still, insights on the regulation of gene expression by miRNAs in
the complexity of the cells are improving as more experimental
results become available (e.g., CLIP-Seq, CLASH (Li et al., 2014))

and the maturation of single-cell technologies. Most of the
knowledge about specific miRNA in cancer samples relies on
in vitro studies on the effect on an oncogene, tumor suppressor, or
transcription factors. Despite progress in data collection that
proposed a specific role of miRNAs in tumorigenesis, the
underlying rules for regulation by miRNAs in the context of
cell identity are still fragmented (Erhard et al., 2014).

The OXR-classes aim to capture the miRNA-dependent
system dynamics (rather than the gene expression dynamics).
We were able to cluster genes to their OXR-classes by performing
hundreds of simulations that yield a robust assessment of cell
states. For most instances, under all conditions, the majority of
the expressed genes are not sensitive to the matrix-ratio measures.
Namely, the final retention that is achieved in all conditions of
overexpressed miRNAs is unchanged (Figure 7, y-axis � 0). In a
smaller set of genes, a switch in the abundance of a specific
miRNA may dramatically change target regulation (see examples
in Figures 7B,D).

In this study, we consider two sets of gene classes: dynamic-
classes (Dyn-class, Figure 4) and overexpression-ratio ratio

FIGURE 6 | Overexpression ratio (OXR) classes. (A) Scheme for the presented Mfij/Mkij ratio retention matrix. (B) Ratio matrix for x90/x9 and a zoon-in for a small
section. Colors only marked genes that show a significant ratio difference (by the predetermined differential folds of >2, and <0.5). (C) Examples of 3 selected genes
according to the retention ratio from the 6-consecutive ratio-matrices. (D) A case study of hsa-mir-155 manipulation via OXR-clusters. A measure of the genes
associated with five OXR-classes represented for 6-consecutive ratio matrices (x-axis). The numbers of expressed targets of hsa-mir-155 that are included in each
OXR-class (including the numbers of direct targets) are indicated.
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(OXR-classes, Figures 6, 7). These two complementary types of
classes capture different aspects of miRNA regulation. Results
from the dynamic class show that genes which are likely to be
successfully targeted are those with a relatively large number of
MBS at their 3′-UTR (Figure 4B). However, Dyn-classes #2 to #5
are not distinguished by such features. Specifically, cluster #2, #3,
#4, #5 are associated with 50.3, 71.6, 63.3, and 47.6 average MBS
per gene.

There are numerous limitations in using COMICS to
determine the sensitivity of cells to combinatorial regulation.
For example, we assume all the measured miRNAs are
accessible for regulation by miRNAs. However, a substantial
fraction is not available in the cell cytosol. Partition of miRNAs
in subcellular location is not addressed by our model (Mahlab-
Aviv et al., 2020). Moreover, the TargetScan interaction table is
restricted to major transcripts, and alternatively, spliced
variants that potentially affect MBS are ignored. The
addition of cell-specific genes list and gene versions will
benefit the refinement of classification.

It was shown that miRNA profile is carefully regulated to
promote and stabilize cell fate choices (Shenoy and Blelloch,
2014). Unfortunately, many experiments that use overexpression
(and other perturbations like RNAi) do not measure or report the
extent of miRNA overexpression. We have shown (Figure 5) that
different genes exhibit different level of response to the absolute
amount of the studied miRNA.We anticipate that inconsistencies

among experimental results may be attributed to the missing
overexpression factors.

Notwithstanding 2 decades of research in the miRNA field,
basic principles remain unknown.Most current knowledge on the
specificity of the miRNA-mRNA regulatory network is based on
computational prediction tools (Peterson et al., 2014) that suffer
from a flood of false positives (Pinzón et al., 2017). Experimental
methodologies (e.g. CLASH and CLIP-Seq) that are based on
capturing the interactions followed by sequencing show poor
reproducibility (Lu and Leslie, 2016). miRNA regulation is often
cell specific and changes in response to change in cellular
conditions (as in differentiation, infection etc). Despite such
variability, COMICS results agree with TarBase v8 (Spearman
correlation � 0.38, p-value � 5.3e-14), arguing that the simplistic
model implemented in COMICS provide valuable information
that was further used to classify genes to various resultion classes.
We suggest that a representation of genes by their Dyn- and
OXR-classes can yield an accurate yet simple model for miRNA
regulation. This study illustrates the use of COMICS results for
gene classification. It further stresses the importance of a
quantitative view for miRNA regulation modeling.

In pathological cells, such as in cancer, a quantitative change in
the amounts of miRNAs is often the most significant molecular
change observed in the early phase of cancer development (Peng
and Croce, 2016). Assessing changes in the behavior of
representative genes from OXR-classes could benefit cancer

FIGURE 7 | Example of OXR classes for different miRNAs, following manipulations of (A) has-mir-92, (B) hsa-mir-7, (C) hsa-mir-99, and (D) hsa-mir-132. The
numbers of the targets of each testedmiRNA are indicated (see color legend). miRNA expression (% of all miRNA in the cell) is marked. The values at y-axis are expressed
by log2.
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diagnosis. Some OXR-classes may serve as an indicator for a shift
in cell states and identity. In all our classification approaches, only
a very small number of coherent gene classes are reported. Cells
likely display unexpected robustness concerning miRNA
regulation (Ebert and Sharp, 2012). Revisiting our model on
cell line encyclopedia will allow generalizing our observations to
the collection of cancerous cells (primary and established)
(Ghandi et al., 2019). The ability to classify genes according to
dynamic overlooked features carries its potential to improve cell
modeling and the understanding of cellular miRNA regulation in
health and disease.
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