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Abstract: Species belonging to the bacterial phyla Bacteroidetes and Firmicutes represent over 90% of
the gastrointestinal microbiota. Changes in the ratio of these two bacterial groups were found to
have contrasting health effects, including obesity and inflammatory diseases. Despite the availability
of many bacterial genomes, comparative genomic studies on the gene pools of these two bacterial
groups concerning cytochrome P450 monooxygenases (P450s), ferredoxins, and secondary metabolite
biosynthetic gene clusters (smBGCs) are not reported. This study is aimed to address this research
gap. The study revealed the presence of diverse sets of P450s, ferredoxins, and smBGCs in their
genomes. Bacteroidetes species have the highest number of P450 families, ferredoxin cluster-types,
and smBGCs compared to Firmicutes species. Only four P450 families, three ferredoxin cluster types,
and five smBGCs are commonly shared between these two bacterial groups. Considering the above
facts, we propose that the contrasting effects of these two bacterial groups on the host are partly due
to the distinct nature of secondary metabolites produced by these organisms. Thus, the cause of the
contrasting health effects of these two bacterial groups lies in their gene pools.

Keywords: Bacteroidetes; Firmicutes; Cytochrome P450 monooxygenases; ferredoxins; secondary
metabolite gene clusters; human gut microbiome; human health

1. Introduction

The bacterial phylum Bacteroidetes consists of gram-negative bacteria, primarily de-
graders of carbohydrates [1,2]. They provide energy for their host by breaking down the
polysaccharides that their host cannot digest [1,2]. These bacterial species can be found in
all ecosystems, including fresh water and soil [2,3]. In humans, they are predominantly
found in the gastrointestinal tract, inhabiting the distal gut [4]. They play a significant
role in the gastrointestinal tract by interacting with the gut immune system, inhibiting the
colonization of potential pathogens [5]. Gut Bacteroidetes species produce acids, such as
acetic acid, propionic acid, and succinic acid, as final products of their metabolism, which
help kill the pathogens [5].

This bacterial phylum consists of 130 genera [6]; Bacteroides is known for producing
skimmed or low-fat milk and displaying postbiotic activities, such as promoting health and
well-being [7]. Zobellia galactanivorans, a flavobacterium, degrades algal biomass [8]. Spiro-
soma species produce valuable human compounds with neuroprotective, anti-tumorigenic,
and anti-inflammatory properties, among others [9]. Some of the secondary metabolites
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produced by these species and their biological properties are listed in Table 1. In addition
to the many beneficial bacteria, this phylum also has pathogenic species. Species belong-
ing to the genus Empedobacter are human pathogens. In humans, they cause meningitis,
endophthalmitis, urinary tract infection, and bacteremia [10,11]. Bacteroides fragilis and
other members of the Bacteroides genus were shown to be the primary causes of anaerobic
septicemia [12]. The genus Elizabethkingia consists of novel species such as E. anophelis and
E. meningosepta, which are gram-negative, non-spore-forming, nonmotile, and rod-shaped,
and depict natural resistance to multiple known antibiotics [13].

Table 1. Secondary metabolites produced by Bacteroidetes species and their biological functions.

Species (Source) Secondary Metabolite Biological Function References

Spirosoma spp. and
Sphingobacterium sp. 21 Terpene

Neuroprotective,
anti-tumorigenic, and

anti-inflammatory
[9,14]

Flavobacterium spp. Siderophore Iron scavenger and
transporter [15]

Spirosoma spp.; Pedobacter
cryoconitis;

Sphingobacterium sp. 21 and
Chitinophaga pinesis

T1PKS

Useful as
agrochemical and
pharmaceutical

compounds

[9,16]

Chinophaga pinesis;
Flavobacterium johnsoniae

UW10
Arylpolyene Shields bacteria from

reactive oxidation [17,18]

Spirosoma spp.;
Flavobacterium spp. T3PKS

Involved in
hypocrellin and

kanamycin synthesis
[9,19]

Spirosoma spp.;
Bacteroides spp. Bacteriocin Anti-bacterial activity [9,20]

Prevotella spp. Resorcinol Used to treat skin
disorders [21]

Spirosoma spp. NRPs

Antibiotic,
immunosuppressant,

and cytotoxic
properties

[9]

Spirosoma spp. Lanthipeptide
Antimicrobial,
antifungal, and

antiviral activities
[9]

For quite some time, Bacteroidetes, in association with other bacterial species belonging
to the phylum Firmicutes, have been in focus due to their impact on human health. These
two bacterial groups represent 90% of the gut microbiota [22], indicating their importance in
human health. As expected, due to their abundance in the human gut, the ratio of Firmicutes
and Bacteroidetes was found to have contrasting effects on human health, including in
obesity and inflammatory disease [23,24], albeit with some uncertainties [25]. These two
bacterial groups produce secondary metabolites that ultimately affect human health.

Despite the availability of many species genomes belonging to these two phyla, com-
parative analyses of the gene pools responsible for these two bacterial groups’ behavior
and health effects on humans are scarcely reported. Genome-wide comparative analysis
of a few species revealed that Firmicutes species have smaller genomes and a dispropor-
tionately smaller number of glycan degrading enzymes than Bacteroidetes species [26]. A
subsequent study involving 60 Bacteroidetes and 197 Firmicutes on host-synthesized mucin
glycans revealed different glycosyl hydrolases patterns between Bacteroidetes and Firmicutes,
indicating some preference for cleaved mucin glycans in the host [27]. Analysis of chicken
caecum gut microbiome revealed that Bacteroidetes and Firmicutes follow different strategies



Int. J. Mol. Sci. 2022, 23, 5057 3 of 16

for colonization and coexistence in the intestinal tract [28]. A study detailing the genomic
blueprint of the human gut microbiota revealed a large number of uncultured Firmicutes
compared to Bacteroidetes [29]. The study also reported novel secondary metabolite biosyn-
thetic gene clusters (smBGCs) coding for undiscovered natural compounds produced by
the intestinal microbiota [29].

In a recent study, Firmicutes species were found to have a large number of cytochrome
P450 monooxygenases (CYPs/P450s) [30] and their redox proteins, ferredoxins [31], in their
genomes. P450s are heme–thiolate enzymes known to play a role in an organism’s primary
and secondary metabolism. These enzymes are found in species across the biological
kingdoms, including in nonliving entities such as viruses [32,33]. It is now well-established
that the P450 contingent of organisms is indicative of their lifestyle, because the lifestyle
of an organism was found to affect the P450 gene pool in its genome [30,34–42]. P450s
were found to help organisms adapt to ecological niches, and organisms with parasitic,
commensal, or adapted living on simple carbon sources were found to have the lowest num-
ber of P450s in their genome [30,34–41]. P450s need electrons to perform their enzymatic
reactions, and these electrons are supplied by redox proteins such as ferredoxins [43,44]. A
recent study revealed many ferredoxins in Firmicutes species [31]. The study also suggested
unique ferredoxins in Firmicutes species indicative of characteristics of the species in this
phylum [31]. It is well-known that P450s, due to their regio- and stereo-specific oxidation
capabilities, play a crucial role in producing secondary metabolites per se, contributing to
the diversity of the secondary metabolites in an organism [45,46]. In a recent study, many
P450s were part of smBGCs, indicating their role in secondary metabolite production in
Firmicutes species [30].

Considering the above facts, especially the P450s and ferredoxins gene pools as charac-
teristics of an organism’s lifestyle and their role in the production of secondary metabolites,
in this study, we selected these two sets of genes for comparative analysis of the gene
pools of Bacteroidetes and Firmicutes. These two bacterial groups are known to produce
secondary metabolites (Table 1) [30], and it is well-known that these secondary metabolites
affect human health [47–49]. Thus, we performed a comprehensive comparative analysis of
smBGCs to understand the rationale behind these two bacterial groups’ distinct effects on
human health regarding their secondary metabolism.

2. Results and Discussion
2.1. Only a Few Bacteroidetes Species Have P450s

Genome-wide analysis of P450s in 334 Bacteroidetes species belonging to 130 genera
revealed the presence of P450s only in 77 Bacteroidetes species, indicating most of the
species do not have P450s in their genome (Figure 1 and Table S1). This shows only 23% of
Bacteroidetes species have P450s in their genomes. Interestingly, 23% of Firmicutes species
had P450s in their genomes [30], indicating most of the species belonging to these two phyla
do not have P450s. Analysis of Bacteroidetes genera disclosed that of the 130 genera, species
belonging to 44 genera have P450s in their genomes (Figure 1 and Table S1). A point to be
noted is that only a few species genomes are available in the 130 genera. Sometimes only a
single species genome is available, and thus future availability of more species genomes
will provide more accurate information on P450s in these genera (Figure 1 and Table S1).
However, this study analyzed a significant number of species belonging to genera such
as Bacteroides, Capnocytophaga, and Prevotella, and no P450s were found, suggesting that
species in these genera probably do not have P450s (Figure 1 and Table S1).

Analysis of P450s in 77 Bacteroidetes species revealed the presence of 98 P450s in
their genomes (Figure 2 and Table S1). The P450 count in the Bacteroidetes species ranged
from a single P450 to three P450s; Zunongwangia profunda and Flavivirga eckloniae had the
highest number of P450s (three P450s) in their genomes (Table S1). Bacteroidetes species
were found to have the highest average number of P450s in their genomes compared to
Gammaproteobacterial species, but the lowest compared to other bacterial species (Table 2).
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Bacteroidetes species P450s identified in this study and their protein sequences and species
are presented in Supplementary Dataset S1.
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Table 2. Comparative analysis of key features of P450s and their association with secondary
metabolism between Bacteroidetes species and different bacterial species. Abbreviations: No.: number,
BGCs: biosynthetic gene clusters.

Bacteroidetes
Species

Firmicutes
Species

Gammaproteobacterial
Species

Streptomyces
Species

Mycobacterial
Species

Cyanobacterial
Species

Total no. of
species analyzed 334 972 1 261 203 60 114

No. of species
with P450s 77 229 169 203 60 114

No. of P450s 98 712 277 5460 1784 341

No. of families 21 14 84 253 77 36

No. of
subfamilies 28 53 105 698 132 79

Dominant P450
family CYP1103 CYP107 CYP133 CYP107 CYP125 CYP110

Average no. of
P450s 1 3 0.2 27 30 3

P450 diversity
percentage 0.28 0.01 0.18 0.02 0.07 0.09

No. of P450s part
of BGCs 8 126 49 1231 204 27

Percentage of
P450s part
of BGCs

8 18 18 23 11 8

Reference(s) This work [30] [39] [50,51] [50,52] [35]

2.2. Bacteroidetes Species Have the Highest P450 Diversity

Based on the International P450 Nomenclature Committee rules, i.e., percentage iden-
tity of >40% for a family and >55% for a subfamily [53–55], and following the phylogenetic
analysis of P450s, where P450s belonging to the same family are grouped (Figure 2),
98 P450s of Bacteroidetes species can be grouped into 21 P450 families and 28 P450 sub-
families (Table 3). The number of P450 families in Bacteroidetes species was found to be
higher compared to Firmicutes species (Table 2). However, the number of P450 families in
Bacteroidetes species was lowest compared to Gammaproteobacterial species, mycobacterial
species and cyanobacterial species, and Streptomyces species (Table 2). The comparative
analysis of P450 diversity percentage among different bacterial groups revealed that Bac-
teroidetes species have the highest P450 diversity and Firmicutes species have the lowest
P450 diversity (Table 2).

Among P450 families, the CYP1103 has the highest number of members, with 29 P450s
contributing 30% of total P450s in Bacteroidetes species (Table 3), followed by CYP236
(20 P450s contributing 20%), and CYP1144 (10 P450s contributing 10%) (Table 3). The
number of members in the remaining 18 P450 families ranged from one to eight members
(Table 3). This indicates that the P450 families CYP1103, CYP236 and CYP1144 were
expanded in Bacteroidetes species. The P450 family expansion was also observed in other
bacterial species belonging to Firmicutes [30] and Gammaproteobacteria [39]. Comparative
analysis of dominant P450 families across different bacterial species revealed that the
CYP107 family was dominant in Firmicutes and Streptomyces species (Table 2). In contrast,
different P450 families were prevalent in other bacterial groups (Table 2). Interestingly,
P450 families such as CYP102, CYP107, and CYP109 had only one P450 each in Bacteroidetes
species, although these are quite large families in other species [30,35,50–52]. The analysis
of the P450 subfamilies revealed that 12 out of 21 P450 families had a single subfamily
(Table 3). The P450 families with the most subfamilies were CYP1103 and CYP152, with
three subfamilies each (Table 3). They were followed by P450 families such as CYP1099,
CYP1209, and CYP1252, each having two subfamilies (Table 3). A particular subfamily
was dominant when analyzing the P450 subfamilies in a specific family. In CYP1103 and
CYP1252 families, the subfamily ‘A’ was predominant, and in the CYP152 family, the
subfamily ‘AP’ was dominant (Table 3). The heat map analysis of P450 family profiles
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revealed no P450 family conserved across the Bacteroidetes species (Figure 3). However,
based on the heat-map profile of P450 families, the P450 families CYP1103 and CYP236
were found to have co-presence in eight Bacteroidetes species (Figure 3).

Table 3. Comparative analysis of P450 families and subfamilies in Bacteroidetes species.

P450 Family Count Percentage P450 Subfamily Count

CYP1103 29 30 A 13

B 4

C 12

CYP236 20 20 A 20

CYP1144 10 10 A 10

CYP1209 8 8 A 6

C 2

CYP1252 5 5 A 4

B 1

CYP152 5 5 A 1

A.P. 3

AQ 1

CYP1099 4 4 A 2

C 2

CYP288 3 3 B 3

CYP1072 2 2 A 2

CYP102 1 1 AQ 1

CYP1071 1 1 A 1

CYP107 1 1 DB 1

CYP109 1 1 AE 1

CYP1139 1 1 B 1

CYP1318 1 1 B 1

CYP2220 1 1 A 1

CYP2230 1 1 B 1

CYP2312 1 1 A 1

CYP2726 1 1 A 1

CYP2727 1 1 A 1

CYP2728 1 1 A 1

2.3. Bacteroidetes-, and Firmicutes-Species Have Diverse P450 Families in Their Genome

The P450 family level comparative analysis revealed that only four P450 families are
commonly shared between Bacteroidetes- and Firmicutes-species (Figure 4), indicating these
two bacterial groups have a diverse set of P450s in their genomes. In addition to this,
the number of members in the commonly shared P450 families was found to be highly
expanded in Firmicutes species, whereas in Bacteroidetes species, one (CYP102, CYP107,
CYP109) to five members (CYP152) are present (Figure 4). This suggests that these two
bacterial groups have different P450s in their genomes, indicating that P450s play different
roles in their physiology, including producing different secondary metabolites.
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2.4. Bacteroidetes Species Have a Large and Diverse Number of Secondary Metabolite BGCs

The analysis of secondary metabolite biosynthetic gene clusters (smBGCs) revealed
many smBGCs in Bacteroidetes species compared to Firmicutes species (Figure 5). In total,
269 Bacteroidetes species have 1297 smBGCs, with an average of 4.8 smBGCs in their genome,
whereas 229 Firmicutes species have 126 smBGCs, with an average of 0.5 smBGCs in their
genome, indicating the lowest number of smBGCs in Firmicutes species. This suggests
that Bacteroidetes species produce more secondary metabolites compared to Firmicutes
species. Analysis of smBGCs revealed the presence of 30 cluster types in Bacteroidetes
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species, compared to only 15 cluster types in Firmicutes species (Figure 5). This further
indicates that Bacteroidetes species produce numerous highly diverse secondary metabolites
compared to Firmicutes species.
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Among 30 types of smBGCs found in Bacteroidetes species, terpene was dominant,
followed by T1PKS (Type I PKS (Polyketide synthase)), arylpolyene (Aryl polyene cluster),
T3PKS (Type III PKS) (Figure 5). Altogether, these four cluster types contribute to 60%
of smBGCs in Bacteroidetes species (Figure 5). Among 15 types of smBGCs found in
Firmicutes species, Transatpks-Nrps (Trans-AT PKS- Non-ribosomal peptide synthetase
cluster) was dominant, followed by Nrps-Transatpks-Otherks and Transatpks (Figure 5).
The smBGCs abbreviations used here are the standard abbreviations that were proposed by
anti-SMASH [56].

The comparative analysis of cluster types revealed that Bacteroidetes species and Firmi-
cutes species only share six cluster types, indicating the distinct nature of smBGCs between
these two bacterial groups (Figure 5). However, the number of smBGCs in these six cluster
types was found to be very different between these species. In the case of the terpene
cluster type, 332 smBGCs were found in Bacteroidetes species, whereas only three smBGCs
were found in Firmicutes species. The difference was also evident for cluster types T3PKS,
NRPS, lanthipeptide, and NRPS-like, where many smBGCs were found in Bacteroidetes
species. In contrast, smBGCs were limited to a single digit in Firmicutes species (Figure 5).
Most of the smBGCs have no similarity to known smBGCs, indicating Bacteroidetes species
smBGCs encode novel secondary metabolites.

Considering the above facts, we propose that the contrasting effects of these two
bacterial groups on hosts and organisms are partly due to the distinct nature of secondary
metabolites produced by these organisms.

2.5. Bacteroidetes Species P450s Has a Minor Role in Secondary Metabolism

Analysis of the P450s part of smBGCs revealed that only eight P450s (8%) are part
of these clusters (Table 4), indicating P450s play a minor role in secondary metabolism in
Bacteroidetes species. In contrast to Bacteroidetes species’ P450s, 18% of Firmicutes species’
P450s were part of smBGCs (Table 2), indicating Firmicutes species P450s play a significant
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role in secondary metabolism. The percentage of the P450s part of smBGCs in Bacteroidetes
species was found to be the lowest compared to other bacterial groups (Table 2). Out of the
21 P450 families, only 5 formed part of the smBGCs in Bacteroidetes species (Table 4). Among
these families, four members were from the CYP1209 family. Only a single member from
each of the P450 families, CYP109, CYP109, CYP1139, and CYP1318, was part of smBGCs
(Table 4). The connection between Bacteroidetes species’ P450 families and secondary
metabolite cluster type revealed that the P450 family CYP1209 is mainly associated with
biosynthetic gene cluster terpene (Table 4). Two P450s, CYP109 and CYP107, from the same
species, Chitinophaga pinensis, were part of different cluster types (Table 4), indicating their
association in producing different secondary metabolites.

Table 4. Comparative analysis of P450s involved in secondary metabolism in Bacteroidetes species.
The cluster type names/abbreviations used in the table are the standard abbreviations proposed by
anti-SMASH [56].

Species Name P450 Cluster Type

Chitinophaga pinensis CYP109 terpene

CYP107 NRPS

Pedobacter cryoconitis CYP1139 lanthipeptide

Sphingobacterium sp. 21 CYP1318 NRPS-like

Spirosoma linguale CYP1209 terpene

Spirosoma radiotolerans CYP1209 terpene

Spirosoma montaniterrae CYP1209 terpene

Spirosoma pollinicola CYP1209 terpene

2.6. Bacteroidetes- and Firmicutes-Species Have Highly Diverse Ferredoxins in Their Genomes

Genome data mining and annotation of ferredoxins in 104 Bacteroidetes species re-
vealed the presence of 269 ferredoxins in their genomes (Figure 6 and Table S2). Among Bac-
teroidetes species, Tenacibaculum jejuense has the highest number of six ferredoxins (Table S2).
Bacteroidetes species were found to have double the number of ferredoxins in their genomes
compared to Firmicutes species, as the average number of ferredoxins was found to be 2.6
in Bacteroidetes species compared to 1.2 in Firmicutes species [30]. The 269 ferredoxins found
in Bacteroidetes species can be grouped into five Fe-S cluster types: 2Fe-2S, 3Fe-4S, 4Fe-4S,
2[4Fe-4S], and 2[4Fe-4S]Alv (Figure 6 and Table S2). 7Fe-8S cluster-type ferredoxins were
not found in Bacteroidetes species analyzed in this study. Of the five Fe-S cluster types found
in Bacteroidetes species, the 2Fe-2S was the most abundant, with 136 ferredoxins, followed
by 2[4Fe-4S]Alv, with 107 ferredoxins (Figure 6). In comparison to Bacteroidetes species,
Firmicutes species had only four Fe-S cluster types, such as 2Fe-2S, 4Fe-4S, 7Fe-8S, 2[4Fe-4S],
in their genomes (Figure 6), indicating the absence of 3Fe-4S and 2[4Fe-4S]Alv Fe-S cluster
ferredoxins. Further differences were observed concerning the number of ferredoxins in
the common Fe-S cluster types found in these two bacterial groups (Figure 6). Bacteroidetes
species have more 2Fe-2S cluster ferredoxins, whereas Firmicutes species have more 4Fe-4S
and 2[4Fe-4S] cluster ferredoxins (Figure 6). Overall, 4Fe-4S cluster-type ferredoxins and
2[4Fe-4S]Alv cluster-type ferredoxins were most abundant in Firmicutes species and Bac-
teroidetes species, respectively (Figure 6). This suggests that these two bacterial groups have
different preferences for Fe-S cluster type.

Based on the amino acid spacing pattern analysis between the cysteine amino acids
of the Fe-S cluster binding motif [31], 136 and 97 2Fe-2S ferredoxins of Bacteroidetes and
Firmicutes species can be grouped into 5 and 11 subtypes (Figure 6 and Table S3). Among
Bacteroidetes species 2Fe-2S ferredoxin subtypes, subtype 18 has the most ferredoxins, fol-
lowed by subtype 4 (Figure 6), indicating these species highly prefer subtype 18 ferredoxins.
The comparative analysis revealed that three subtypes were shared between the Bacteroidetes
species and the Firmicutes species (Figure 6), suggesting the common ancestral origin of



Int. J. Mol. Sci. 2022, 23, 5057 10 of 16

these ferredoxin subtypes [31]. Six 3Fe-4S ferredoxins found in Bacteroidetes species can be
grouped into a single subtype 8 (Table S3).
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Eleven 4Fe-4S ferredoxins found in Bacteroidetes species can be grouped into three
subtypes (Figure 6 and Table S3). Of the three subtypes, subtype 13 ferredoxins were
found in higher numbers (Table S3). Contrary to the 2Fe-2S ferredoxin subtypes, no
common 4Fe-4S subtypes were found between these two bacterial groups (Figure 6),
indicating that 4Fe-4S ferredoxins are highly diverse in these two bacterial groups. Nine
2[4Fe-4S] ferredoxins found in Bacteroidetes species can be grouped into two subtypes
(Table S3). Of the two subtypes, subtype 34 ferredoxins were found in higher numbers
(Table S3). There were no common 2[4Fe-4S] subtypes between these two bacterial groups
(Table S3). The 107 2[4Fe-4S]Alv ferredoxins of Bacteroidetes species were grouped into two
subtypes (Table S3). Of the two subtypes, subtype 11 has more ferredoxins than subtype 12
(Table S3). Ferredoxin sequences identified in this study and their subtypes were presented
in Supplementary Dataset S2.

3. Materials and Methods
3.1. Species and Database

Genomes for 334 Bacteroidetes species, available for public use at Kyoto Encyclopedia
of Genes and Genomes (KEGG) [6], were used in the study for data mining of P450s,
ferredoxins, and smBGCs. Information on genera, species names, species codes, and their
genome IDs is presented in Table S1.

3.2. Genome Data Mining and Annotation of P450s

Genome data mining and annotation of P450s were carried out using the standard
procedure described previously by our laboratory [30,39]. Briefly, the proteome of each
Bacteroidetes species was acquired from KEGG [6] and submitted to the NCBI Batch
Web CD-Search Tool [57]. The result was analyzed and proteins that belong to the P450
superfamily were selected and searched for the presence of characteristic P450 motifs, EXXR,
and CXG [58,59]. Proteins that were short in amino acid length and lacked one of the motifs
were regarded as P450 fragments, and these P450 fragments were not considered for further
analysis. The selected P450s were annotated (assigning the P450 family and P450 subfamily)
following the International P450 Nomenclature Committee rules [53–55]. Proteins with a
percentage identity greater than 55% were classified under the same subfamily, whereas
those with a percentage identity greater than 40% were classified under the same family.
Proteins with a percentage identity lower than 40% were classified under a new family.
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3.3. Genome Data Mining and Annotation of Ferredoxins

Genome data mining and annotation of ferredoxins in Bacteroidetes species with P450s
were carried out using the procedure recently published by our laboratory [31]. Briefly, each
of the Bacteroidetes species genomes was blasted using ferredoxins belonging to different
Fe-S cluster types (Table S4), and the hit protein sequences were collected. The hit protein
sequences were then subjected to protein BLAST at the National Center for Biotechnol-
ogy and Information (NCBI) [60] against the Protein Data Bank (PDB) database [61] and
analyzed for the presence of characteristic motif of ferredoxins at the Pfam database [62],
InterPro database [63], and NCBI Conserved Domains Database (C.D.D.) [64]. Proteins that
had a hit against ferredoxins at the PDB database and have ferredoxin motifs, as indicated
by different databases, were selected for further annotation. Annotation of ferredoxins (as-
signing Fe-S cluster subtypes) was carried out based on the characteristic spacing patterns
between cysteine amino acids of the Fe-S cluster-binding motif as described previously [31].
Ferredoxins belonging to the new subtypes were assigned a unique subtype number in
par with the continuation of ferredoxin subtype numbers published for the species of
Alphaproteobacteria and Firmicutes [31]. Some Bacteroidetes species ferredoxins were retrieved
from the published article [65] and annotated into different subtypes. These Bacteroidetes
species names and their ferredoxins are indicated in Table S2.

3.4. Phylogenetic Analysis of P450s

Phylogenetic analysis of P450s was carried out following the procedure described
recently by our laboratory [30,39]. The phylogenetic tree of P450s was constructed using
protein sequences (Supplementary Dataset S1). Firstly, the MAFFT v6.864 [66] was used
to align the Trex web server’s protein sequences [67]. The alignments were then used to
interpret the best tree by the Trex web server [67]. Lastly, a web-based tool, VisuaLife, was
used to create, visualize, and color the tree [68].

3.5. Generation of P450 Profile Heat-Maps

The generation of the heat map profile was carried out according to the method
previously reported by our laboratory [30,39]. The data were represented as (−3) for
P450 family/subtype absence (green) and (3) for P450 family/subtype presence (red). A
tab-delimited file was imported into Mev (Multi-experiment viewer) [69]. Hierarchical
clustering using a Euclidean distance metric was used to cluster the data. P450 families
formed the vertical axis and Bacteroidetes species formed the horizontal axis.

3.6. smBGCs Analysis and P450s Identification

smBGCs and the P450s part of the smBGCs were carried out following the procedure
described by our laboratory [30,38]. Briefly, genome IDs of Bacteroidetes species (Table S1)
were submitted to anti-SMASH (antibiotics & Secondary Metabolite Analysis Shell) [56] for
the identification of secondary metabolite BGCs. Anti-SMASH results were downloaded
in gene cluster sequences and Excel spreadsheets representing species-wise cluster infor-
mation. P450s that formed part of a specific gene cluster were identified by manual data
mining of gene cluster sequences. Standard gene cluster abbreviation terminology available
in the anti-SMASH database [56] was maintained in this study.

3.7. Data Analysis

All calculations were carried out following the procedure reported previously by our
laboratory [39]. The average number of P450s was calculated using the formula: Average
number of P450s = Number of P450s/Number of species. The P450 diversity percentage
was calculated using the formula: P450 diversity percentage = 100 × Total number of
P450 families/Total number of P450s × Number of species with P450s. The percentage of
P450s that formed part of BGCs was calculated using the formula: Percentage of P450s part
of BGCs = 100 × Number of P450s part of BGCs/Total number of P450s present in species.
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3.8. Comparative Analysis of P450s, Ferredoxins, and smBGCs Data

P450s, ferredoxins, and smBGCs data for Firmicutes species were retrieved from
published articles [30,31] and used for comparative analysis. Ferredoxins proteins used for
data mining were retrieved from published articles [70–84].

4. Conclusions

Each organism belonging to a particular group is different because it has a charac-
teristic gene pool that is ultimately responsible for its behavior. This study attempts to
understand the gene pools of two different bacterial groups, Bacteroidetes and Firmicutes,
that make up more than 90% of the human gut and exert distinct effects on human health.
Based on their distinct health effects, one can expect diversity in their gene pools. As
expected, these two bacterial groups were found to have a diverse set of cytochrome
P450 monooxygenases (CYPs/P450s) and ferredoxins genes in their genome. Annotation
and classification of P450s and ferredoxins revealed that Bacteroidetes species have more
P450 families and ferredoxin subtypes than Firmicutes species. A point to note is that the
Alvin ferredoxins (2[4Fe-4S]Alv) are expanded in Bacteroidetes species, although this is
not observed in Firmicutes and Alphaproteobacterial species. This indicates gene pool
diversity in these two sets of genes in these organisms. Furthermore, very few P450s were
found to be part of secondary metabolism in Bacteroidetes species compared to Firmicutes
species. This study strongly supports the hypothesis put forward by our laboratory that
organisms’ lifestyles influence the P450 contingent in their genomes. The commensal,
pathogenic lifestyle of Bacteroidetes resulted in the loss of P450s in their genomes; a few
species have P450s in this phylum. The same phenomenon was observed in Firmicutes
species and Betaproteobacterial species. Analysis of secondary metabolites biosynthetic
gene clusters (smBGCs) revealed that Bacteroidetes species have many cluster types com-
pared to Firmicutes species, indicating that the former produces a more diverse array of
secondary metabolites. Furthermore, the smBGCs in these two bacterial groups were
distinct, indicating that these species produce different secondary metabolites and, as a
result, distinct health effects on humans. A point to note is that, unlike Firmicutes species
smBGCs [30], Bacteroidetes species smBGCs have less or almost no similarity to known sm-
BGCs indicating these clusters encode novel secondary metabolites. Results from this study
serve as a reference for further analysis of the gene pools and characterization of secondary
metabolites from these two bacterial groups. This study is the first report on a comparative
analysis of P450s, ferredoxins, and smBGCs between Bacteroidetes and Firmicutes species
species.
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