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Abstract

Background: Breast milk transmission of HIV-1 remains a major route of pediatric infection. Defining the characteristics of
viral variants to which breastfeeding infants are exposed is important for understanding the genetic bottleneck that occurs
in the majority of mother-to-child transmissions. The blood-milk epithelial barrier markedly restricts the quantity of HIV-1 in
breast milk, even in the absence of antiretroviral drugs. The basis of this restriction and the genetic relationship between
breast milk and blood variants are not well established.

Methodology/Principal Findings: We compared 356 HIV-1 subtype C gp160 envelope (env) gene sequences from the
plasma and breast milk of 13 breastfeeding women. A trend towards lower viral population diversity and divergence in
breast milk was observed, potentially indicative of clonal expansion within the breast. No differences in potential N-linked
glycosylation site numbers or in gp160 variable loop amino acid lengths were identified. Genetic compartmentalization was
evident in only one out of six subjects in whom contemporaneously obtained samples were studied. However, in samples
that were collected 10 or more days apart, six of seven subjects were classified as having compartmentalized viral
populations, highlighting the necessity of contemporaneous sampling for genetic compartmentalization studies. We found
evidence of CXCR4 co-receptor using viruses in breast milk and blood in nine out of the thirteen subjects, but no evidence
of preferential localization of these variants in either tissue.

Conclusions/Significance: Despite marked restriction of HIV-1 quantities in milk, our data indicate intermixing of virus
between blood and breast milk. Thus, we found no evidence that a restriction in viral genotype diversity in breast milk
accounts for the genetic bottleneck observed following transmission. In addition, our results highlight the rapidity of HIV-1
env evolution and the importance of sample timing in analyses of gene flow.
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Introduction

Studies of HIV-1 variants in blood indicate that regardless of

transmission route, descendents of a single virion establish

infection in the new host [1,2,3,4,5,6,7,8]. Transmitted viruses

are also distinguished by almost exclusive use of the CCR5 co-

receptor, and non-subtype B founder strains have envelopes with

shorter variable loops and fewer N-linked glycosylation sites

[6,8,9,10,11,12,13]. The factors that govern this selection are

unknown. Most transmissions occur across mucosal surfaces lined

by highly selective epithelial barriers, which produce a variety of

factors contributing to a distinct immunologic milieu. Levels of

HIV-1 in these transmitting compartments (e.g., genital fluids and

breast milk) are usually much lower than those in blood

[14,15,16], but few studies have addressed how mucosal restriction

contributes to the apparent transmission genetic bottleneck.
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Elucidating the relationship between HIV-1 strains circulating in

blood and those in mucosal transmitting compartments is

important for understanding the dynamics of transmission as well

as for the design of vaccines and other prevention strategies [17].

Breast milk transmission remains a major source of pediatric

HIV-1 infection particularly in sub-Saharan Africa, where 90% of

pediatric HIV-1 infections occur [18,19]. The content of milk is

dynamically and tightly regulated; the types and activation state of

breast milk cells, as well as antibodies, cytokines, and chemokines,

are distinct from contemporaneously obtained blood [20,21]. Even

in the absence of antiretroviral therapy, the amount of HIV-1 in

breast milk is usually 10–100 fold less than that present in plasma,

which suggests limited exchange of virus between these two sites

[14]. The degree of immunologic and biochemical compartmental-

ization between blood and milk strongly suggests that HIV-1 strains

would also be compartmentalized, i.e., there would be a restriction

of viral passage (and consequent gene flow) [22]. Tissue compart-

mentalization has been reported for other sites such as cerebral

spinal fluid, brain, the male and female genital tracts, lymphoid

cells, blood monocytes, and the lung [23,24,25,26,27,28,29].

Evidence for virologic compartmentalization in the colostrum has

been found in small ruminants [30] and SIV [31], but human

studies involving viral compartmentalization in breast milk have

been limited and contradictory [32,33,34,35].

We sought to characterize the extent to which breast milk

variants were distinct from viruses circulating in the blood. We

compared viral diversity and divergence between blood and breast

milk, as well as viral populations between the right and left breast.

We assessed whether breast milk was enriched for a ‘‘transmis-

sible’’ viral phenotype, i.e., CCR5-tropic variants, and as

previously suggested for non-subtype-B transmissions, with shorter

variable loops and fewer potential N-linked glycosylation sites

[6,8,9,10,11,12,13]. We also compared the susceptibility of plasma

and breast milk HIV envelopes to two entry inhibitors. Finally,

given HIV’s extraordinary evolutionary rates and the inherent

difficulties in obtaining samples at the time of transmission, we

investigated the relationship between sampling time and virologic

compartmentalization using five distinct algorithms.

Materials and Methods

Subject enrollment, sample collection, and processing
Samples were obtained from 13 subjects participating in the

Zambia Exclusive Breastfeeding Study (ZEBS) (Table 1). ZEBS

was a randomized clinical trial designed to assess the impact of

short-term exclusive breastfeeding on HIV-1 transmission and

child mortality [19,36]. All women signed informed consent.

ZEBS was approved by Human Subjects Committees at the

investigators’ institutions in the US (Boston University, Columbia

University, University of Alabama, Birmingham and Childrens

Hospital Los Angeles) and by the University of Zambia Research

Ethics Committee. Laboratory specimens were completely anon-

ymized and unlinked.

All of the women received single-dose nevirapine (sdNVP)

peripartum, but were otherwise antiretroviral drug (ARV)-naı̈ve.

Plasma and peripheral blood mononuclear cells (PBMC) were

separated from whole blood by centrifugation. Milk collected

separately from both breasts was centrifuged and the cell-free

supernatant analyzed [37]. None of the women had signs or

symptoms of mastitis prior to or at the time of breast milk

collection.

HIV-1 RNA levels in plasma (PL) were determined by the

Roche Amplicor assay, while breast milk levels were determined

by the Roche Ultrasensitive assay (Roche Diagnostics, Branch-

burg, New Jersey), which we previously validated for HIV

quantification in breast milk (BM) [37]. Breast milk sodium

concentrations were measured with an ion-selective electrode

(Beckman Coulter Synchron LX20: Beckman Coulter, Fullerton,

CA).

RNA extraction, reverse transcription, PCR, cloning, and
sequencing

Amplification, cloning, and sequencing of complete gp160 env

from PL and milk from each breast were performed as previously

described [6] with the following modifications. In order to avoid

resampling of the same viral template after PCR, multiple

independent PCRs were performed at limiting dilution or near-

Table 1. CD4+ T cell count at time of study entry, viral load at sequence sample time, and number of unique gp160 sequences.

Subject
ID

# Days between PL
and BM samplinga

CD4+T
cells

Plasma Viral Load
(copies/mL)

BMLb Viral Load
(copies/mL)

BMRc Viral Load
(copies/mL)

# PL
sequences

# BML
sequences

# BMR
sequences

31 0 163 131,175 4,111 2,971 11 2 8

21 0 55 242,813 20,687 14,726 10 8 13

32 0 134 235,196 3,987 10,570 13 16 10

7 0 317 75,933 25,694 17,625 12 12 8

33 0 82 437,545 1,294 1,885 13 7 10

10 0 300 663,850 23,862 387 9 11 1

34 10 172 150,449 32,131 11,274 9 8 10

17 15 291 51,349 3,448 7,518 15 5 0

35 31 419 100,187 11,940 24,440 13 6 4

14 43 94 375,319 637 1,538 13 8 9

1 102 76 300,000 11,340 74,970 9 5 6

3 115 94 206,763 3,272 3,019 11 2 10

16 141 118 211,792 20,207 18,277 17 10 12

aPL always sampled previous to BM.
bBML = Milk from the Left Breast.
cBMR = Milk from the Right Breast.
doi:10.1371/journal.pone.0010213.t001

Breast Milk HIV
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limiting dilution conditions and only one clone from each PCR

was used in the analysis [38,39]. All sequences were checked for

cross-contamination via ViroBLAST [40] against published and

local databases, and by observing that sequences from each subject

clustered separately from every other subject in a Jukes-Cantor

phylogenetic tree calculated in Seaview [41] using an alignment of

all sequences from all subjects. No evidence of sample mix-up or

contamination was observed (data not shown).

Phylogenetic analysis
Nucleotide sequences were aligned with MUSCLE v3.7 [42]

and refined manually within MacClade v4.08 software (Sinauer

Associates, Inc., Sunderland, MA). Four subtype C reference

sequences (accession numbers AY772699, U52953, U46016, and

AF067155) were included in each subject’s alignment for use as an

out-group to root the trees. Ambiguously aligned regions due to

extreme variability were excluded when calculating phylogenetic

trees. Maximum likelihood trees were calculated in PhyML [43]

using the online tool DIVER (http://indra.mullins.microbiol.

washington.edu/cgi-bin/DIVER/diver.cgi), which implemented

the evolutionary model GTR+I+G for all subjects. Diversity of

viral sequences for each tissue within each subject was calculated

in DIVER as pairwise distances under the previously estimated

maximum likelihood model between all sequences within each

tissue. Divergence of viral sequences for each tissue within each

subject was calculated as the genetic distance between each

sequence and the most recent common ancestor (MRCA) of the

examined sequences, as calculated in DIVER. Statistical compar-

isons between PL and BM diversity were performed using the two-

sample tests for comparing intra-individual sequence diversity

between populations [44] (http://www.scharp.org/users/adecamp/

diverstest/runtests.php); comparisons within each individual were

calculated using the Tpoolmedian test, which accounts for the

multiple comparisons inherent in a pairwise diversity matrix, while

the comparison between PL and BM among all of the subjects

pooled was performed with the Tsubjmean test, which treats the

averages of the pairwise distances within each individual

(accounting for multiple comparisons) as the observations.

Divergence comparisons were made using the Wilcoxon Rank

Sums test for within-individual comparisons. A generalized

estimating equations (GEE) model with exchangeable correlation

matrix was used for the pooled BM vs. PL divergence comparison,

which accounted for repeated measures from multiple individuals.

Shannon entropy scores [45] were calculated for each position in

the protein alignment using the Entropy2 software (http://www.

hiv.lanl.gov/content/sequence/ENTROPY/entropy.html).

Tests for compartmentalization
Five methods were used to determine viral sequence compart-

mentalization between PL and BM variants [46,47,48,49]. Four of

the tests were based on the topology of the phylogenetic trees; one

test relied on genetic distances between sequences. The four

phylogenetically-derived methods for detecting compartmentali-

zation were: (1) Slatkin-Maddison (SM), which determines the

minimum number of migration events between two populations

based on the tree topology; (2) Simmonds Association Index (AI),

which assesses the degree of population structure, weighting the

contribution of each internal node based on how deep it is in the

tree, and; Correlation Coefficients, either by (3) length of branches

‘‘r’’ or (4) by number of branches ‘‘rb’’. The correlation coefficients

tests examine any two sequences in a tree to determine whether or

not they originate from the same compartment by examining tree

structure and distances, i.e., the cumulative genetic distances

between sequences (the length of branches) (r), or the number of

tree branches separating the sequences (rb). The distance-based

method used was the Nearest Neighbor statistic (Snn), a measure

of how often the ‘‘nearest neighbor,’’ or sequence with the shortest

distance, from any given sequence is from the same tissue.

Permutation tests of 1000 randomizations were performed for

each type of analyses and p-values were calculated. Statistics and

compartmentalization tests were implemented in HyPhy as

described [50,51].

We also screened each alignment for recombination, since this

could confound compartmentalization [50]. For each subject in

which no compartmentalization was observed, we used a genetic

algorithm approach [52] implemented as the GARD tool in

DataMonkey (http://www.datamonkey.org/) to detect recombi-

nation breakpoints. Each non-recombinant fragment defined by

these breakpoints was then analyzed separately for compartmen-

talization using the previous methods.

We plotted the individual Snn score, Association Index,

correlation coefficients r and rb, as calculated above for each

subject, versus the number of days between PL and BM sampling,

and determined whether there was a linear correlation between

these values and the interval using the Spearman’s Rho test.

Aligned gp160 protein sequences from PL and BM were also

analyzed for tissue-specific amino acids using the Viral Epidemi-

ology Signature Pattern Analysis (VESPA) [53] (http://www.hiv.

lanl.gov/content/sequence/VESPA/vespa.html).

Envelope V3 loop genotypic prediction of NSI/SI
phenotype

The V3 loop region was analyzed to predict syncytium-inducing

phenotype via the subtype-C-specific Web PSSM [54] (http://

indra.mullins.microbiol.washington.edu/webpssm/).

Potential N-Linked glycosylation sites (PNGS) and amino
acid lengths

N-linked glycosylation sites were predicted using N-glycosite

[55] (http://www.hiv.lanl.gov/content/hiv-db/GLYCOSITE/

glycosite.html). The number of amino acids in full-length gp160

and within specific regions of gp120 was tallied for each sequence.

Statistical comparisons between PL and BM in each individual

were calculated using the Wilcoxon Rank Sums test, while

statistical comparisons between PL and BM for pooled data were

performed using a Generalized Estimating Equations (GEE) model

accounting for repeated measures from multiple subjects.

Nucleotide sequence accession numbers
All sequences were submitted to GenBank under acce-

ssion numbers HM036739-HM37037, GU939062-GU939098,

GU939143-GU939146, GU939148, GU939150-GU939154, and

GU939162-GU939171.

Phenotypic analysis of BM and PL Env
PL and BM full length Env from 11 women (5 of whom had PL

and BM sequences which initially scored as compartmentalized

under the previously mentioned tests) were compared for their

sensitivity to the entry inhibitors Tak-779 and T-20 using the TZM-

bl single-cycle pseudotype assay as previously described [56].

Results

Levels of HIV-1 in BM compared to PL
To define the degree to which the breast epithelium restricted

the amount of HIV-1 in milk, we compared the amount of viral

RNA in PL and BM in over 600 lactating women (Figure 1). As

Breast Milk HIV
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shown in Figure 1, BM HIV-1 RNA was on average 1.8 logs lower

than that in PL.

Subjects and samples
To compare the genetic characteristics of BM and PL HIV-1

env, we amplified and cloned full-length gp160 genes from both

tissues in chronically HIV-1 subtype C infected women [19,36].

The clinical characteristics of these women are summarized in

Table 1. A total of 356 full-length gp160 sequences from the 13

women were obtained. Although we attempted to amplify at least

10 clones per tissue site, the low amplifiable copy number of viral

RNA from BM precluded reaching this goal in some instances.

This, along with specimen availability, also resulted in non-

contemporaneous sampling in some instances. Sequences from

contemporaneous PL and BM samples were collected from six of

the subjects (Subjects 31, 21, 32, 7, 33, and 10), while there was an

interval of between 10 and 141 days between PL and BM

collection in the other 7 subjects (Subjects 34, 17, 35, 14, 1, 3, and

16) (Table 1). Milk samples from right and left breast were

collected at the same time in all subjects. All subjects were

exclusively breastfeeding at the time of sample collection.

Phylogenetic analysis of HIV-1 compartmentalization in BM
Viral variants in PL were compared to those in BM from the

right and left breast. In four individuals, two or fewer sequences

were obtained from either breast, preventing further comparison.

In the remaining nine women, BM viral populations were

phylogenetically indistinguishable between the left and right

breast, regardless of whether there was compartmentalization

between PL and BM (data not shown). Analysis of BM variants (11

BML and 10 BMR) obtained at a separate time point in Subject

17 also revealed no difference (sequences from this time point were

not used in any other analysis). Thus, we grouped sequences from

the right and left breasts together and used all available BM

sequences from each individual for the remaining analyses.

Maximum likelihood trees were calculated (Figures 2 and 3) and

datasets were analyzed for compartmentalization. For each

subject, if the compartmentalization classifications determined by

the different methods were not concordant, we took the majority

consensus approach as previously described [51]. Sequences from

only one out of the six contemporaneously sampled subjects

(Subject 10) were classified as compartmentalized under these

criteria (Table 2), and examination of the trees by eye shows

sequences from tissues to be heavily intermixed in most of these

subjects (Figure 2). However, six out of the seven non-

contemporaneously-sampled subjects were classified as compart-

mentalized (Table 2), consistent with the patterns observed in the

trees (Figure 3), suggesting significant viral evolution over relatively

short intervals. These data strongly indicate that compartmental-

ization analyses be performed on contemporaneous samples.

Figure 1. Plasma and breast milk viral load. Viral loads determined by Roche Amplicor (PL) and Roche Amplicor Ultrasensitive (BM) assays. Gray
lines are means.
doi:10.1371/journal.pone.0010213.g001

Breast Milk HIV

PLoS ONE | www.plosone.org 4 April 2010 | Volume 5 | Issue 4 | e10213



When we analyzed non-recombinant fragments (as defined

by GARD) separately, results were the same, except in non-

contemporaneously-sampled Subject 35 sequences, in which

compartmentalization was detected in two of six breakpoint-

delineated fragments (data not shown).

To further highlight the importance of contemporaneous

sampling in compartmentalization testing, we found a correlation

between the number of days between PL and BM sampling and

several qualitative measures of compartmentalization (Figure 4).

We plotted these values against the number of days between PL

and BM sampling for all 13 subjects and found a significant linear

correlation between the sampling interval and the Snn score, the

AI, and the correlation coefficient rb. This further demonstrates

that non-contemporaneously sampled subjects should not be

evaluated for compartmentalization, as the results are likely to be

confounded by viral evolution during the sampling interval.

Sequence diversity and divergence of PL and BM HIV-1
populations

We examined pairwise genetic diversity and divergence from

the subjects’ MRCA in the six contemporaneously sampled

subjects only. The node of the tree at which the MRCA was

calculated for each subject is indicated in Figure 2. These analyses

were not performed on non-contemporaneously obtained samples

since data on length of infection and other confounders were not

available. Nucleotide diversity between tissues was significantly

different in two out of the six subjects (Subjects 32 and 7), and in

both of these individuals, PL exhibited higher diversity compared

with BM (Figure 5A). We pooled all subjects’ PL diversity values

and compared them to all subjects’ BM diversity values and found

no significant difference overall, though there was a trend for BM

having less diversity than PL (p = 0.086) (Figure 5B).

We calculated the genetic distance from each sequence to the

MRCA as a measure of potential viral evolution and compared

BM to PL. In two subjects, PL was significantly more divergent

from the MRCA than BM (Subjects 31 and 32) (Figure 5C). When

pooling all subjects’ PL divergence values and comparing them to

all subjects’ BM divergence values, BM was less divergent than PL

overall (p = 0.048) (Figure 5D).

The extent of amino acid (AA) variability was measured using

site-specific Shannon Entropy scores [53]. Subject-specific patterns

differed between PL and BM, most often in regions of extreme

variability and ambiguous alignment; however, no consistent

pattern in AA variability across individuals was identified.

Likewise, when we looked for signature motifs by calculating the

frequency of AA at each site using VESPA, we identified intra-

individual signature sites distinguishing PL and BM but no inter-

host signature pattern was found.

Figure 2. Maximum likelihood trees of region gp160, PL and BM samples obtained contemporaneously. All trees were calculated under
the GTR+G+I model, rooted with 4 subtype C reference sequences obtained from LANL sequence database. In all subjects, HIV-1 RNA sequences from
the left breast (white circles) and from the right breast (gray circles) were intermixed. The scale at the bottom left of each tree corresponds to the
number of substitutions per site (for example, 0.01 = 1 substitution per 100 sites).
doi:10.1371/journal.pone.0010213.g002

Breast Milk HIV
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Potential N-Linked Glycosylation in PL and BM HIV-1
populations

We counted the number of potential N-linked glycosylation

(PNG) sites in PL and BM clones. No significant differences were

observed in the total number of PNG over the entire gp160 region,

except in one subject where fewer PNG were observed in milk

compared to plasma (Subject 34) (data not shown). When the

analysis was restricted to the V1 to V4 region, where most PNG

occur, four subjects had significantly fewer PNG in BM than in PL

(Subjects 34, 17, 1, and 3), while one subject had significantly more

PNG in BM than in PL (Subject 16) (data not shown). However,

when examined in aggregate, no difference in the number of BM

and PL PNG were observed in gp160. The same held true when

each region (V1, V2, C2, V3, C3, V4, C4, V5, and V1 to V4) was

analyzed separately.

Length of variable regions of HIV-1 env in PL and BM
We counted the number of amino acids in gp160 sequences in

the two tissues in each subject. Two subjects had significantly

shorter gp160 sequences in the BM (Subjects 34 and 3). When we

examined the V1 to V4 region, sequences were shorter in BM than

PL in four subjects (Subjects 33, 34, 1, and 3), while sequences

were longer in BM in one subject (Subject 16). However,

comparison of pooled PL to BM in aggregate showed that

gp160 and V1 to V4 sequences from BM were not significantly

different than those from PL (data not shown); the same was true

when examining variable regions separately (V1, V2, V3, V4, and

V5).

Prediction of syncytium-inducing phenotype
A subtype C position-specific scoring matrix of V3 amino acid

sequences (WebPSSM) was used to predict syncytia-inducing (SI)

variants. SI variants were predicted in sequences from 9 of 13

subjects (all except subjects 31, 32, 17, and 3) (Figure 6). SI

variants were a minority of the viral population in four of these

nine, detected in only one or two BM or PL sequences (Subjects

21, 34, 35, and 14), with SI variants predicted in BM only in three

of the four. SI variants were found in over 45% of BM variants in

Subjects 7, 10, and 16, while 100% of the BM and PL sequences

were predicted to be SI in Subject 33. In no case were SI variants

predicted in PL but not in BM.

Phenotypic Characteristics of Plasma and Breast Milk Env
One hundred and fifty-eight clones from the PL and BM of 11

women were compared for their sensitivity to the entry inhibitors

to Tak-779 and T-20. (Subjects 16 and 34 were not included). The

mean IC50 of PL variants to Tak-779 was 0.0234 ug/mL (std

error = 0.006) and was significantly higher than that of BM, which

had a mean IC50 of 0.0165 ug/mL (std error = 0.006), (p = 0.003).

However, when stratified by compartmentalization classification,

Figure 3. Maximum likelihood trees of region gp160, PL samples obtained previous to BM samples. All trees were calculated under the
GTR+G+I model, rooted with 4 subtype C reference sequences obtained from LANL sequence database. In all subjects, HIV-1 RNA sequences from the
left breast (white circles) and from the right breast (gray circles) were intermixed. The scale at the bottom left of each tree corresponds to the number
of substitutions per site (for example, 0.01 = 1 substitution per 100 sites).
doi:10.1371/journal.pone.0010213.g003

Breast Milk HIV
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sensitivity to TAK-779 was only significantly different in the

compartmentalized women. No differences in susceptibility to T-

20 were found overall or when the women were stratified by

compartmentalization classification.

Discussion

Defining the characteristics of HIV-1 variants in a transmitting

mucosal compartment may offer important clues to understanding

the nature of the genetic bottleneck observed during transmission

[1,2,4,5,6,7,8,38,57]. Despite its importance in pediatric HIV

infection, only a few studies have characterized HIV-1 variants in

breast milk, and the results are conflicting. Two small studies

reported virologic compartmentalization (6,7); however, these

studies focused on a very short region of env, did not employ

methodologies to avoid sequence resampling, and defined com-

partmentalization on the basis of visual inspection of trees. In

contrast, a study using a heteroduplex-tracking assay (HTA), which

has the ability to sample a large number of V1V2 variants [34],

found no differences between PL and BM viral populations. We

therefore sought to characterize HIV-1 in BM and PL in a much

larger cohort and analyzed the entire env gene, using conditions

explicitly designed to avoid sequence template resampling.

The immunologic milieu of breast milk is clearly distinct from

that in blood and contains high concentrations of HIV-1 specific T

cells, antibodies, cytokines, chemokines, and innate factors that

modulate HIV-1 transmission risk [58,59,60]. Given clear

immunologic compartmentalization [61] and the markedly lower

amounts of HIV-1 in breast milk [14] (Figure 1), we hypothesized

that virologic compartmentalization would exist between BM and

Table 2. Results of different compartmentalization tests.

Subject
ID

Sampling
interval (days) aSM br crb

dAI eSnn

31 0 0.232 0.113 0.065 0.758 0.670

21 0 0.118 0.885 0.469 0.969 0.022

32 0 0.102 0.001 0.029 0.393 0.118

7 0 0.372 0.003 0.016 0.943 0.142

33 0 0.008 0.008 0.007 0.449 0.707

10 0 0.648 0.409 0.774 0.466 0.259

34 10 0.024 0.001 0.003 0.386 0.018

17 15 0.003 0.015 0.004 0.038 ,0.001

35 31 0.162 0.158 0.036 0.839 0.185

14 43 0.006 0.040 0.002 0.292 ,0.001

1 102 ,0.001 0.001 0.001 0.005 ,0.001

3 115 ,0.001 0.066 0.038 0.008 0.005

16 141 ,0.001 0.001 0.001 0.001 ,0.001

Values are p-values obtained from randomization tests. P,0.05 was considered
evidence of compartmentalization.
aSM = Slatkin-Maddison.
br = Correlation coefficient by length of branches.
crb = Correlation coefficient by number of branches.
dAI = Association Index.
eSnn = Nearest neighbor statistic.
doi:10.1371/journal.pone.0010213.t002

Figure 4. Correlation between sampling interval and measures of compartmentalization. (A) Snn score vs. sampling interval; Snn scores
close to 1 indicate segregated populations, while scores close to 0.5 indicate mixed populations. (B) Simmonds Associative Index (AI) vs. sampling
interval; the AI is based on a grouping score (weighted by position in the tree) in which higher AI = less grouping of sequences from same tissue in
the tree. (C and D) Generalized correlation coefficient rb and r vs. sampling interval; rb and r offer a way to correlate the number of internal nodes (rb)
or branch length (r) between two sequences in a tree with the information about whether or not they were isolated from the same compartment.
P-values from Spearman’s Rho tests indicate significant linear correlations in A, B, and C.
doi:10.1371/journal.pone.0010213.g004
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PL. We amplified and cloned 356 unique, full-length gp160 env

sequences from the BM and PL of 13 women using limiting

dilution and multiple independent PCR amplifications to

minimize both template resampling and PCR-product recombi-

nation. A few samples were amplified using single genome

amplification approaches [62]; however, limitations in sample

quantity and cost precluded widespread use of this technique.

Since there is no consensus on the optimal approach for evaluating

virologic compartmentalization we employed five different tests

[50]. Using a majority consensus approach, only one of six subjects

with contemporaneously obtained samples was classified as having

compartmentalized virus (Table 2), despite an almost 100-fold

difference in HIV-1 RNA levels between PL and BM.

We sought to identify factors that may have confounded our

ability to detect virologic compartmentalization. Breast epithelial

tight junctions are ‘‘leaky’’ during changes in lactation practice as

well as during inflammation (mastitis). All samples were collected

from women who were exclusively breastfeeding, none had a

history of breast pathology, and when available, had BM sodium

levels that were not markedly elevated [63]. Thus, all milk samples

were obtained from women in whom breast epithelial tight

junctions would be predicted to be closed. Also, the low levels of

BM HIV-1 RNA support an intact breast epithelium. Recombi-

nation between parental sequences from each tissue type could

also mask compartmentalization [50]. However, even when the

analysis of milk sequences was restricted to regions bordered by

recombination breakpoints, no evidence of compartmentalization

was detected using the various tests.

Since we could only examine samples that contained relatively

high levels of HIV-1, by necessity our study population was biased.

In studies of temporal dynamics of breast milk HIV-1 RNA levels, at

four months post-partum 57% of women in ZEBS had BM viral

loads ,50 copies per ml, and in those with quantifiable levels the

median value was only 364 copies per ml [14]. Thus, the women

included in this analysis were not ‘‘typical,’’ and temporal

fluctuations in viral populations coupled with the relatively small

numbers of clones we amplified may have confounded our ability to

detect compartmentalization. Indeed, some studies indicate that

compartmentalization may be more easily detected when viral loads

are low, particularly in subjects who are on antiretroviral therapy

Figure 5. Diversity and divergence in breast milk and plasma. (A) Comparing mean diversity of virus in breast milk and plasma HIV-1 RNA
gp160 sequences of contemporaneously sampled subjects. Triangles = plasma, circles = breast milk; star = significant difference between plasma
and breast milk diversity, p-values from Wilcoxon rank sums test. (B) Comparing diversity in breast milk and plasma in all contemporaneously
sampled patients in aggregate, using Gilbert, Rossini, and Shankarappa’s method for comparing intra-individual genetic sequence diversity between
populations. Black lines are means. (C) Comparison of mean divergence of virus in BM and PL within contemporaneously sampled subjects. P-values
from Wilcoxon rank sums test. (D) Comparison of viral divergence between the BM and PL of all contemporaneously sampled subjects in aggregate.
P-value obtained using a GEE model. Black lines are means.
doi:10.1371/journal.pone.0010213.g005
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compared to those who are therapy-naive [64]. Suppressing viral

load could allow for variants within BM to replicate separately and

appear as distinct from that in blood, while high viral loads in all

tissues could cause a ‘‘swamping’’ of signal, in which plasma virus

flooding the tissues obscures detection of within-tissue replication.

We found that sampling interval can have a striking effect on

compartmentalization tests. When sequences from PL and BM

samples were collected 10 or more days apart, the majority (6 of 7)

were classified as compartmentalized (Table 2); if recombination

was taken into account, all seven non-contemporaneously sampled

subjects met criteria for compartmentalization. In addition, there

was a correlation between the sampling time interval and 3 of 4

qualitative measures of compartmentalization, so that the greater

the amount of time between sampling, the more frequently

compartmentalization was detected (Figure 3). However, signifi-

cant compartmentalization was detected even in the subjects with

the smallest intervals between sampling (10 to 31 days), reflecting

the high rate of HIV-1 evolution. Differences in compartmental-

ization were also reflected functionally in differential susceptibility

to Tak-779. These analyses underscore the importance of

obtaining contemporaneous samples in compartmentalization

analyses. These data also highlight the importance of longitudinal

studies, which could elucidate the direction and rate of viral

migration between these tissues not only during lactation but also

in response to inflammatory stimuli [65].

Though the difference between BM and PL viral diversity was

not significant (Figure 5B), there was a trend for BM to be less

diverse than PL, which could be the result of the multiple factors

native to BM that may impede multi-variant outgrowth (such as

antibodies, mucin, natural ligands to CCR5 that competitively

inhibit HIV-1 binding, and chemokines and cytokines that create a

hostile environment for HIV-1 [58,59,60]). Another factor that

could contribute to a decrease in overall BM diversity is the

presence of two or more identical or nearly identical sequences

within individuals’ BM. Nine subjects had from two to nine BM

sequences which were identical or nearly identical (despite careful

efforts to avoid resampling and contamination), which could be

indicative of localized clonal bursts of virus production [15] within

the BM environment immediately prior to sampling, either due to

host restrictions on replication, or to transient effects of single-dose

nevirapine, as has been found in subjects on suppressive ART

[66,67]. Divergence in BM was also slightly lower than in PL

(Figure 5D). This difference could be indicative of a different host-

immunologic response within this tissue resulting in the persistence

of infected cells for longer periods – if archival sequences are able

to persist in this environment they would drag the average

divergence down compared to more divergent, contemporane-

ously circulating virus in the PL [22].

A primary focus of our study was to determine whether BM was

enriched for variants that have been identified in newly infected

persons. In subtype C sexual transmission, variants that establish

infection have shorter variable loops, fewer potential N-linked

glycosylation sites, and use CCR5 for entry [6,8,9,10,11]. We

found virtually no difference between PL and BM in either PNG

counts or lengths, in gp160 or by region; this overall lack of any

defining feature of BM in this respect is concordant with our

inability to detect compartmentalization in most subjects, and

reinforces the observation that HIV-1 in breast milk appears to be

very similar to that found in plasma. Newly transmitted viruses are

also distinguished by almost exclusive use of CCR5. Using a

subtype C phenotype-prediction method [54] we detected SI

variants in the breast milk of 9 of 13 women. Thus, our data

indicate that CCR5-using variants are not preferentially selected

for within BM, suggesting that this tissue may not be responsible

for the major bottleneck that occurs upon transmission [10].

We detected evidence for a far higher incidence of SI-using

variants in our data set than initially expected. HIV-1 subtype C

viruses have historically been reported at lower frequencies of

CXCR4-using strains than in other group M subtypes [68,69,70]. A

switch from R5 tropism to X4 tropism has been associated with

disease progression in other subtypes [71,72], and while this

association has not been established in subtype C [73], the relatively

high proportion of SI variants in our dataset may reflect a very

biased population – all our subjects had advanced HIV disease and

transmitted virus to their children. It may also represent an overall

evolutionary change in the epidemic of subtype-C HIV-1, in which

CXCR4-tropism (or CCR5/CXCR4 dual tropism) is increasing in

subtype C, as has been suggested [74].

In conclusion, within the limitation on inference imposed by the

number of women examined here (N = 13), the genetic bottleneck

observed during HIV transmission does not appear to be mediated

by selection within breast milk. Furthermore, our studies highlight

HIV-1’s rapid evolution and the importance of well characterized

and appropriately timed sampling in both genotypic and phenotypic

studies of HIV variants. Further studies defining factors that restrict

HIV entry into breast milk remain important for understanding and

preventing milk-borne pediatric HIV-1 transmission.
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