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The vast majority of meta-analyses uses summary/aggregate data retrieved from
published studies in contrast to meta-analysis of individual participant data
(IPD). When the outcome is continuous and IPD are available, linear mixed
modelling methods can be employed in a one-stage approach. This allows for
flexible modelling of within-study variability and between-study effects and
accounts for the uncertainty in the estimates of between-study and within-study
residual variances. However, IPD are seldom available. For the normal outcome
case, we present a method to generate pseudo IPD from aggregate data using
group mean, standard deviation, and sample sizes within each study, ie, the suffi-
cient statistics. Analyzing the pseudo IPD with likelihood-based methods yields
identical results as the analysis of the unknown true IPD. The advantage of this
method is that we can employ the mixed modelling framework, implemented
in many statistical software packages, and explore modelling options suitable
for IPD, such as fixed study-specific intercepts and fixed treatment effect model,
fixed study-specific intercepts and random treatment effects, and both random
study and treatment effects and different options to model the within-study
residual variance. This allows choosing the most realistic (or potentially com-
plex) residual variance structures across studies, instead of using an overly
simple structure. We demonstrate these methods in two empirical datasets in
Alzheimer disease, where an extensive model, assuming all within-study vari-
ances to be free, fitted considerably better. In simulations, the pseudo IPD
approach showed adequate coverage probability, because it accounted for small
sample effects.
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1 INTRODUCTION

Meta-analysis is the most common evidence synthesis
method to estimate a combined treatment or exposure
effect using the individual study findings. Most often
these meta-analyses use group-level summary statistics

(aggregate data; AD) retrieved from published articles and
reports, in contrast to meta-analysis of individual par-
ticipant/patient data (IPD). In this paper, we focus on
meta-analyses where only aggregate data are available.

The meta-analysis of aggregate data is traditionally
based on two-stage methods. Here, in the first stage, each
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study produces an estimate of the effect size and its corre-
sponding standard error. For instance, the estimated effect
size may be the (log) odds ratio in case of binary out-
comes. In the continuous outcome case, the estimated
effect size commonly is the difference between the two
group means, with the standard error calculated as the
square root of the sum of the squared standard errors of
the means. At the second stage, the estimated effect sizes
and standard errors form the data input of a standard fixed
or random effects meta-analysis model.1,2 Several methods
to perform a random effects meta-analysis have been pro-
posed over the years,3 although the method of moments
introduced by DerSimonian and Laird (DL)4 has prevailed
as the most routinely used given its simplicity of compu-
tations. Competing heterogeneity estimators include the
Paule and Mantel,5 Hartung and Macambi,6 Hartung and
Knapp,7 Sidik and Jonkman,8 and the restricted maximum
likelihood approach (REML).9 In this work, we focus on
comparing the most widely used methods in practice, the
DL and REML approaches including the Hartung-Knapp
correction.7

The underlying assumptions of the aforementioned
approaches are that each estimated effect size follows a
normal distribution with mean equal to the true effect size
of that study and variance equal to the squared standard
error, where these within-study variances are assumed to
be fixed and known. The true effect sizes then are assumed
to follow a normal distribution with mean (called the
overall effect size) and variance (called the between-study
variance) to be estimated from the data.

Disadvantages of these two-stage methods are as follows:
(1) the within-study variances are treated as known, while
in fact they are estimated; (2) for continuous outcomes,
the assumptions about the variances in the treatment and
control group within each study often go unnoticed; (3)
for binary outcomes, the within-study normal distribu-
tion assumption might be violated, for instance, in case,
the event is rare; and (4) bias could be introduced in
the overall effect size by possible correlation between the
estimated effect size and its standard error. Technically
speaking, these problems are due to the fact that an approx-
imate within-study likelihood is used instead of the exact
likelihood.

When individual patient data are available, one-stage
methods may overcome these difficulties by using the
exact distribution of the within-study data.10 For dichoto-
mous outcomes, individual patient data can be extracted
in a straightforward manner from the aggregate data
when the number of events and sample size are available
for both groups.11 Next, straightforward random effects
logistic regression can be applied using a generalized
linear mixed model program, available nowadays in all
statistical packages.12-16 The advantage of this one-stage

approach is that it avoids the aforementioned problems
of the two-stage approach. Moreover standard statisti-
cal software can be used, instead of a special purpose
meta-analysis program, such as RevMan.17 Also, for ordi-
nal outcomes (based on the number of responses within
each treatment category)18 and survival data (reconstruct-
ing the data based on Kaplan-Meier survival curves),19

it is possible to reconstruct the individual patient data.
For event/person-years data, also, one-stage methods have
been proposed.13

IPD and AD meta-analyses will provide very similar
results, when they are based on the same underlying
assumptions, such as common residual variances for con-
trol and treatment groups.20 However, standard AD meth-
ods will yield too small standard errors when the number
of studies in the meta-analyses is small and cannot han-
dle different (potentially complex) residual variance struc-
tures across studies. If IPD data are available, this can
be easily accounted for using linear mixed modelling.
Although it may technically be possible incorporating
more complex variance structures in an AD meta anal-
ysis, it is not implemented in standard software. Also
corrections for a small number of studies, such as the
Hartung-Knapp7 correction, are thus far implemented in
R and Stata yet not in SAS.

For a meta-analysis of aggregate continuous outcome
data, only two-stage modelling is used thus far. In
this case, the aforementioned disadvantages (3) and
(4) of the two-stage approach do not apply; however,
the first one, not accounting for estimation of the
within-study variances, remains and flexibility in mod-
elling the within-study variances is lacking. For example,
it is important to study whether the variances in treatment
and control group are equal. In a study comparing treat-
ment with placebo, the variance of the response in the
treatment group may be larger than in the control group,
in which case separate estimates for the two variances are
needed.

In this paper, we propose a one-stage meta-analysis
approach for the normal outcome case where the mean,
standard deviation, and sample size per group are avail-
able as summary data. In order to do so, we develop
an algorithm to reconstruct IPD, hereinafter referred as
pseudo IPD. Since the summary data are the sufficient
statistics, the pseudo IPD will have the same likelihood
as the unknown original individual data. In this way, we
are able to use the flexibility of the linear mixed mod-
elling framework and account for the uncertainty in the
within-study variances without the need of a specialized
meta-analytic software. In this work, we focus on recon-
structing IPD, based on sufficient statistics, yet we do not
simulate covariates at individual level.
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The paper is organized as follows. In Section 2, we
introduce two illustrating datasets in Alzheimer disease,
where group-level summary data are available describing
plasma levels of micronutrients as the continuous out-
comes of interest. In Section 3, we describe the existing
modelling options for IPD following an increasing com-
plexity approach, assuming fixed and random effects for
study and treatment/exposure effects and different options
for modelling the within-study variance. In Section 4,
we introduce our novel approach of constructing pseudo
IPD from the aggregate continuous data. In Section 5, we
apply the proposed method to the plasma levels datasets
and compare the results with standard two-stage meth-
ods on the aggregate data. In Section 6, we conduct a
simulation study to examine the performance of our pro-
posed method in comparison with two-stage methods.
Brief final comments are provided in Section 7 with some
discussion.

2 ILLUSTRATING EXAMPLE

Lopes da Silva et al21 performed a systematic review to
compare the plasma levels of micronutrients and fatty
acids in Alzheimer disease patients with those of elderly
controls with normal cognition. The authors identified
five or more studies for various plasma levels of inter-
est and performed a random effects meta-analysis using
the REML9 method for estimating the between-study vari-
ance, 𝜏2. To illustrate our method, we selected two contin-
uous outcomes of interest: the iron blood level measured in
five studies of in total 753 participants and the folate level
reported in 31 studies of in total 4555 patients. The mean
iron and folate level for each group (control and Alzheimer
disease) in each trial are shown in Tables 1 and 2, respec-
tively, with higher values indicating a healthier nutritional
profile. For each study, the group-level summary statistics
are shown for the control and the disease group along with
the sample size per group.

We performed a two-step random effects meta-analysis
using the package metafor22 in R 3.4.123 on the two

TABLE 1 Summary data on iron blood levels (𝜇g/dL)

Study name Control group Alzheimer disease group
Mean sd n Mean sd n

Basun 1991 114 25 26 100 39 20
Kristensen 1993 89 32 20 90 33 26
Modashi 1996 63 30 421 56 22 31
Molina 1998 101 31 28 114 35 26
Vural 2010 81 31 50 67 23 50

Abbreviations: 𝜇g, microgram; dL, deciliter; n, number of subjects; sd, stan-
dard deviation.

datasets and estimated the pooled effect sizes and the
between-study variance by the standard DerSimonian and
Laird4 (DL), the REML9 method, and the REML approach
with the Hartung-Knapp correction,7 which aims to adjust
for the small number of studies. The iron blood level
analysis showed a mean difference between the groups
equal to −5.57 𝜇g/dL (−14.16 to 3.02) for the DL method,
−5.52 𝜇g/L (−14.28 to 3.24) using the REML approach,
and −5.52 𝜇g/L (−18.57 to 7.53) using the Hartung-Knapp
correction.7 The estimated between-study variances were
similar: 43.9 (DL) vs 47.3 (REML). The analysis on the
folate dataset showed significantly lower plasma levels of
folate in the Alzheimer disease patients compared with
the healthy controls and −3.88 nmol/L (−5.13 to −2.64)
for the REML method while the mean difference between
the groups was equal to −3.80 nmol/L with a more narrow
confidence interval of (−4.76 to −2.84) when using the DL
method. The between-study variance estimated under the
DL method was smaller than the REML approach: 5.17 vs
9.88.

3 LINEAR MIXED MODELS FOR
CONTINUOUS IPD

In this section, we discuss different modelling options,
which may be used in a one-stage meta-analysis using
individual patient data. The data we consider have the
following format: There are two treatments or exposure
groups j = (0, 1), compared in m studies. We will refer to
the groups as the treatment group (j = 1) and the con-
trol group (j = 0). Let Yijk denote the outcome (iron level,
folate level) of patient k in study i receiving treatment j and
Xijk a dummy variable to indicate the group; Xijk = 0 when
patient k in group i of study i receives the control; and
Xijk = 1 if the patient receives the treatment. Note that we
do not introduce any covariates in this work and hence no
covariate notation. In addition, no adjustment for baseline
values (ANCOVA) is possible under the discussed models.

Several papers have discussed the modelling of contin-
uous IPD in the meta-analytic framework Higgins et al.24

In this paper, we present different modelling options for
treatment/exposure and study effects and various ways
to model the within-study residual variance. We use the
linear mixed modelling (LMM) framework25 and explore
three modelling options of increasing complexity using
LMM notation. In general, we denote fixed effects using
characters from the greek alphabet and latin characters for
the random effects.
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TABLE 2 Summary data on folate levels (nmol/L)

Study name Control group Alzheimer disease group
Mean sd n Mean sd n

Agarwal 2010 15.68 30.13 127 14.97 14.74 32
Anello 2004 15.7 5.9 181 14.3 5.7 180
AsitaDeSilva 2005 19.71 9.74 21 15.86 8.38 23
Cascalheira 2009 20.39 1.7 36 18.8 5.3 19
Clarke 1998 22.9 10 108 17.60 10.7 164
Dominguez 2005 29.57 8.97 19 17.87 7.18 29
Faux 2011 30.29 12.68 760 29.35 14.46 205
Galimberti 2008 19.82 6.16 23 8.63 2.81 29
Galluci 2004 14.05 11.1 42 11.55 6.12 137
Hogervorst 2002 24.92 11.33 62 15.86 11.33 66
Irizarry 2005 35.20 32.9 88 29.9 21.3 145
Joosten 1997 8.61 3.2 49 7.93 4.2 52
Karimi 2009 15.86 8.61 49 14.5 6.57 51
Koseoglu 2007 28.09 3.4 40 21.41 4.40 51
Lelhuber 2000 14.27 9.281 19 9.97 3.4 19
Li 2004 37.20 21.2 30 29.2 12.7 30
Linnebank 2010 14.05 7.74 60 15.62 7.04 60
Lovati 2007 15.56 7.93 76 8.19 5.32 108
Malaguarnera 2004 13.6 3.18 30 10.6 3.16 30
Mizrahi 2004 4.8 2.6 155 4.3 3.2 75
Morillas-Ruiz 2010 28.8 7.71 48 21.81 8.71 52
Parnetti 1992 14.05 1.12 26 9.46 1.07 52
Postiglione 2001 8.5 3.2 74 5.7 2.1 74
Quadri 2005 16.8 5.5 79 13.1 5.9 111
Ravaglia 2000 11.5 1.2 13 8 0.5 34
Ravaglia 2004 16.57 7.26 29 11.1 4.3 51
Regland 1992 20 18 32 16.7 15.46 53
Religa 2003 17.13 12.21 100 19.28 7.66 99
Selley 2002 25.09 4.7 25 14.74 4.26 27
Serot 2001 13.16 4.83 28 12.12 4.87 30
Villa 2009 19.03 4.08 18 16.77 4.69 20

Abbreviations: L, liter; n, number of subjects; nmol, nanomole; sd, standard deviation.

3.1 Study-specific fixed intercepts
and fixed treatment effect model
A simple fixed treatment effect meta-analysis model may
be written as follows:

Yi𝑗k = 𝛽0i + 𝛽1Xi𝑗k + 𝜖i𝑗k, (1)

where 𝛽0i is the fixed study-specific mean of the control
treatment in study i and 𝛽1 the mean difference between
the treatment and control group across studies. For each
study, a separate intercept is estimated to account for
the difference in response between studies. This model
assumes that the difference between the groups is the
same across all studies; this is often a very unrealistic
assumption. The within-study residuals 𝜖ijk are assumed to

follow a normal distribution. There are different options
for the choice of variance of 𝜖ijk, which we discuss
later on.

3.2 Study-specific fixed intercepts
and random treatment effects
We relax the assumptions of the fixed treatment effect
model by allowing the treatment differences to vary across
studies which results in a mixed effects model where treat-
ment differences are treated as random:

Yi𝑗k = 𝛽0i + 𝛽1Xi𝑗k + b1iXi𝑗k + 𝜖i𝑗k, (2)

where 𝛽1 is the mean treatment difference and b1i are the
trial-specific additional treatment differences following a
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normal distribution with mean equal to 0 and variance
equal to 𝜏2

1 . This model estimates m fixed effects param-
eters (study intercepts) and an additional fixed effect for
the mean group differences among studies. In addition,
the between-study variance is estimated, which quan-
tifies the heterogeneity of the treatment effects across
studies. The within-study residual variances 𝜎2

𝜖,i𝑗 are also
estimated.

3.3 Random intercepts and treatment
effects
Instead of estimating a fixed study effect per study, we can
assume that the study effects are also random resulting in
the following model:

Yi𝑗k = 𝛽0 + 𝛽1Xi𝑗k + b0i + b1iXi𝑗k + 𝜖i𝑗k, (3)

where 𝛽0 is the fixed overall mean intercept, b0i is the
random study intercept, 𝛽1 is the mean treatment differ-
ence, and the b1i is the study-specific additional treatment
differences with

[
b0i
b1i

]
= MVN

([
0
0

]
,

[
𝜏2

0 𝜏01
𝜏01 𝜏2

1

])
.

The model assumes that the included studies are a random
sample from a wider population of studies, an approach
which is followed in analyzing multicenter trials by treat-
ing the center effects as random. There is debate about
whether this is a good option.26 The number of esti-
mated parameters is smaller, which could lead to more
precise estimates. On the other hand, additional mod-
elling assumptions are made. One could assume that the
study-specific treatment group differences are indepen-
dent from the intercepts,22 but often it is more realistic to
allow correlation.

3.4 Within-study residual variance
The one-stage approach allows for more flexible options
when modelling the within-study residual variance than
in a two-stage analysis where the observed variance of the
difference is used.

For each of the modelling approaches in Sections 3.1
to 3.3, we explore four structures for the within-study
residual variances:

• All variances assumed different (arm-specific and
study-specific): 𝜖i𝑗k ∼ N(0, 𝜎2

𝜖,i𝑗), estimating 2 × m
parameters. This is the most flexible approach.

• Study-specific variances: 𝜎2
𝜖,i𝑗 = 𝜎2

𝜖,i., which are equal
for treated and controls, estimating m parameters.

This may be used when study populations may differ;
however, variation of outcomes in the two treatment
groups is expected to be the same.

• One variance for control and one variance for treated
group 𝜎2

𝜖,i𝑗 = 𝜎2
𝜖,.𝑗

, which are assumed to be the same
for all studies, estimating two parameters. This may
be used when the variation of outcomes is expected
to differ between the treatment and control groups.
This may be the case if treatment is compared with
placebo where a larger variance in the treated group
may be expected due to responders and nonrespon-
ders to the treatment.

• One overall variance: 𝜎2
𝜖,i𝑗 = 𝜎2

𝜖,.., estimating one
variance parameter.

4 RECONSTRUCTION OF
INDIVIDUAL PATIENT DATA FROM
AGGREGATE DATA

This section describes a framework for the construction of
the pseudo individual participant/patient data. The idea is
as follows: If the true IPD would be available, the LMM
would be used for the statistical analysis, which is like-
lihood based. The likelihood of an LMM depends on the
data only through the observed group means and stan-
dard deviations, because they are the sufficient statistics
for the parameters in the LMM. This implies that any
dataset in each study with the same observed group means
and standard deviations yields exactly the same maximum
likelihood estimates. Our pseudo IPD method is based on
these properties of sufficient statistics. We use the aggre-
gate data to generate individual data with exactly the same
observed means and standard deviations as in the origi-
nal IPD data. If such a data set is analyzed with an LMM,
the results will be identical to those stemming from the
true IPD.

A simple algorithm to construct an appropriate data set
of pseudo IPD is as follows. Let Ȳi𝑗 , sdij, nij be the observed
mean, standard deviation from group j in trial i. We need to
generate pseudo IPD, Yijk, where in each group and study,
the mean is exactly equal to Ȳi𝑗 and standard deviation
equal to sdij. For each group in each trial, execute the fol-
lowing algorithm that can be easily done in any statistical
package.

1. Simulate a sample Y∗
i𝑗k(k = 1, · · ·,ni𝑗) from a cer-

tain distribution, for a example a standard normal
distribution.

2. Calculate the mean Ȳ∗
i𝑗 and standard deviation sd∗

i𝑗
per study and arm of this sample.
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3. Generate the pseudo outcomes as Yi𝑗k = Ȳi𝑗 +

sdi𝑗

(
Y∗

i𝑗k−Ȳ∗
i𝑗

sd∗
i𝑗

)
; we obtain a sample with mean exactly

equal to Ȳi𝑗 and sd equal to sdij.

Note that the sampling from the normal distribution is
not essential; in fact, any arbitrary values Y∗

i𝑗k will do. For
instance, one could alternatively make the first observa-
tion equal to 1 (Y∗

i𝑗1 = 1) and the remaining equal to 0,
Y∗

i𝑗k = 0 for k = 2, … ,nij. The pseudo IPD in this case
would be Yi𝑗1 = Ȳi𝑗 + n−1√

n
sdi𝑗 and Yi𝑗k = Ȳi𝑗 − 1√

n
sdi𝑗 for

k = 2, … ,nij. Again, leading to a sample with mean equal
to Ȳi𝑗 and standard deviation equal to sdij.

In Appendix A, we show how this algorithm can be
carried out in SAS, R, and SPSS.

5 APPLICATION OF THE
METHODS TO THE EMPIRICAL
DATA

We generated pseudo IPD for the two illustrating exam-
ples and fitted the models discussed in Section 3. In
LMM programs, one can choose between maximum like-
lihood (ML) estimation and restricted ML. The latter
removes the downward bias in the variance parameters
and leads to more accurate standard errors of the esti-
mates of the parameters of the fixed part of the model. We
present 12 possible model combinations stemming from
the three modelling options (fixed study-specific intercepts
and fixed treatment effect model, fixed study-specific inter-
cepts and random treatment group effects, and both study
and treatment/exposure effects treated as random) and
four options to model the within-study residual variance.
We initially fitted all models using the LMM program of
SAS, PROC MIXED, given that SAS has explicit options for
modelling the residual variance, yet we replicated the anal-
yses in other statistical software, R, via the nlme package27

and SPSS. In Appendix A, we provide details. Note that the
confidence intervals of the estimates derived from different
software can be different due to different method of calcu-
lating the degrees of freedom; the point estimates and their
standard errors are identical.

For some of the more complex models, nonconver-
gence issues and boundary estimates of zero for the
between-study variance occurred. This appeared to be
program-dependent; a model could show nonconvergence
in SAS but convergence in R and the other way around. The
remedy was to provide more informative starting values.28

To compare nested models with the same fixed part but
different random parts, the REML likelihood ratio test
was used. To compare non-nested models with the same
fixed part, we calculated the Akaike information criterion
(AIC)29 using the complete likelihood of the model. As a

rule of thumb, an AIC difference between two models of
less than two provides little evidence for one over the other;
the models are considered interchangeable.30

In general, when we compare the LMMs fitted on the
pseudo IPD with the standard DL and REML results based
on the aggregate data, we notice that the estimates and
standard errors of the overall effect are similar. However,
the confidence interval stemming from our approach is
much wider and the P value larger. This is due to the
fact that the LMM approach does not consider the resid-
ual standard deviation per study as fixed. Using maxi-
mum likelihood takes into account that study means and
residual standard deviations are estimates, resulting in
larger standard errors for the group differences. How-
ever, whether the uncertainty of the estimates is effectively
accounted for depends on which likelihood-based infer-
ence method is used. In contrast to the standard Wald
method, the likelihood ratio (LR) method and the score
method take the uncertainty in the estimation of the vari-
ance parameters into account for significance testing and
CIs. Furthermore, confidence intervals calculated in LMM
are based on t-distributions, to account for small num-
ber of studies. There are several methods to determine
the number of degrees of freedom of the t-distribution
that is used to calculate the confidence interval and the
P value. We used the default method of SAS, the con-
tainment method. SAS PROC MIXED offers four alter-
native methods, which produced very similar results in
these examples. The Hartung-Knapp correction7 applied
to REML method for aggregate data has the same aim
as the degrees of freedom adjustment in the LMM. How-
ever, it does not take into account the uncertainty in the
estimates of the residual variance(s). Application of the
Hartung-Knapp correction leads to results very similar to
the results of our final best fitted models.

5.1 Results on iron blood levels
We compare the results of the 12 models fitted with the
pseudo IPD data to the three commonly used two-stage
meta analysis approaches based on aggregate mean dif-
ferences and variances per study. The results of the iron
pseudo IPD dataset are presented in Table 3. Within each
of the three blocks, we present the results of linear mixed
models of the same fixed part and different models for
the residual variance. For comparison, the fourth block
gives the results of the two-stage analyses on the aggregate
dataset.

Within each block, the model with all within-study
residual variances assumed to be free was compared with
the more restricted within-study structures. For instance,
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for the fixed study-specific intercept and fixed treatment
effect model assuming 𝜎2

𝜖,i𝑗 versus the study-specific vari-
ances (𝜎2

𝜖,i.) model, the test statistic (−2 restricted log like-
lihood value) was found to be equal to 6691.5 − 6677.7 =
13.85. The test statistic follows a 𝜒2 distribution with five
degrees of freedom, the difference of the random param-
eters under the two models, giving a P value of 0.018.
In all blocks, the full model fitted significantly better.
Therefore, we can conclude that the variation of iron val-
ues differs between studies and differs between patients
and controls.

We compare these models in the different blocks (fixed,
fixed-random, and random-random) with the AIC ML cri-
terion. The AIC values within the blocks are very similar,
which suggest that one may adopt one of the simpler
models if opting for a parsimonious model. The lowest
value, 6734.3, was found for the model assuming fixed
study-specific intercepts and a fixed treatment effect, with
the model with fixed study-specific intercepts and ran-
dom treatment effects as a close competitor. We choose a
random effects model here, because the estimated values
of 𝜏 were quite substantial, ranging from 6.6 to 8 𝜇g/dL,
which was larger than the estimated mean difference
between the two groups. This suggests substantial het-
erogeneity of the effects. We thereby follow the gener-
ally accepted arguments in favor of random treatment
effects meta-analysis.1,2 The mean difference between the
Alzheimer disease group and the healthy control group
was equal to −5.59 𝜇g/dL with 95% interval of −17.8 to
6.6 𝜇g/dL.

5.2 Results on folate plasma levels
The results of the folate pseudo IPD dataset are presented
in Table 4. Here, the models assuming a more flexible
within-study residual variance structure yielded larger
point estimates of the mean difference compared with the
models assuming the same variance across studies (first
two rows of each block).

Again, the model with all variances free (𝜎2
𝜖,i𝑗) fitted

significantly better than the simpler models. The mod-
els assuming random treatment effects gave very simi-
lar results with statistically significant lower levels for
the disease group compared with the healthy elderly
controls. The AIC ML value was smallest for the fixed
study-specific intercepts and random treatment effects
with all within-study residual variances assumed to be
free; hence, we adopt this as the final model. The mean dif-
ference in folate plasma levels between Alzheimer disease
patients and healthy cognitive controls was found equal
to −3.87 nmol/L with a 95% interval ranging from −5.1
to −2.6 nmol/L. The estimates derived from the second

block of models allowing for more flexible structure of
the within-study residual variance were almost identical to
the estimates stemming from the aggregate data analysis
using REML estimation and REML with the HK correc-
tion method due to the much larger number of studies than
in the iron levels example. The DL method yielded much
smaller standard errors.

6 SIMULATION STUDY

We performed a simulation study in SAS to study the
observed performance of the pseudo IPD method. In both
datasets, the confidence intervals of the more flexible IPD
models were larger than the DL and REML methods and
very similar to the REML method with Hartung-Knapp
correction.7 To check these findings, we designed a simu-
lation study ranging the number of studies and the num-
ber of subjects per arm under the most complex model
structure that we introduced in this paper, random inter-
cepts and treatment effects model (Section 3.3), with one
within-study variance for control and one within-study
variance for the treated group (arm-specific). Legha et al31

recently performed an extensive simulation study com-
paring the study-specific fixed intercepts and random
treatment effects model with the random intercepts and
random treatment effects model under various scenarios
while ranging the estimation method (ML and REML) and
the CI derivation approaches. They concluded that there
were generally no differences between the two competing
models in terms of mean bias, empirical SE, or MSE under
any simulation scenario.

In the simulation, we compare the coverage probability
at 95% nominal value, taking the proportion of the number
of times the estimated 95% confidence interval included
the true value of 𝜃, the bias, and the mean squared error
(MSE).

6.1 Data generation
The simulation study generated IPD from the random
intercepts and treatment effects model (Section 3.3),
with one within-study variance for control and one
within-study variance for the treated group (arm-specific).
We varied the following parameters:

• Number of studies = 6, 12
• Number of subjects per arm = 5, 10, 40
• Residual standard deviation in treated group = 4
• Residual standard deviation in control group = 1
• Mean treatment effect; 𝜃 = 3
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TABLE 5 Simulation study results

(n0,n1) i = 6 Studies i = 12 Studies
Pseudo IPD REML HK DL Pseudo IPD REML HK DL

Coverage probability (5, 5) 96.2% 95.6% 89.4% 95.4% 95.2% 90.4%
(10, 10) 96.0% 95.6% 92.6% 95.4% 95.0% 92.4%
(40, 40) 94.8% 94.8% 87.8% 94.8% 94.6% 92.6%

Bias (5, 5) 0.0583 0.0508 0.0159 −0.0058 −0.0061 −0.0040
(10, 10) 0.0297 0.0300 0.0300 −0.0014 −0.0015 −0.0010
(40, 40) −0.0139 −0.0139 −0.0141 −0.0103 −0.0104 −0.0117

Mean squared error (MSE) (5, 5) 0.8581 0.8603 0.9958 0.4653 0.4668 0.5621
(10, 10) 0.6052 0.6050 0.6514 0.3062 0.3068 0.3521
(40, 40) 0.4050 0.4046 0.4034 0.2000 0.1998 0.1989

Abbreviations: DL, DerSimonian-Laird; n0, number of subjects in control group; n1, number of subjects in exposure group; REML HK, restricted
maximum likelihood with Hartung-Knapp correction. Coverage of the calculated 95% confidence intervals, mean bias, and MSE obtained with
the different methods.

• Diagonal variance-covariance structure for the ran-
dom study intercept and study-specific treatment dif-
ferences

M =
[
𝜏2

0 𝜏01
𝜏01 𝜏2

1

]
=
[

4 0
0 2

]
.

We performed 500 simulations per combination (num-
ber of studies, number of subjects per arm). Per simu-
lated dataset, aggregate summary data were calculated by
arm and study (means, standard deviations, and num-
ber of observations). Then these aggregate summary data
were used to generate pseudo IPD. The original individual
patient data and the pseudo IPD were analyzed using
PROC MIXED. Here, estimation was performed using
REML with the containment method to calculate confi-
dence intervals. The aggregate data were analyzed using
the DL approach and REML method. For the latter, the 95%
confidence interval was constructed using a t-distribution
with k − 1 degrees of freedom, where k corresponds to the
number of studies.

6.2 Result
The results of the coverage probabilities, mean bias, and
MSE are summarized in Table 5. Analysis of the true data
and the pseudo IPD yielded exactly the same results in
each simulation run. In a few runs of the small number
of studies and small number of subjects per arm scenario,
we encountered convergence issues of the true IPD due to
between-study correlation estimated equal to 1.

Overall, the pseudo IPD approach showed coverage
probabilities very close to 95%. The coverage probability
for estimates derived from the DL method was found to
be always below the nominal level indicating that the con-
fidence intervals are too small. To facilitate comparisons
with the REML Hartung-Knapp correction, we imported

the SAS results into R and fitted the aforementioned
model. The resulting coverage probabilities under REML
HK were very similar to the pseudo IPD. The bias was small
for all estimates. The pseudo IPD approach showed almost
identical MSE values compared with the REML HK cor-
rections across the various scenarios. The MSE of the DL
was larger when the study sizes were small.

7 DISCUSSION

We have provided a general framework to generate pseudo
individual patient data from aggregate meta-analysis data
with continuous outcomes. Any likelihood-based analy-
sis of the pseudo IPD leads to identical results as the
unknown true IPD. The pseudo IPD can be analyzed in
standard statistical software by standard statistical meth-
ods. This brings the meta-analysis of continuous outcome
data back into mainstream statistics. All analyses can be
done using the linear mixed model (LMM), a standard
statistical tool nowadays and available in all general statis-
tical packages. Thereby meta-analysis can profit from all
the statistical methods, tools and software that is devel-
oped for the LMM. The LMM is a very general and flexible
model, which gives the meta-analyst a lot of freedom and
possibilities. We mention a number of advantages of this
approach. Of course, a first, practical, advantage is that the
meta-analyst can stick to his/her favorite statistical soft-
ware, without the need to call upon other special purpose
meta-analysis programs.

In this article, we have focused on the most sim-
ple meta-analysis situation of comparing two treatment
or exposure groups without covariates. However, since
the LMM is a very general framework, extensions to
more complex situations are rather straightforward. Exten-
sion to meta-regression is possible by adding study- or
group-level covariates to the model; however, we do
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not address the methodology for including covariates or
treatment-covariate interactions in this work. Extension to
comparing three or more treatment or exposure groups is
straightforward, by extending the fixed part of the model
with additional treatment group indicators and the ran-
dom part of the model with extra random treatment effects.
Since the LMM allows missing groups, this is also the
direct extension to network meta-analysis. For network
meta-analysis, the LMM offers a big variety of models for
the variances and correlations of the random treatment
effects, many more than those available in special purpose
network meta-analysis software.

In addition, the LMM approach offers three general
methods to test the overall treatment effect and to con-
struct confidence intervals: Wald method, the likelihood
ratio method, and the score method, albeit the last seems
to be very rarely used and is not implemented in most
LMM software. The most routinely used is the Wald-type
method, which assumes a normal distribution to calcu-
late the P value and the confidence interval and thereby
does not account for the uncertainty in the estimates of
the between-studies and within-study residual variances.
The method has often shown coverage probability below
the nominal 0.95 level due to the normality assumption
and the large-sample approximation (in terms of num-
ber of studies) assumption. Therefore in all LMM soft-
ware, a degrees of freedom adjustment is implemented,
which replaces the standard normal distribution by a
t-distribution with a certain number of degrees of free-
dom. There are several methods to calculate the number
of degrees of freedom. Most LMM software, for instance,
SPSS, uses only one method, but other programs, for
instance, SAS, offers the user a choice of up to five differ-
ent methods. It is a matter of further research to investigate
what is the best method for the typical meta-analysis data
structures. Notice that the degrees of freedom adjustment
in the LMM has the same aim as the Hartung-Knapp cor-
rection in an aggregate data meta-analysis. Therefore, this
correction is not anymore needed in the LMM approach.
An alternative for Wald method is the likelihood ratio
method.32 This method automatically takes into account
the uncertainty in the estimates of the variance compo-
nents, including the within-study residual variance(s), and
a degrees of freedom correction is not needed. Likelihood
ratio tests are easily performed in any LMM software, and
the corresponding confidence intervals are easily calcu-
lated. The likelihood ratio method also offers the possibil-
ity to test more complex null hypotheses where one might
be interested in, for instance, the composite null hypothe-
sis that the mean and the variance of the treatment effect

are both zero. In some meta-analysis applications, this is a
more appropriate null hypothesis than the usual one.33

The LMM also provides an easy way to perform control
rate regression, eg, previous studies.34-36 For instance, in
our examples, this would answer the question whether the
difference in plasma level of the micronutrients between
Alzheimer patients and healthy controls is related to the
mean level in the healthy control population. The nat-
ural model to study this relationship is the model with
random study-specific intercepts. In this model, the corre-
lation is estimated, and it can be tested using the likelihood
ratio test by comparing with a model where the covariance
matrix of the random effects is assumed to be of variance
components structure rather than unstructured.

A nice feature of the approach proposed in this paper
is that it allows to model the within-study residual vari-
ances. For instance, this can be utilized to study whether
the variances in the outcome variable are heterogeneous
across trials, which was indeed the case in our example
datasets. Another interesting question might be to inves-
tigate whether the variance in the treated group is larger
than in the control group. If the meta-analysis includes
double-blind placebo-controlled clinical trials as input
data, observing significantly larger variances in the treat-
ment group might be an interesting finding suggesting
heterogenous response even if the overall treatment effect
is not significant.

The LMM comes with many elaborated methods for
goodness-of-fit and regression diagnostics. These can be
very worthwhile in meta-analysis applications as proposed
in this paper. For instance, it might be very interesting to
identify individual studies, which drive the results. The
implemented methods make it very easy to find the stud-
ies that are most influential for the estimate of the overall
treatment effect, its standard error, the P value, or for the
estimate of the between studies variance.

A major advantage of having IPD for continuous out-
comes is to adjust for baseline, using an analysis of covari-
ance (ANCOVA) approach. However, often in practice,
there is enough aggregate information given in the study
reports to generalize our pseudo IPD approach to this case
as well. Suppose from the study reports we can extract
mean and standard deviation at baseline and at end of
treatment per group, together with the correlation coeffi-
cient. The latter can often be calculated from the standard
errors of the differences with baseline or a P value. Then it
is possible to construct a pseudo IPD dataset for which the
ANCOVA recovers exactly the ANCOVA on the true IPD.
Also, it can be studied whether the treatment effect is mod-
ified by the baseline variable, again giving the same results
if one had the true IPD. Working out the details of this is
beyond the scope of this paper.
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An additional advantage of our novel approach is that it
provides an immediate solution to the difficulty of gaining
access to the raw individual patient data. There are cases
where access to data is not possible due to time and cost
constrains, confidentiality of data, or unwillingness of the
researchers to provide them. Our proposed method can
be valuable in cases where IPD are available from some
but not all studies of interest; therefore, a combination of
originally available IPD and pseudo IPD derived from the
aggregate data of the remaining studies could profit the
analysis.

Finally, given the comparable performance of the
aggregate data MA using the HK correction7 and our
approach allowing flexible options for the modelling of
the within-study residual variances, our recommendation
to the applied researchers is that either approach can be
considered rather interchangeably unless specific interest
lies in modelling more realistic (or potentially complex)
residual variance structures across studies which can be
implemented only by pseudo IPD approach.
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APPENDIX A: CODE

We have analyzed the iron and folate datasets of our paper
using SAS, SPSS, and R. The code for the three different
programs on the iron dataset is given below. In each of the
provided codes, the following family of models are fitted

1. Both study and treatment effect fixed
2. Study effect fixed and treatment effect random
3. Both treatment effect and study effect random

Within each family, four different variance structures are
considered:

1. Arm-specific variances estimated (per study and
group a separate variance estimate), 𝜎2

𝜖,i𝑗
2. Study-specific variances estimated (per study a differ-

ent variance parameter, which is the same in the two
treatment groups), 𝜎2

𝜖,i.
3. Group-specific variances estimated (one variance for

all control groups; one variance for all treatment
groups), 𝜎2

𝜖,.𝑗

4. One residual variance, 𝜎2
𝜖,..

A.1 SAS

https://www.degruyter.com/dg/cite/$002fj$002fsagmb.2010.9.1$002fsagmb.2010.9.1.1503$002fsagmb.2010.9.1.1503.xml?nojs=true
https://www.degruyter.com/dg/cite/$002fj$002fsagmb.2010.9.1$002fsagmb.2010.9.1.1503$002fsagmb.2010.9.1.1503.xml?nojs=true
https://www.degruyter.com/dg/cite/$002fj$002fsagmb.2010.9.1$002fsagmb.2010.9.1.1503$002fsagmb.2010.9.1.1503.xml?nojs=true
https://doi.org/10.1002/jrsm.1331
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A.2 R
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A.3 SPSS
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