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Abstract: Mechanical properties of composites reinforced with lignocellulosic fibers have been
researched in recent decades. Jute and mallow fibers are reinforcement alternatives, as they can
contribute to increase the mechanical strength of composite materials. The present work aims to
predict the Young’s modulus with application of continuous and aligned lignocellulosic fibers to be
applied as reinforcement in polyester matrix. Fibers were manually separated and then arranged and
aligned in the polyester matrix. Composites with addition 5, 15, and 25 vol% jute and mallow fibers
were produced by vacuum-assisted hand lay-up/vaccum-bagging procedure. Samples were tested
in tensile and the tensile strength, elasticity modulus, and deformation were determined. Results
showed that the intrinsic Young’s modulus of the fibers was set at values around 17.95 and 11.72 GPa
for jute and mallow fibers, respectively. Statistical analysis showed that composites reinforced with 15
and 25 vol% jute and mallow presented the highest values of tensile strength and Young’s modulus.
The incorporation of 25 vol% of jute and mallow fibers increased the matrix Young’s modulus by 534%
and 353%, respectively, effectively stiffening the composite material. Prediction models presented
similar values for the Young’s modulus, showing that jute and mallow fibers might be used as
potential reinforcement of polymeric matrices

Keywords: natural fiber; tensile properties; micro-mechanics; vacuum-assisted hand lay-up

1. Introduction

Natural lignocellulosic fibers polymer matrix composites have gained interest over the
past few decades because of their availability, biodegradability, renewability, low density,
low cost, high specific moduli, and environmentally friendly appeal [1–3]. Indeed, natural
fiber-composite have been studied in past years to assess the possibility of their use in for
non-structural and structural engineering applications [4–6] and knowing the chemical,
physical, and mechanical properties of composites contribute to their application in several
areas of engineering [3]. Factors such as exposure to radiation, temperature variation,
chemical treatment, as well as fiber size and shape can influence the mechanical properties
and dynamic mechanical behavior of composites reinforced with lignocellulosic fibers [7–9].
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In study of [10] three types of composites with natural fiber reinforcements were
researched: composites reinforced with hemp fabric in the 50% fraction and polyurethane
resin matrix, composite reinforced with oak wood particles in polyester resin in six different
dimensions of the particles in the volumetric fraction 25%, and hybrid composites reinforced
with flax fibers in the volume fraction of 30%, with insertion of oak particulate, in polyester
matrix. Among the different results obtained, the authors concluded that the tensile and
rheological behavior depend on the size and disposition of fibers in the composite and on
the type of matrix.

Croccolo et al. [11] used flax fibers in the production of composites in isophthalic
(181EN2X) and vinyl ester (VEef220ST) matrices; the specimens were tested in tensile and
it was observed that the composites reinforced with 50% of flax fibers in matrix 181EN2X
overcame the pure matrix by 25.4% for tensile strength and 21.5% and for modulus of
elasticity. Composites reinforced with 50% flax fibers in VEef220ST matrix surpassed the
pure matrix by 11.2% and 37.7% for tensile strength and modulus of elasticity, respectively.
The mechanical strength and rigidity of the composite with isophthalic resin overcame the
composite with vinyl ester resin. Moreover, the isophthalic resin composites showed good
adhesion between the matrix and the fiber.

Jute fiber and mallow fiber are relatively high-strength natural fibers with promising
research and application potential. The work of Monteiro et al. [12] investigated the
ballistic performance of plain-woven jute fabric-reinforced polyester matrix composites.
The composites were produced with up to 30% by volume of fiber and orthophthalic
polyester. Results showed that the composites exhibited ballistic behavior similar to that of
aramid, also used as a component Multilayered Armor System.

Hanamanagouda et al. [13] studied mechanical properties of composites reinforced
with 5, 10, 15, 20, and 25% by volume of jute fiber. The samples were produced by hot
compression molding technique and then tested in impact, flexural, and tensile strengths.
Results show that composites might be used in the manufacture of structural components.

The Izod impact and bend properties of composites reinforced with 10, 20, and 30 vol%
of mallow fibers were determined [14]. The composites were molded by compression
mixing aligned fiber and epoxy resin in a steel mold by. Results showed that composites
fabricated with 20 and 30 vol% presented greater reinforcement capacity. Moreover, there
was an interfacial detachment between the fiber and the matrix. The statistical analysis
shows that composites reinforced with 30% by volume of mallow fiber presented the
best performance.

It was reported that the polyester matrix composites reinforced with up to 40 vol% of
mallow fabrics show exponential increase in tensile strength and linear increase in Young’s
modulus [15].

The determination of tensile properties of manufactured composites are often car-
ried out using some simple mathematical prediction models. These models give good
approximations to predict tensile properties of continuous and uniaxially aligned fibers [1].

A model to calculate the Young’s modulus and tensile properties of 3D printed carbon-
fiber-reinforced nylon matrix composite was presented by [16]. This model was elaborated
from experimental data. The carbon fibers were aligned in the 0◦ direction in relation to
the load applied in the tensile test. All samples tested exceeded the value of the Young’s
modulus of the pure matrix of 0.92 GPa. In the proposed model, the mixing rule was
converted so that the volumetric fraction was replaced by a percentage of the total area of
carbon fibers.

There have been numbers of estimate models to predict mechanics properties of
composites. The Rule-of-Mixture model (ROM) corresponds to the case when the applied
load causes equal strains in the phases. The volume fraction of each phase is the principal
element for pondering and determining the Young’s modulus of the composite. The ROM
is considered an upper bound for the true elastic modulus [17]. The accuracy of this model
is highly questionable because it cannot reflect the detailed constituent geometry and the
dispersion structure among other features [18,19].
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In the present work, the main prediction models are presented, starting with the
ROM and followed by other theoretical prediction models. For comparison, experimental
investigation was used to study the Young’s modulus of jute fiber- and mallow fiber-
reinforced polyester composites incorporated with different fiber volume fraction. For
the first time, a theoretical modeling of the Young’s modulus using six different types of
mathematical models is presented. Furthermore, for the first time, an ample statistical
analysis of the mechanical properties of polyester matrix composites reinforced with jute
and mallow fibers is carried out.

2. Materials and Methods
2.1. Materials

The unsaturated terephthalate-based polyester resin (Arazyn AZ 1.0 #34) of average
viscosity and the catalyst methyl-ethyl-ketone peroxide (MEK), PERMEC D-45, both sup-
plied by Ara Química SA (São Paulo, Brazil), were used as the composite matrix. The
polyester resin was mixed with 1.0 wt.% of catalytic hardener. The jute (Corchorus capsularis)
and mallow (Urena lobata) natural lignocellulosic fiber used in this investigation were
supplied by the “Companhia Têxtil de Castanhal do Pará” in the north region of Brazil.
The fibers were manually separated and cut in lengths of 300 mm.

Table 1 shows the chemical composition of jute and mallow fibers.

Table 1. Chemical composition of natural fibers.

Fiber Type Cellulose
(%)

Hemicellulose
(%)

Lignin
(wt.%)

Wax
(%) References

Jute 50–72 12–20 8–13 0.5 [20–23]
Mallow 56–72 27–29 10–12 0.6 [24]

2.2. Fiber Characterization
2.2.1. Scanning Electron Microscope (SEM)

The surface of the fiber was observed using a scanning electron microscope (Tescan-Vega 3,
Brno, Czech Republic) equipped with a 5-kV field emission electron source.

2.2.2. Diameter and Density Determination

The fiber diameter was measured in a Carl Zeiss, model Stemi 508, camera AXIO-CAM
105 Color optical microscope (Carl Zeiss, Berlin, Germany) at 3 different positions along
the axis of each fiber [4]. Fifty jute and mallow fibers average diameter were determined.

The density of the jute and mallow fibers were measured by the pycnometer method
in an analytical balance with 0.0001 g of precision [25].

2.2.3. Tensile Tests

The determination of the mechanical properties of the fibers was done by tensile test.
The preparation of the specimen was performed according to ASTM C1557 [26]. Before the
tensile test, the fibers were attached to 90 m/g2 paper using epoxy adhesive. The tensile
tests were performed in an EMIC DL 10,000 (Instron, São José dos Pinhais, Paraná, Brazil)
universal testing machine. Tensile tests were carried out on specimens with 40-mm gage
length using the displacement control at a rate of 0.2 mm/min. For each type of fiber,
50 tests were performed, and the fibers were tested as received [27]. The cross-section of the
fibers was considered circular, and their areas were used to calculate the tensile strength.

2.3. Composites Preparation

The jute and mallow fibers were accommodated continuous and aligned in a 300-mm-long
mold (Figure 1a). Composites were produced by vacuum-assisted hand lay-up/vacuum-
bagging procedure, stacking dry fiber ply layers onto a planar glass base to form a laminate.
Resin was applied to the dry plies after hand lay-up, and then, the amount of resin needed
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for full impregnation was added, and vacuum was applied (Figure 1b). The fiber volume
fraction precise content was evaluated on corresponding separate weighing amounts of
the fiber layers. The resin used for production was carried out with the idea to use the
least possible amount of resin needed for full impregnation. After the composite cured, the
laminate of each type of composite was weighed, and an evaluation of the fiber volume
fraction from the respective thickness of the layers compared to that of the whole composite
was performed [20–28]. Values obtained were equal to 4.95%, 14.92%, and 24.48%, for
jute fiber and 5.27%, 15.45%, and 23.90% for mallow fiber (Figure 1c). The dimensions of
composites were 2 mm × 15 mm × 250 mm (Figure 1d).
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Figure 1. Manufacturing of fiber composites: (a) for mallow; (b) vacuum-bagging technique;
(c) composite laminates produced; (d) specimens.

2.4. Density Determination

Density and void measurements were carried out on composite with 50-mm diameter
according to the Archimedean principle. The cured composite was then weighed in air
and then again weighed in a liquid with a known density. The calculated density from
measured values was reported in g/cm3 [29].

2.5. Tensile Test

The tensile tests were carried out in eight specimens for each condition at 23 ◦C
according to the ASTM 3039 [30] standard using an EMIC DL 10,000 (Instron, São José
dos Pinhais, Paraná, Brazil) universal testing machine with a 5-kN load cell and Clip-On
extensometer for displacement measurements during Young’s modulus determination
(Figure 2). The crosshead speed was set as 2 mm/min for all tensile tests. To determine
the mechanical properties in tensile, eight samples of each composition of the composites
were tested.
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2.6. Statistical Analysis

The statistical validation of the data was performed using the analysis of variance test
(ANOVA), with a confidence interval of 95% (p < 0.05). The mean values were compared
by the Tukey test.

2.7. Theoretical Prediction Models of Young’s Modulus

It is known that the mechanical properties of a composite depend on the intrinsic
properties of its phases. In this way, when determining the individual properties of the
reinforcement fibers and the matrix, we can apply to the existing micromechanical models
that proved to be useful and reliable to calculate the intrinsic properties [31–33]. All models
used in this paper are presented below and were used to predict the Young’s modulus of
unidirectional continuous fiber-reinforced composites in the loading direction.

2.7.1. Rule of Mixture Model (ROM)

The Rule of Mixtures model is the most commonly applied to represent Young’s
modulus of unidirectional continuous fiber composite. It assumes that the interface between
fiber and matrix is perfect and operates under iso-strain condition [1,34]. According to this
model, Young’s modulus is calculated by the following equation:

Ec = E f Vf + EmVm (1)

where E and V are Young’s modulus and volume fraction. The composite, matrix, and
fibers are represented by the subscripts c, m, and f, respectively.
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2.7.2. Al-Quresh’s Model

Al-Quresh’s model is based on a combination of dispersed phases composed of fibers
and particulates [35,36]. As such, by considering the principle of additivity, the equation of
the rule of mixtures becomes:

Ec = βE f Vf + λEmVm + γEpVp (2)

The factor β is associated with reinforcement efficiency in the case of parallel fibers
and considered to have a value 1. The factor λ concerns the efficiency of the interfacial
bond of the fiber by the matrix; in this paper, the value 1 was considered. The particulate is
represented by the subscripts p, which is not considered in the present research.

2.7.3. Madsen’s Model

In the Madsen’s model, the effect of porosity on the stiffness of plant fiber composites
is demonstrated to be well simulated by including the factor (1 − Vv)2 in the ROM. The
model assumes axial loading of the fibers as well as elastic stress transfer between matrix
and fibers. The exponent 2 was considered in this paper. This value is denoted as the
porosity efficiency exponent, where the author, in a broad range of plant fiber composite
systems, found that n = 2 generally gives a good fit to the experimental data [37,38], using
the following equation:

Ec = (η0.ηl .E f Vf + EmVm)(1 − Vv)
2 (3)

The η0 is fiber orientation efficiency factor and is calculated for some typical fiber
orientation distributions. In case of unidirectional and loaded along fibers, it is equal to 1.

The factor ηl is fiber length efficiency factor for composites with fiber aspect ratios
above 50; in the case of the composites presented in this paper, it was set equal to 1.

The void volume fraction needs to be calculated using the following equation:

Vv = 1 −
m f /ρ f +

(
mc − m f

)
/ρm

mc/ρc
(4)

where ρf, ρm, and ρc are density of fiber, matrix, and composite, respectively. They were
calculated from experimental data. Just like mf, mm, and mc are mass of fiber, matrix, and
composite, respectively, they were determined experimentally. The porosity is represented
by the subscript v.

2.7.4. Shah’s Model

The modified ROM, which takes into account the effect of fiber obliquity in twisted
yarn reinforcements, is given by Equation (5). This model proposed a twist angle at the
yarn surface α where a single plant fiber is similar to a twisted yarn composite. Single plant
fibers are a lignin-hemicellulose matrix reinforced by cellulose fibrils where the microfibrils
are at an angle to the vertical axis [39]; the model is represented by:

Ec = (cos2 ∝ .ηl .ηd.E f Vf + EmVm)(1 − Vv)
2 (5)

where α is twist angle at the yarn surface and, in this paper, has a value of 18◦.
The ηd is distribution efficiency factor and reinforcement orientation, and it is assumed

that ηd is unity. The factor ηl is the fiber length efficiency factor for composites with fiber
aspect ratios above 50, as is the case for the composites presented in this paper, which were
set equal to 1.

2.7.5. Halpin-Tsai Model

Halpin and Tsai developed a semi-empirical model for the prediction and determi-
nation of the Young’s modulus of continuous fiber-reinforced composites aligned [40,41].
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This model has been widely used among the prediction models for Young’s moduli in
composite materials [1,42]:

Ec = Em

(
1 + ζηVf

1 − ηVf

)
(6)

where the constants η and ζ are given by:

η =

 E f
Em

− 1
E f
Em

+ ζ

 (7)

ζ =

(
2l
d

)
(8)

such that ζ is a shape fitting parameter. The variables l and d are the length of the fiber in
the direction of the load and diameter of fiber, respectively [1].

2.7.6. Nielsen’s Model

Landel and Nielsen [43] modified the Halpin-Tsai model by assuming a factor to
account for the fiber arrangement as well as fiber content, ψ, to enable prediction as given
by the following equations:

Ec = Em

(
1 + ζηVf

1 − ηψVf

)
(9)

and

ψ = 1 +
(

1 −∅max

∅2
max

)
.Vf (10)

where ∅max is the maximum fiber packing fraction. In this paper, the fiber arrangement for
random packing of fibers was adopted: 0.82 [44].

3. Results and Discussion
3.1. Fiber Characterization

SEM images of the jute and mallow fibers cross section are shown in Figure 3. It can
be seen that it presents structures similar to those of other NFLs [4–6], with a lumen in the
center and a structure that has an almost circular shape.
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Figure 4 shows optical microscopy of elementary fibers, where the values of the
measurements of the diameters of the jute (Figure 4a) and mallow fibers (Figure 4b) are
highlighted. Table 2 shows the average diameter, density, and mechanical properties of jute
and mallow fibers.
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Table 2. Properties and result of tensile tests of samples fiber.

Fiber Average Diameter
(µm)

Density
(g/cm3)

Tensile Strength
(MPa)

Total Strain
(mm/mm)

Young’s Modulus
(GPa)

Jute Fiber 78.00 ± 15.57 1.482 ± 0.055 380.87 ± 89.32 0.0292 ± 0.012 17.955 ± 6.57

Mallow
Fiber 79.74 ± 18.15 1.148 ± 0.068 446.80 ± 104.47 0.0722 ± 0.030 11.725 ± 4.09

Jute and mallow fibers had an average diameter of 78.00± 15.57µm and 79.74 ± 18.15 µm
and density of 1.482 ± 0.055 g/cm3 and 1.148 ± 0.068 g/cm3, respectively. The aver-
age ultimate tensile strength was 380.87 ± 89.32 MPa and 446.80 ± 104.47 MPa, and
Young’s modulus was found to be 17.955 ± 6.57 GPa and 11.725 ± 4.09 GPa, respec-
tively. Table 2 also shows that total strains were found to be 0.0292 ± 0.012 mm/mm and
0.0722 ± 0.030 mm/mm for the jute and mallow fibers, respectively.

One should notice that these experimental values are similar to those of jute fibers
from the literature as shown in [45], where the presented density was 1.46 (g/cm3), tensile
strength 393–800 (MPa), Young’s modulus 10–30 (GPa), and elongation 1.5–1.8 (%), and
similarly for mallow fibers, [46]’s study presented a density of 1.37 (g/cm3), tensile strength
of 160 (MPa), Young’s modulus of 17.4 (GPa), and elongation of 5.2 (%). The data provided
in Table 1 were used in the prediction models to calculate the theoretical Young’s modulus.

3.2. Mechanical Properties of Composites

Table 3 presents the properties of jute and mallow fiber-reinforced composites. In this
table, it might be seen that composite densities increase with the incorporation of jute and
mallow fibers. It is also observed that the densities of the composites do not exceed the
density value of the neat polyester matrix. The result of void volume fraction in Table 3
revealed that the manufacturing process of composites materials vacuum-assisted hand
lay-up is a very effective method to prepare the composites.
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Table 3. Properties of samples of fiber polyester composites.

Composite Manufacturing
Condition Description Fiber Volume Fraction

(%)
Void Volume Fraction

(%)
Density
(g/cm3)

Neat Polyester Matrix Hand lay-up method PM * 0 NA ** 1.249 ± 0.0310

Polyester/Jute fiber
(0◦ unidirectional) Vacuum-assisted

hand lay-up/vacuum-
bagging
method

J5% 5 19.58 1.115 ± 0.0115
J15% 15 10.34 1.154 ± 0.0136
J25% 25 10.76 1.172 ± 0.0055

Polyester/Mallow fiber
(0◦ unidirectional)

M5% 5 12.60 1.097 ± 0.0037
M15% 15 9.70 1.112 ± 0.0136
M25% 25 3.91 1.176 ± 0.0162

* PM polyester matrix; ** NA not applicable.

Figure 5 shows the tensile curves of polyester matrix composites reinforced with 5,
15, and 25% volume of jute fiber and mallow fiber. Table 4 shows mechanical properties of
both matrix and composites.
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Table 4. Result of tensile tests of samples of fiber polyester composites.

Composite Manufacturing
Condition Description

Fiber Volume
Fraction

(%)

Tensile Strength
(MPa)

Total Strain
(mm/mm)

Young’s Modulus
(GPa)

Neat Polyester
Matrix

Hand lay-up
method NA * 0 23.35 ± 4.46 0.0451 ± 0.0072 0.501 ± 0.084

Polyester/Jute fiber
(0◦ unidirectional)

Vacuum-assisted
hand

lay-up/vacuum-
bagging
method

J5% 5 23.88 ± 4.22 0.0087 ± 0.0014 0.934 ± 0.136
J15% 15 58.37 ± 2.53 0.0091 ± 0.0026 2.831 ± 0.166
J25% 25 62.11 ± 2.12 0.0078 ± 0.0083 3.177 ± 0.794

Polyester/Mallow fiber
(0◦ unidirectional)

M5% 5 17.93 ± 3.20 0.0064 ± 0.0024 0.847 ± 0.080
M15% 15 39.11 ± 2.62 0.0066 ± 0.0023 1.744 ± 0.179
M25% 25 45.82 ± 1.13 0.0069 ± 0.0009 2.271 ± 0.561

* NA not Applicable.

Results of Table 4 show that jute fiber-reinforced composites exhibit higher tensile
strength, exceeding by 2%, 150%, and 166% the tensile strength of the neat polyester for
addition of jute 5, 15, and 25 vol%, respectively. Similarly, the mallow fiber-reinforced
composites also exhibit higher tensile strength, exceeding by 67% and 96% the tensile
strength of the neat polyester for addition of mallow 15 and 25 vol%, respectively. Only
for 5 vol% of mallow fibers was the matrix was superior by 23%. For the total strain in all
cases, the neat polyester matrix shows higher results, where for 5, 15, and 25 vol% of jute
fibers, the matrix was superior by 81, 80, and 83%, respectively, and for 5, 15, and 25 vol%
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of mallow fibers, the matrix was superior by 86, 85, and 85%, respectively. Similar results
were obtained by [47].

Consequently, under this condition, the Young’s modulus for the 5, 15, and 25 vol%
jute fiber-reinforced composites exhibit the highest values, exceeding by 86, 465, and 534%
the stiffness of the neat polyester. Similarly, the Young’s modulus for the 5, 15, and 25 vol%
mallow fiber-reinforced composites also exhibit the highest values, exceeding by 69, 248,
and 353% the stiffness of the neat polyester, respectively.

3.3. Statistical Analysis

Statistical analysis of mechanical properties is presented in Table 5.

Table 5. Analysis of variance for composites reinforced with jute fiber.

Maximum Strength (MPa)

Source Sum of
Squares

Degrees of
Freedom

Mean of
Squares

F
(calculated)

F
critical p-value

Between the groups 5044.28 3 1681.428 12.89 3.411 3.42 × 10−4

Inside the group 1696.32 13 130.486
Total 6740.60 16

Young’s Modulus (GPa)

Source Sum of
Squares

Degrees of
Freedom

Mean of
Squares

F
(calculated)

F
critical p-value

Between the groups 23.69 3 7.898 56.30 3.287 2.14 × 10−8

Inside the group 2.10 15 0.140
Total 25.80 18

Total Strain (mm/mm)

Source Sum of
Squares

Degrees of
Freedom

Mean of
Squares

F
(calculated)

F
critical p-value

Between the groups 0.0047 3 1.56 × 10−3 72.98 3411 8.70 × 10−9

Inside the group 0.0003 13 2.14 × 10−5

Total 0.0050 16

In Table 5, for maximum strength, one can see that the F calculated (12.89) is higher
than the F critical value (3.411). For Young’s modulus, the F calculated (56.30) is higher
than the F critical value (3.287). In the same way, for total strain, the F calculated (72.98)
is higher than the F critical value (3.411). Thus, the hypothesis that the averages of the
properties presented are equals, with a confidence level of 95%, is rejected. Because of the
ANOVA results, the Tukey test was necessary in order to investigate if an increase in the
amount of jute fiber volume fraction was more effective in causing significant changes in
the mechanical properties in this composite.

Table 6 shows the results of Tukey test.

Table 6. Results obtained for differences between the average values for PM, J5%, J15%, and J25%
after applying the Tukey test.

Maximum Strength
(m.s.d = 23.70)

Young’s Modulus
(m.s.d = 0.763)

Total Strain
(m.s.d = 0.0096)

MP J5% J15% J25% MP J5% J15% J25% MP J5% J15% J25%

MP 0.00 0.53 35.02 38.76 0.000 0.433 2.330 2.676 0.0000 0.0364 0.0360 0.0373
J5% 0.53 0.00 34.49 38.23 0.433 0.000 1.897 2.243 0.0364 0.0000 0.0004 0.0009

J15% 35.02 34.49 0.00 3.74 2.330 1.897 0.000 0.346 0.0360 0.0004 0.0000 0.0013
J25% 38.76 38.23 3.74 0.00 2.676 2.243 0.346 0.000 0.0373 0.0009 0.0013 0.0000
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The minimum significant difference (m.s.d) is a value that can discriminate which
treatment shows difference in its average values. Once the difference between the average
values of groups, compared two by two, is higher than the m.s.d value, this pair is consid-
ered to be different. The m.s.d for maximum strength was calculated as 23.70, the m.s.d for
Young’s modulus was calculated as 0.763, and for total strain, it was 0.0096.

Thus, it might be seen that the inclusion of continuous and aligned of jute fiber in
polyester resin was essential to cause changes in mechanical properties. The J15% and
J25% composites have indeed the highest tensile strength and Young’s modulus, which
effectively stiffened the material.

For the results of maximum strength (MPa), Young’s modulus (GPa), and total strain
(mm/mm) for composites reinforced with mallow fiber, the corresponding values for the
ANOVA are shown in Table 7. The hypothesis that the averages of properties mechanical
are equals, with a confidence level of 95%, is also rejected.

Table 7. Analysis of variance for composites reinforced with mallow fiber.

Maximum Strength (MPa)

Source Sum of
Squares

Degrees of
Freedom

Mean of
Squares

F
(calculated) F critical p-value

Between the groups 1844.06 3 614.687 52.38 3.411 1.61 × 10−7

Inside the group 152.55 13 11.734
Total 1996.61 16

Young’s Modulus (GPa)

Source Sum of
Squares

Degrees of
Freedom

Mean of
Squares

F
(calculated) F critical p-value

Between the groups 10.00 3 3.333 42.57 3.098 7.18 × 10−9

Inside the group 1.57 20 0.078
Total 11.57 23

Total Strain (mm/mm)

Source Sum of
Squares

Degrees of
Freedom

Mean of
Squares

F
(calculated) F critical p-value

Between the groups 0.0052 3 1.75 × 10−3 87.38 3.411 6.13 × 10−9

Inside the group 0.0003 13 2 × 10−5

Total 0.0055 16

Results of ANOVA in Table 7 show that, for maximum strength, the F calculated
(52.38) > F critical (3.411). For Young’s modulus, the F calculated (42.57) > F critic value
(3.098). In the same way, for total strain, the F calculated (87.38) is higher than the F critical
value (3.411). The Tukey test (see Table 8) was applied to discriminate which group showed
significant differences in properties. The m.s.d for the maximum strength values was
calculated as 7.11. The m.s.d for the Young’s modulus values was calculated as 0.553. For
total strain, it was 0.0093.

Table 8. Results obtained for differences between the average values for PM, M5%, M15%, and M25%
after applying the Tukey test.

Maximum Strength
(m.s.d = 7.11)

Young’s Modulus
(m.s.d = 0.553)

Total Strain
(m.s.d = 0.0093)

MP M5% M15% M25% MP M5% M15% M25% MP M5% M15% M25%

MP 0.00 5.42 15.76 22.47 0.000 0.346 1.243 1.770 0.0000 0.0387 0.0385 0.0382
M5% 5.42 0.00 21.18 27.89 0.346 0.000 0.897 1.424 0.0387 0.0000 0.0002 0.0005

M15% 15.76 21.18 0.00 6.71 1.243 0.897 0.000 0.527 0.0385 0.0002 0.0000 0.0003
M25% 22.47 27.89 6.71 0.00 1.770 1.424 0.527 0.000 0.0382 0.0005 0.0003 0.0000
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M15% and M25% composites group, with 95% confidence level, exhibit the highest ten-
sile strength and Young’s modulus. Thus, it might be seen that the inclusion of continuous
and aligned mallow fiber in polyester resin caused changes in mechanical properties. On
the other hand, no significant difference was found in the values of mechanical resistance
between M5% composite and neat polyester matrix.

3.4. Theoretical Prediction Models of Young’s Modulus

Figure 6 shows the experimental variation of Young’s modulus of polyester matrix
composites reinforced with jute fiber and mallow fiber as a function of fiber quantity.
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It might be observed that the studied fibers participate in the increase of the mechanical
properties of the composite materials. Indeed, the composites reinforced with jute fibers in
volume fractions of 5, 15, and 25% showed increase of 0.934 ± 0.136 GPa, 2.831 ± 0.166 GPa,
and 3.177 ± 0.794 GPa, respectively. The composites reinforced with mallow fibers also
showed an increase in their mechanical property of 0.847 ± 0.080 GPa, 1.744 ± 0.179 GPa,
and 2.271 ± 0.561 GPa, respectively. With an increase in the amount of fibers and a
reduction in the amount of matrix, therefore, it is noted that due to is greater interfacial
adhesion to fibers/matrix, there is a greater participation of fibers in the iso-deformation
process. It should be noted that these experimental values are similar to previous works of
Cavalcanti et al. [48]. Their research used 30 vol% jute fibers as reinforcement in an epoxy
matrix and obtained an experimental Young’s modulus of 3.44 ± 0.20 GPa. Tanguy et al. [49]
presented in their article 30% jute and flax fibers as reinforcement in a polypropylene matrix
and obtained a Young’s modulus of 4.992 ± 0.242 and 4.227 ± 0.111 GPa, respectively.

Table 9 shows the variation of Young’s modulus predicted for composites reinforced
with jute fiber and mallow fiber. The prediction models of the studied Young’s modulus
showed increasing results, similar to the experimental ones.

Table 9. Variation of predicted Young’s modulus for jute and mallow fiber polyester composites.

Composite Fiber Volume
Fraction (%)

Young’s Modulus (GPa)

ROM Al-Quresh Madsen Halpin-Tsai Nielsen Shah

Polyester/Jute fiber
(0◦ unidirectional)

5 1.337 1.337 0.865 1.332 1.334 0.540
10 3.078 3.078 2.474 3.065 3.069 1.260
15 4.751 4.751 3.784 4.733 4.738 1.809

Polyester/Mallow fiber
(0◦ unidirectional)

5 1.064 1.064 0.812 1.061 1.062 0.546
10 2.201 2.201 1.795 2.195 2.197 0.966
15 3.147 3.147 2.905 3.138 3.141 1.453

Figure 7 shows the results of the mathematical modeling of the Young’s modulus of
the studied composites.
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Figure 7 shows that good fits between the theoretical and experimental values are
obtained for the Madsen model. The difference between the Young’s modulus for jute fiber
composites at 5, 15, and 25 vol% was 7, 13, and 19% and for the case of mallow composites
were 4, 3, and 28%, respectively.

It can also be seen from Figure 8 that there is good agreement between in the ROM
model and the Al-Quresh model, as both models showed the same Young’s modulus values.
When comparing with experimental values, the disparity was 43, 9, and 50% for jute fibers
and 26, 26, and 39% for mallow fibers.
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Figure 8 shows the results of the mathematical modeling of the Young’s modulus of
the studied composites.

Figure 8 shows that there is a difference between the Shah model and the experimental
Young’s modulus. Thus, difference corresponds to a decrease of 42, 55, and 43% for
composites reinforced with jute fiber and 36, 45, and 36% for composites reinforced with
mallow fiber. Therefore, a discrepancy has also been observed between Shah model and
experimental Young’s modulus.

Similar to the ROM and Al-Quresh models, it can also be seen from Figure 8 that
there is good agreement between the Halpin-Tsai model and Nielsen model. Both models
showed the same Young’s modulus values. When comparing with experimental values,
the disparity was 43%, 8%, and 49% for composites reinforced with jute fiber and 25%, 25%,
and 38% for composites reinforced with mallow fiber.

4. Summary and Conclusions

Polymer matrix and composite reinforced with continuous and aligned fibers of
mallow and jute were prepared by the vacuum-assisted hand lay-up/vacuum-bagging
method, varying the fiber volume fractions of 5, 15, and 25%. Based on the results obtained
in this research work, the following conclusions can be drawn:

• This study reveals that the vacuum-assisted hand lay-up/vacuum-bagging method is
very effective method to obtain composites with low void volume fraction;

• The prediction model that best fit the experimental results was the Madsen’s model;
the difference between the Young’s modulus for jute fiber composites with 5, 15, and
25 vol% was 7, 13, and 19%, and for the mallow fiber with some compositions, it was
4, 3, and 28%, respectively;

• The ROM, Al-Quresh, Halpin-Tsai, and Nielsen prediction models showed similar
results for Young’s modulus;

• Composites reinforced with 25 vol% of jute and mallow fibers presented higher tensile
strength as well as Young’ modulus. This demonstrates that the inclusion of continuous
and aligned of jute/mallow fiber in polyester resin can effectively stiffen the material;

• It is concluded that the prediction models presented in this work display values close
to experimental data. The work was successful, and we were able to confirm that jute
and mallow fibers constitute a potential reinforcement of polymer matrices.
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