
METHODOLOGY ARTICLE Open Access

Targeted protein depletion in Saccharomyces
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Abstract

Background: Tools for in vivo manipulation of protein abundance or activity are highly beneficial for life science
research. Protein stability can be efficiently controlled by conditional degrons, which induce target protein
degradation at restrictive conditions.

Results: We used the yeast Saccharomyces cerevisiae for development of a conditional, bidirectional degron to
control protein stability, which can be fused to the target protein N-terminally, C-terminally or placed internally.
Activation of the degron is achieved by cleavage with the tobacco etch virus (TEV) protease, resulting in quick
proteolysis of the target protein. We found similar degradation rates of soluble substrates using destabilization by
the N- or C-degron. C-terminal tagging of essential yeast proteins with the bidirectional degron resulted in
deletion-like phenotypes at non-permissive conditions. Developmental process-specific mutants were created by
N- or C-terminal tagging of essential proteins with the bidirectional degron in combination with sporulation-
specific production of the TEV protease.

Conclusions: We developed a system to influence protein abundance and activity genetically, which can be used
to create conditional mutants, to regulate the fate of single protein domains or to design artificial regulatory
circuits. Thus, this method enhances the toolbox to manipulate proteins in systems biology approaches
considerably.

Background
One of the basic experiments in cell biology is to remove
a specific protein, conduct a phenotypic analysis and
from that deduce the function of the protein. Often, the
main problem is to remove the protein of interest quickly
and efficiently. Many techniques have been developed to
disturb the synthesis, activity or abundance of a selected
protein [1-7]. The addition of a destabilizing sequence
(degron) is used to reduce the half-life of the target pro-
tein by inducing proteasomal proteolysis [8]. A recent
development to target proteins for degradation is the
auxin-inducible degron, a relative of the PROTACS sys-
tem. Both methods use chemical compounds to tether a
protein to an ubiquitin-protein-ligase, thereby inducing
polyubiquitylation and degradation of the target protein
[9,10]. Other methods utilize small chemical compounds
to change the destabilization activity of protein domains

[11,12], or degrade target proteins employing the bacter-
ial protease ClpXP [13].
One very widespread method is the release of an

N-degron by proteolysis applying the ubiquitin-fusion
technique. The fusion of ubiquitin to the N-terminus of
a protein results in cleavage by deubiquitylating enzymes
between ubiquitin and the protein. Thereby, almost all
amino acids can be exposed at the N-terminus of a pro-
tein. The technique led to the formulation of the N-end
rule, which states that the in vivo half-life of a protein is
related to the identity of the N-terminal amino acid
[14-16]. In yeast 12 amino acids (D, E, F, H, I, K, L, N,
Q, R, W, and Y) destabilize a protein if exposed at the
N-terminus. Eight of these destabilizing amino acids are
directly recognized by the ubiquitin-protein-ligase Ubr1
(primary destabilizing residues), whereas four have to be
modified by deamidation and/or arginylation (tertiary
and secondary destabilizing residues) before. Recogni-
tion by Ubr1 leads to polyubiquitylation of the protein
followed by proteasomal proteolysis [17,18]. Varshavsky
and his co-workers developed a temperature-sensitive
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degron for the creation of conditional mutants [19].
This technique has been used effectively to investigate
functions of many essential proteins in Saccharomyces
cerevisiae, although it is often necessary to use high
level expression of UBR1 to induce a temperature-sensi-
tive phenotype [20-24].
Recently, the tobacco etch virus (TEV) protease

induced protein instability (TIPI) system was developed
as another tool to create conditional mutants. A degra-
dation tag (TDegF) with a dormant N-degron is fused to
the N-terminus of a target protein. Presence of the TEV
protease leads to site-specific proteolysis of the tag and
exposure of the N-degron. This initiates destabilization
of the target protein. Fast and efficient cleavage of the
substrate is achieved utilizing a TEV protease (named
pTEV+ protease) with enhanced processivity towards the
TDegF tag. Thus, by regulation of pTEV+ protease
expression the TIPI system allows to control target
protein abundance [25].
One of the well studied degrons, which might be use-

ful for protein depletion, is the C-terminal degron of the
mouse ornithine decarboxylase (cODC) which is con-
served in vertebrates [26]. It induces rapid, proteasomal
proteolysis independent of polyubiquitylation [27]. The
half-life of full-length mouse ornithine decarboxylase
expressed in yeast has been found to be 10 minutes
[28]. Two elements within the degron mediate the
destabilization activity. The first is a cysteine-alanine
motif, which is important for proteasomal association.
The second consists of an unstructured region flanking
the cysteine-alanine motif, comprising 16 amino acids
upstream and 19 downstream [26,29]. The cODC
degron destabilizes a protein only if present at the very
C-terminus [30]. Moving the cysteine-alanine motif only
a few amino acids closer to the C-terminus or farther
away impairs the destabilizing activity [26]. The cODC
degron has been used to destabilize proteins in the fun-
gus Saccharomyces cerevisiae [28], the plant Nicotiana
tabacum cv. Xanthi [31], mammalian cell culture [32] or
to study protein degradation in vivo and in vitro [33,34],
though no conditional version of the degron has been
developed. We reasoned that it should be possible to
create a conditional C-degron by constructing a tag with
the cODC degron kept inactive due to a protective pep-
tide added C-terminally to the cODC degron. Activation
of the tag is achieved by site-specific proteolysis result-
ing in activation of the cryptic C-degron. We chose a
dormant N-degron [25] as protective group. Thus, we
created a bidirectional degron consisting of two degrons,
which inactivate each other until TEV protease cleavage.
This bidirectional degron can be fused to the target
N-terminally, C-terminally or placed internally to regu-
late protein abundance in vivo.

Results and Discussion
Construction of conditional C-degrons
The structure of the bidirectional degrons is shown in
Figure 1A. We chose the tobacco etch virus (TEV) pro-
tease to activate the C-degrons due to our previous
experience with the development of the TEV protease
induced protein instability (TIPI) system [25]. The
degrons are based on the conditional N-degron TDegF,
which consists of an unstructured spacer region, the
TEV protease cleavage site ENLYFQ-F, an N-degron
and an affinity domain derived from the human protein
SF3b155 (amino acids 381 to 424). This affinity domain
binds strongly to the human protein p14, which is fused
to the TEV protease, thereby enhancing processivity of
the protease towards the TDegF tag [25]. The bidirec-
tional degrons were created by insertion of sequences
containing the cysteine-alanine motif and surrounding
amino acids (8 or 14) of the C-terminal mouse ornithine
decarboxylase degron (cODC) into the unstructured
spacer region in front of the TEV protease recognition
site. In both constructs, the cysteine-alanine motif was
placed 19 amino acids upstream of the cleavage site.
Thus, the newly developed bidirectional degrons consist
of a C-degron separated from an N-degron by the TEV
protease recognition site (Figure 1A). Due to this
arrangement, both degrons are kept inactive until the
tag is cleaved by the TEV protease. The usage of the
bidirectional degron for conditional destabilization of
target proteins is illustrated in Figure 1B: The GFP-
cODC1-TDegF-RFP tag is fused to the 3’- end of the tar-
get gene. Expression of the pTEV+ protease gene is con-
trolled by an appropriate promoter (inducible, active
during a specific cell-cycle stage or developmental pro-
cess). Upon expression of the pTEV+ protease, the tag is
cleaved at the consensus site (ENLYFQ-F) if it is
exposed to the cytoplasm or the nucleus. This cleavage
leads to activation of the two dormant degrons resulting
in rapid proteasomal proteolysis of the target protein
and the RFP. The sequences of the N-degron TDegF as
well as the bidirectional degrons cODC1-TDegF and
cODC2-TDegF are given in Figure 1C.
Due to the modular design of our constructs, the

TEV protease cleavage site might be flanked by stabi-
lizing or destabilizing sequences. Depending on the
modules used, internal tagging of a two domain pro-
tein followed by in vivo proteolytic cleavage leads to
destabilization of the whole protein, destabilization of
one domain or separation of the domains (Figure 1D).
Using this strategy, the TIPI system is expanded not
only by a C-degron, but gains the possibility to control
the fate of protein domains after separation. The
features of the newly developed constructs are sum-
marized in Table 1.
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Figure 1 The bidirectional degron approach enhances the TEV protease induced protein instability (TIPI) system. (A) Schematic
illustration of the bidirectional degrons. The degrons consist of an unstructured domain (orange) with cODC sequences (8 or 14 amino acids
containing the cysteine-alanine (CA) motif), the TEV protease recognition site (ENLYFQ-F) and an N-degron fused to the affinity domain
SF3b155381-424 (blue). The affinity domain binds to the human protein p14, which was fused to the TEV protease. Usage of these affinity
domains enhances cleavage of the degradation tags. (B) Regulation of target protein abundance by the TEV protease induced protein
instability (TIPI) system using the bidirectional degron fused to the C-terminus of the target. Details can be found in the text. (C) Sequence
of the GFP-TDegF tag with cODC insertions. Amino acids derived from yeast enhanced GFP [64] are shown in black - cODC1 (red) or cODC2
(blue) - spacer sequence (orange) - TEV protease recognition site (green). The cysteine-alanine motif is marked by bold letters; the cysteine in
the cODC1 construct, which was mutated to alanine to verify proteasomal degradation is underlined; the TEV protease cleavage site is
indicated (|); sequences of the N-degron and SF3b155381-424 can be found in Figure S3 (see Additional file 1) or [25]. (D) Control of single
domain stability by internal tagging of a two domain target protein. The TIPI system offers modules with stabilizing or destabilizing
sequences flanking the TEV protease recognition site. The target protein is tagged between two domains (D1, D2). Depending on the
modules used for modification of the target, the domains are destabilized or remain stable after cleavage. Phenylalanine and cODC1 confer
destabilization, whereas methionine and unmodified TDeg should not influence protein stability. All possible combinations are shown;
features of the different constructs are summarized in Table 1.
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Rapid protein depletion induced by the cODC degron
We fused two different bidirectional degrons (cODC1/2-
TDegF) between the green fluorescent protein (GFP)
and the red fluorescent protein mKate (RFP) to obtain
tester proteins. The behavior of the tester proteins was
assessed upon pTEV+ protease [25] expression. We
observed complete cleavage of the tester proteins, deple-
tion of the F-RFP as well as cODC-dependent destabili-
zation of the GFP. Interestingly, we observed complete
disappearance of the GFP signal only in case of the
cODC1 construct (Figure 2A), showing that cODC1
mediates stronger destabilizing activity than cODC2.
For further characterization of the newly created

C-degrons, we fused GFP-cODC1-TDegF-RFP and GFP-
cODC2-TDegF-RFP to the C-terminus of Cap2. Both
constructs localized to patches near the plasma mem-
brane, mostly within the bud. This localization pattern
was found for Cap2-GFP as well [35], showing that
addition of the tags did not influence subcellular locali-
zation. We followed the GFP- and RFP- fluorescence by
live-cell imaging in presence and absence of the pTEV+

protease. Both, GFP- and RFP-fluorescence decreased in
presence of the protease, almost complete loss of green
fluorescence was observed in cells containing Cap2-
GFP-cODC1-TDegF-RFP (Figure 2B). This demonstrates
that membrane association of target proteins does not
hamper proteolytic cleavage and depletion. A similar
behavior has been found for substrates modified with
the TDegF tag as well [25]. The cODC1-TDegF tag was
constructed as a conditional degron. To clarify, whether
the cODC sequences exert destabilizing activity on a
protein without pTEV+ protease cleavage, we assessed
the stability of the tester proteins GFP-TDegF-RFP,
GFP-cODC1-TDegF-RFP, GFP-cODC2-TDegF-RFP and
GFP-cODC1-TDegF (a shortened construct lacking the
RFP) after inhibition of protein synthesis. To do so, the

cells were treated with the translation elongation inhibi-
tor cycloheximide at the same time as production of the
pTEV+ protease was induced. As expected, the tester
proteins were not processed due to absence of the pro-
tease. We observed no degradation of the tester proteins
GFP-TDegF-RFP, GFP-cODC1-TDegF-RFP, and GFP-
cODC2-TDegF-RFP, showing that the cODC sequences
we used do not destabilize these constructs without acti-
vation of the degradation tag. However, no signal of the
GFP-cODC1-TDegF construct was detected after cyclo-
heximide treatment. Moreover, the steady-state level of
this protein was reduced compared to the other con-
structs (Figure 2C). This indicates that the construct is
destabilized without TEV protease cleavage. Presumably,
this destabilization is induced by the largely unstruc-
tured SF3b155381-424-domain [36]. It is known that an
unstructured domain serves as a weak signal for proteo-
lysis by the ubiquitin proteasome system [37,38].
Although the SF3b155381-424-domain is present in all
our tester proteins, destabilization occurs only in case of
the GFP-cODC1-TDegF construct, which lacks a folded
domain at the C-terminus of the protein.
Mouse ODC is degraded by the proteasome indepen-

dently of the ubiquitin system [27]. Therefore, reduced
proteasomal activity should lead to incomplete proteoly-
sis of a cODC1-containing tester construct. Using the
cyan fluorescent protein (CFP) containing tester con-
struct CFP-cODC1-TDegF-RFP, we observed that pTEV
+ protease expression led to accumulation of cleavage
intermediates in pre1-1 pre2-2 or pre1-1 pre4-1 mutant
cells [39,40] indicating incomplete proteolysis of CFP-
cODC1-TDeg and F-RFP fragments (Figure 2D). Protea-
somal degradation of mouse ODC depends on the
cysteine-alanine motif, which is necessary for proteaso-
mal association of the degron [26,29]. Mutation of this
motif should abolish rapid depletion of cleaved GFP-
cODC1-TDegF-RFP. We replaced the cysteine by an ala-
nine and compared the behavior of this construct with
GFP-cODC1-TDegF-RFP. As expected, we found
complete depletion of GFP-cODC1-TDeg after pTEV+

protease cleavage, whereas GFP-cODC1C243A-TDeg was
much less prone to degradation (Figure 2E). The depen-
dency on proteasomal activity and on the cysteine-ala-
nine motif demonstrates that the cODC1 degron
induces proteolysis by the proteasome. In addition, we
performed flow cytometry measurements of cells expres-
sing tester constructs (see Additional file 1 Figure S1A,
B). These experiments confirmed our results obtained
by immunoblotting (Figure 2A, C, E).
Next, we compared the destabilizing activity of the

active cODC1 degron to that of the N-degron TDegF.
We performed fluorescence microscopy to visualize the
GFP and RFP fluorescence of the constructs GFP-
cODC1-TDegF-RFP and GFP-TDegF-RFP after pTEV+

Table 1 Tags for protein degradation or cleavage

Constructs N-
degron

C-
degron

Bidirectional
degron

Source

TDegF + - - [25]

TDegM - - - [25]

GFP-cODC1-TDegF-
RFP

+ + + This
work

GFP-cODC1-TDegF + + + This
work

cODC1-TDegM - + - This
work

cODC2-TDegF + + + This
work

The sequence of TDegM is similar to TDegF with the exception of the TEV
protease cleavage site (ENLYFQ-M replaces ENLYFQ-F). The sequences for
cODC1-TDegF and cODC2-TDegF differ in the length of the cODC sequence
inserted into TDegF (Figure 1A, C). The ability to act as an N-degron, a C-
degron or a bidirectional degron is indicated for all constructs (+).
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Figure 2 Control of protein abundance using the bidirectional degron. (A) The conditional C-degron included in cODC1-TDegF induces
rapid protein depletion. The plasmid encoded constructs GFP-TDegF-RFP, GFP-cODC1-TDegF-RFP, and GFP-cODC2-TDegF-RFP were expressed in
yeast cells (YCT1169) using the constitutive ADH1 promoter. Cells without a construct (lane C) served as control of antibody specificity. Expression
of the pTEV+ protease was induced by addition of galactose (2% final concentration). Samples of logarithmically growing yeast cells were taken at
the indicated time points and subjected to western blotting. For detection, anti-GFP, anti-tRFP, and anti-tub1 (loading control) antibodies were
used. Positions of cleaved and uncleaved species are indicated in the figure. (B) Observation of Cap2 depletion by live-cell imaging. CAP2-GFP-
cODC1-TDegF-RFP or CAP2-GFP-cODC2-TDegF-RFP (chromosomally encoded) was expressed in strains containing or lacking the gene encoding for
the pTEV+ protease. Images (maximum intensity projections shown) were recorded before and after 4 hours of pTEV+ protease production. Bar
size, 2.5 μm. (C) Translation shut-off experiment to measure the destabilizing properties of the dormant degrons in GFP-TDegF-RFP, GFP-cODC1-
TDegF-RFP, GFP-cODC2-TDegF-RFP, and GFP-cODC1-TDegF (plasmid encoded). The same conditions were used as described in A. Galactose and
the translation elongation inhibitor cycloheximide were added at time point 0 hours. (D) Proteasomal activity is necessary for protein depletion
mediated by the bidirectional degron. Plasmid encoded CFP-cODC1-TDegF-RFP was expressed in wild type and proteasomal mutant cells.
Expression of the pTEV+ protease (plasmid encoded) was induced by the addition of galactose. Cells were kept at 30°C during the experiment
(semi-permissive conditions for the proteasomal mutants). Samples were prepared as described in A. (E) Destabilizing activity of the conditional
C-degron in cODC1-TDegF depends on the cysteine-alanine motif. The plasmid encoded constructs GFP-cODC1-TDegF-RFP and GFP-
cODC1C243A-TDegF-RFP were expressed in yeast cells using the constitutive ADH1 promoter. Experimental procedure as described in A.
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protease cleavage. Only cells containing the cODC1
construct showed rapid loss of GFP fluorescence,
whereas RFP fluorescence decreased in both cases
(Figure 3A). Quantification of the images revealed that
GFP-cODC1-TDeg was depleted as quickly as F-RFP
(Figure 3B). Our experiments with diverse tester pro-
teins demonstrate that the bidirectional degron cODC1-
TDegF induces rapid target protein depletion after TEV
protease cleavage regardless if placed at the N- or C-ter-
minus or inside the protein.
As shown in Figure 1D, the TIPI system is not

restricted to complete destabilization of proteins. Con-
structs containing cODC1-TDegM and TDegM could
be used to degrade only a single domain and to separate
two domains without destabilization, respectively. As

expected, proteolytic cleavage of GFP-cODC1-TDegM-
RFP resulted in destabilized GFP-cODC1-TDeg and
stable M-RFP whereas GFP-TDegM-RFP was split in
two stable fluorescent proteins (Figure 3C).
In summary, our results demonstrate that it is possible

to create quasi artificial, conditional degrons with dis-
tinct properties based on the features of the cODC
degron. The newly developed cODC degrons induce
rapid degradation and their destabilizing activities
depend solely on proteolytic cleavage of the bidirectional
degron by the pTEV+ protease. The less destabilizing
cODC2-TDegF tag might be useful to reduce target pro-
tein levels without complete depletion. Weak degrons
have been used before to measure transcription [41] or
proteasomal activity [42]. The data obtained with

Figure 3 Control of protein stability using combinations of stabilizing and destabilizing sequences. (A) Live-cell imaging of cODC1-
mediated destabilization of GFP. Plasmid encoded GFP-TDegF-RFP and GFP-cODC1-TDegF-RFP were expressed constitutively under control of the
ADH1 promoter in yeast cells (YCT1169). Images of the cells were taken at the indicated time points after induction of pTEV+ protease expression.
Bar size, 5 μm. (B) Kinetics of cODC1-mediated destabilization of GFP. Fluorescence intensities of the fragments, which were generated by TEV
protease cleavage, were plotted over time. Images recorded for the experiment shown in A were used for automated quantitative image
analysis to measure intracellular GFP and RFP fluorescence in 1000 to 3000 cells per strain (error bars indicate the standard error of the mean).
The fragment GFP-TDeg is marked by inverted triangles, F-RFP (derived from GFP-TDegF-RFP) by triangles, GFP-cODC1-TDeg by diamonds, and
F-RFP (derived from GFP-cODC1-TDegF-RFP) by squares. (C) Processing of tester proteins by the pTEV+ protease. The plasmid encoded
constructs GFP-cODC1-TDegM-RFP and GFP-TDegM-RFP were expressed in yeast cells (YCT1169) using the constitutive ADH1 promoter. Samples of
logarithmically growing yeast cells were taken at the indicated time points after induction of pTEV+ protease expression and subjected to
western blotting. For detection, anti-GFP, anti-tRFP, and anti-tub1 (loading control) antibodies were used. Positions of cleaved and uncleaved
species are indicated in the figure.

Jungbluth et al. BMC Systems Biology 2010, 4:176
http://www.biomedcentral.com/1752-0509/4/176

Page 6 of 12



combinations of stabilizing sequences, N- or C-degrons
(Figure 2A and 3C) show that the TIPI system provides
a toolbox to control the fate of single domains in vivo.

Creation of conditional mutants
We assessed, whether activation of the bidirectional
degron induces depletion of target proteins to levels, at
which specific phenotypes become observable. There-
fore, we inserted the GFP-cODC1-TDegF-RFP tag and
the GFP-cODC1-TDegF tag chromosomally at the 3’ end
of the essential genes CDC14, CDC48, CYR1, KOG1,
CDC20, MCM1, and CDC5. The amino acid sequence
of both tags is given in Figure S3 (see Additional file 1).
We obtained conditional mutants for 5 of the 7 genes.
No reduction of viability at restrictive conditions was
observed for modified Kog1 and Cdc20, whereas GFP-
cODC1-TDegF-RFP and GFP-cODC1-TDegF-tagged
Cdc48 and Cyr1 as well as Mcm1-GFP-cODC1-TDegF,
Cdc5-GFP-cODC1-TDegF, and Cdc14-GFP-cODC1-
TDegF-RFP led to severe growth defects (Figure 4A, B).
This demonstrates that the GFP-cODC1-TDegF-RFP
and GFP-cODC1-TDegF tags can be used to create con-
ditional mutants. A possible explanation for the differ-
ences between GFP-cODC1-TDegF-RFP and GFP-
cODC1-TDegF mutants might lie in changes of target
protein levels induced by the GFP-cODC1-TDegF tag at
permissive conditions, as we found that the GFP-
cODC1-TDegF construct is destabilized without TEV
protease cleavage (Figure 2C). Indeed, steady state levels
of the essential proteins modified with the GFP-cODC1-
TDegF tag were reduced in comparison with the corre-
sponding GFP-tagged proteins (data not shown). How-
ever, growth of the mutants was only slightly affected at
permissive conditions on glucose containing media
(Figure 4B). A reason could be that most yeast proteins
are synthesized at much higher levels than necessary for
survival under lab conditions [43].
Additionally, we followed the cleavage of the fusion

proteins by the pTEV+ protease using immunoblotting.
We observed cleavage in case of Cdc5, Cdc14, Cdc48,
Cyr1, and Mcm1 (see Additional file 1 Figure S2). Due
to the absence of clear signals for Cdc20-, or Kog1-
GFP-cODC1-TDegF (data not shown), it is not clear
why creation of conditional mutants failed for these
proteins.
We performed live-cell imaging with cells expressing

Cdc14-GFP-cODC1-TDegF-RFP and Cdc48-GFP-
cODC1-TDegF-RFP fusion proteins. The Cdc14-GFP-
cODC1-TDegF-RFP fusion protein localized to the
nucleolus, as expected, whereas Cdc48-GFP-cODC1-
TDegF-RFP mislocalized to several very bright spots
(Figure 4C). The GFP and RFP fluorescence dropped
down to roughly 10% of the initial levels in both cases
within three hours after pTEV+ protease expression. The

fluorescence did not change considerably in the absence
of the protease (Figure 4C, D).
We checked the consequences of Cdc5, Cdc14, Cdc48,

Cyr1, and Mcm1 depletion in vivo. All these proteins
have essential functions during the yeast cell cycle,
which were studied intensively with conventional
mutants. Loss of activity results in each case in a speci-
fic defect. It was found that cyr1-1 and cdc48-td mutants
arrest with no bud at restrictive conditions [44,45]. A
metaphase arrest was observed in the mcm1-110L
mutant [46] as well as the TDegF-cdc14 mutant [25] and
an anaphase arrest in case of cdc5 temperature-sensitive
mutants [47]. To compare the phenotypes obtained by
protein depletion with conventional mutants, we
checked for cell cycle phenotypes based on spindle mor-
phology and bud-size in GFP-cODC1-TDegF mutants of
CDC5, CDC14, CDC48, CYR1 and MCM1. We found
that all GFP-cODC1-TDegF mutants accumulated in a
specific cell cycle stage if the pTEV+ protease was pre-
sent (Figure 4E), matching the results, which were
reported for other conditional mutants in the literature.
In the absence of the pTEV+ protease, we found no
apparent difference to control cells (data not shown).
Our data demonstrates that both, the GFP-cODC1-
TDegF-RFP and the GFP-cODC1-TDegF tag can be
used to create conditional mutants. In addition, the
GFP-cODC1-TDegF-RFP tag is useful for applications,
which ask for observation of substrate cleavage using
live-cell imaging.

Creation of developmental process-specific mutants
Another interesting application for the TIPI system
would be to use it as a method to deplete target pro-
teins at a specific stage during a developmental process.
We chose the developmental program of sporulation in
S. cerevisiae as model process. Sporulation is initiated by
starvation in yeast and consists of the meiotic cell divi-
sions followed by spore formation [48]. To restrict the
expression of the pTEV+ protease to meiosis, we used
the IME2 promoter, which is active only during sporula-
tion [49]. As it is known that loss of Cdc14 or Cdc5
results in defects during the first meiotic division
[50,51], we selected them as target proteins for
N-degron and C-degron dependent depletion, respec-
tively. We fused the TDegF tag under control of the
CYC1 promoter, which is repressed during meiosis and
spore formation [52], to the 5’-end of CDC14. This led
to reduction of GFP-TDegF-Cdc14 levels, whereas addi-
tional expression of the pTEV+ protease led to complete
absence (Figure 5A) and a defect in spore formation,
most likely due to a block in the first meiotic division
(Figure 5B). We added the GFP-cODC1-TDegF tag to
the 3’-end of CDC5 and subjected the cells to sporula-
tion conditions. Surprisingly, the Cdc5-GFP-cODC1-

Jungbluth et al. BMC Systems Biology 2010, 4:176
http://www.biomedcentral.com/1752-0509/4/176

Page 7 of 12



Figure 4 Depletion of essential yeast proteins using the GFP-cODC1-TDegF-RFP and GFP-cODC1-TDegF tag causes phenotypes close
to deletion mutants. (A) The GFP-cODC1-TDegF-RFP tag was fused to the 3’-end of CDC14 and CDC48 in strains with or without the gene
encoding for the pTEV+ protease. Serial dilutions (1:5) of cells were spotted on agar plates supplemented with either raffinose or galactose and
raffinose and incubated at 30°C for 3 days. (B) The GFP-cODC1-TDegF tag or the GFP-cODC1-TDegF-RFP tag were fused to the 3’-end of CDC14,
CDC48, CYR1, KOG1, CDC20, MCM1, and CDC5 in strains with the gene encoding for the pTEV+ protease. Serial dilutions (1:5) of cells were spotted
on agar plates supplemented with either glucose or galactose and incubated at 30°C for 3 days. (C) Cdc14-GFP-cODC1-TDegF-RFP and Cdc48-
GFP-cODC1-TDegF-RFP are depleted quickly after pTEV+ protease expression. The GFP-cODC1-TDegF-RFP tag was inserted at the 3’-end of CDC14
and CDC48 in yeast strains ESM356-1 and YCT1169. Maximum intensity projection images are shown. The Images were recorded at the indicated
time points after induction of pTEV+ protease production. Bar size, 2 μm. (D) Kinetics of Cdc14-GFP-cODC1-TDegF-RFP and Cdc48-GFP-cODC1-
TDegF-RFP depletion. Automated quantitative image analysis was used to measure the cellular fluorescence of the green fluorescent protein in
1000 to 3000 cells per strain (error bars represent the standard error of the mean). Images recorded for the experiment shown in C were used
for quantification. (E) Depletion of Cdc48-, Mcm1-, Cdc14-, Cdc5-, and Cyr1-GFP-cODC1-TDegF leads to cell-cycle defects. Cell-cycle stages were
assessed after 4 hours of pTEV+ protease expression. The bud size and spindle morphology were taken into account to classify the cells. Wild-
type cells with and without expression of pTEV+ protease were used as controls. Bar size, 2 μm.
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TDegF containing cells sporulated in the presence of the
pTEV+ protease (data not shown). However, high-level
production of the pTEV+ protease achieved by transfor-
mation of the cells with a high-copy plasmid containing
the pTEV+ protease gene resulted in a block of sporula-
tion in the meiotic prophase (Figure 5B). High-level pro-
duction of the pTEV+ protease alone did not change
sporulation behavior of wild type yeast cells (data not
shown). Thus, the TIPI system is a valuable technique
to study developmental processes. Timely expression of
the TEV protease during a specific cell cycle stage or a
developmental process allows control of target protein
abundance during that stage.

Conclusions
The bidirectional degron can be fused to a target pro-
tein N-terminally, C-terminally or placed internally.
Activation of the degrons is achieved by cleavage with
the tobacco etch virus protease, resulting in quick
degradation of the target protein. Thus the method pro-
vides a high degree of freedom to the user in terms of
target protein modification with the bidirectional degron
and control of TEV protease production. However, the
usage might be constrained for some applications. The
GFP-cODC1-TDegF-RFP tag is rather big as it contains
two different fluorescent proteins. On the one hand this
allows following cleavage of the tag by live-cell imaging,
but on the other hand it limits the repertoire of addi-
tional fluorophores. The smaller GFP-cODC1-TDegF
tag, which lacks the RFP, destabilizes the target protein
in the absence of the TEV protease resulting in a reduc-
tion of protein levels. Even some of the GFP-cODC1-
TDegF-RFP-tagged proteins exhibited reduced steady
state levels (data not shown), but less pronounced than

in case of the GFP-cODC1-TDegF-modified proteins. As
we did not observe destabilization of the GFP-cODC1-
TDegF-RFP tester protein without TEV protease clea-
vage (Figure 2C), this decrease might be caused by the
leakiness of the GAL1 promoter [53] resulting in weak
expression of the TEV protease. Another possible expla-
nation might be that the GFP-cODC1-TDegF-RFP tag
changes the efficiency of protein synthesis. The normal
or only slightly affected growth of the conditional
mutants at permissive conditions (Figure 4A, B) could
be explained by the observation that most yeast proteins
are synthesized in excess [43]. A new construct, lacking
the GFP and keeping the RFP, might be a way to
decrease the size of the construct and to circumvent the
problem of reduced protein abundance.
The C- and N-degron we used to construct the bidir-

ectional degron are based on conserved degradation
mechanisms and are known to work in higher eukar-
yotes [17,54]. Therefore, protein depletion utilizing the
TIPI system should be possible in animals as well, as it
has been shown already that cell type specific usage of
the TEV protease in Drosophila melanogaster is feasible
[55]. In synthetic biology approaches the TIPI system
might be employed to implement protein destabilization
into regulatory circuits or to cleave a protein artificially.
Advantageous is that the system is reversible [25] and
allows genetic control of protein stability. Furthermore,
the degradation tag and the TEV protease are heterolo-
gous proteins or protein domains. Therefore, potentially
harmful interactions with cellular components are mini-
mized. Previously, chromosome separation has been stu-
died using TEV protease cleavage [55,56], but without
incorporation of conditional degrons. Our work
enhances the existing techniques, as it provides the

Figure 5 Developmental process-specific depletion of essential proteins. (A) Meiosis-specific depletion of Cdc14. Yeast cells with PCYC1-GFP-
TDegF-CDC14 were subjected to sporulation in the absence or presence of PIME2-GFP-pTEV

+. Samples were taken at the indicated time points
after induction of meiosis due to shift on sporulation medium (spo). The proteins (GFP-TDegF-Cdc14 and GFP-pTEV+ protease) were detected
with antibodies directed against GFP; tubulin was used as loading control. (B) Depletion of Cdc14 or Cdc5 leads to a block during meiosis I.
Yeast cells sporulated for 24 hours were stained with Hoechst 33342 to visualize the DNA. Bright field (DIC) and fluorescent (DAPI) images
(maximum intensity projections) are shown. The genotypes of the strains are indicated in the figure. The CDC5-GFP-cODC1-TDegF cells contained
a high copy plasmid with PIME2-GFP-pTEV

+. Bar size, 2 μm.
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possibility to inflict different fates to the N- and C-ter-
minus of the target protein after cleavage. Destabiliza-
tion of one or the other is achieved using the right
combination of degron and stabilizing sequence (Figure
1D). This might be a way to probe for regulatory
domains or to create separation-of-function-mutants at
protein level. These applications are unique to the TIPI
system and exemplify its value as a cell biology tool to
manipulate protein abundance and activity in vivo.

Methods
Yeast strains, growth conditions and plasmid
constructions
The yeast strains were derived from the S288C strain
ESM356-1 [57], WCG4a [40] or the SK-1 strain YKS32 [58]
as indicated in the Table S1 (see Additional file 2). Standard
methods were used to construct yeast strains; standard pre-
parations of media were used for growth [59]. Gene tagging
with PCR products was performed as described [53]. Yeast
cells were grown at 30°C, cells used for the experiment
shown in Figure 2D (WCG4a, WCG4a-11/22, and YHI29/
14) were grown at 25°C and shifted to 30°C for the time of
the experiment. Growth tests were performed on rich
media supplemented with glucose, raffinose or galactose
(2% final concentration), as indicated for the experiments.
Cells were grown in low-fluorescence media [60] for fluor-
escent microscopy experiments. Plasmids were constructed
by standard procedures [61], details and sequences of the
used vectors are available on request. The plasmids are
listed in Table S2 (see Additional file 2).

Immunoblotting and cycloheximide chase experiment
The immunoblotting experiments were performed essen-
tially as described [25]. The amount of yeast culture cor-
responding to 1 OD600 of cells was collected at each time
point. Cells were grown in synthetic complete media sup-
plemented with raffinose (2%), galactose was added after
collection of the first sample (time 0 hours) to induce the
pTEV+ protease production. Samples were subjected to
alkaline lysis and TCA precipitation, SDS-PAGE and
blotting. Commercially available antibodies against GFP
(Santa Cruz biotechnology, Santa Cruz, USA), tRFP (Bio-
cat, Heidelberg, Germany) and HRPO-coupled antibodies
directed against mouse or rabbit (Santa Cruz biotechnol-
ogy, Santa Cruz, USA) were used to detect tester pro-
teins. The rabbit anti-tubulin antibody (a kind gift of M.
Knop, EMBL Heidelberg) was used to detect tubulin,
which served as a loading control. Chemiluminescence
was detected using a western blot imager (INTAS
Science Imaging Instruments, Göttingen, Germany). Sig-
nal intensities were quantified with the software ImageJ
[62]. To perform the translation inhibition experiment
(Figure 2C), cycloheximide was added to the cultures at a
final concentration of 0.1 mg/ml. Samples were collected

at the times indicated in the figure and subjected to alka-
line lysis and TCA precipitation.

Microscopy
Live-cell imaging was performed as described [25,60]
using a Zeiss Axiovert 200 equipped with a Hamamatsu
camera, DAPI, EGFP and rhodamine filter sets and a
63 times Plan Apochromat oil lens (NA 1.4). Images
were collected as z-stacks with 0.5 μm spacing (Figure
2B, 4C) or single images (Figure 3A). Quantitative
imaging was performed as follows: Logarithmically
grown yeast cells were adhered to glass-bottom-dishes
(MatTek Corporation, Ashland, USA) treated with
concanavalin A. Synthetic complete media with raffi-
nose was added and z-stack images with 0.5 μm spa-
cing or single images were taken at the time points
indicated in the figures. Galactose (2% final concentra-
tion) was added to the medium after collection of the
0 hours image series. Images of the cells were collected
in the bright field and fluorescent channels indicated
in the figures. Quantification of the images was done
with the software ImageJ (version 1.40g). Slightly out-
of-focus bright field images were used to detect the
cell outlines. The commands “find edges”, “gaussian
blur (radius = 2)”, “contrast setting” and “make binary”
were used on these images to generate binary images
of cell outlines. With the commands “fill holes” and
“create selection” a mask covering whole cells was
obtained. These masks were used to measure mean
signal intensities in the images of the fluorescence
channels. Maximum projections of z-stacks were used
for the measurements in case z-stack images were
recorded.

Growth assays
Serial dilutions (1:5) of cells grown in YP + raffinose or
YPD were placed on YP + raffinose, YP + raffinose and
galactose, YPD or YP + galactose plates (as indicated in
Figure 4). Cells corresponding to 0.05 OD600 were
diluted in 1 ml of water. Subsequently, 4 dilutions were
made and 3 μl of each dilution were spotted on the
plates. Pictures of the spots were taken after incubation
for 3 days at 30°C.

FACS measurements
The cells were grown to mid-log phase in low fluores-
cence media containing raffinose. The culture was
divided in two; one was treated with sodium azide (10
mM final concentration) and kept on ice until the
measurement in the flow cytometer (sample -TEV).
The other half of the culture was supplemented with
galactose. The cells were incubated with shaking for 4
hours at 30°C and sodium azide was added (sample
+TEV). The cells were analyzed in a FACSCalibur flow
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cytometer (Becton Dickinson) equipped with a 488 nm
argon laser and a 530/30 band-pass filter for GFP
fluorescence detection. Around 85 000 events were
collected for each sample; all events were used to
create the graphs and to calculate the median
fluorescence.

Sporulation
Synchronous sporulation was performed using the pre-
sporulation treatment as described [63]. Potassium acet-
ate (1%) was used as sporulation medium. Cells were
stained with Hoechst 33342 after fixation with 70%
ethanol.

Additional material

Additional file 1: FACS measurements of tester constructs,
depletion of essential yeast proteins and sequence of the GFP-
cODC1-TDegF and GFP-cODC1-TDegF-RFP tags. FACS measurements.
We performed flow cytometry measurements with cells expressing GFP-
TDegF-RFP, GFP-cODC1-TDegF-RFP, GFP-cODC1C243A-TDegF-RFP, GFP-
cODC2-TDegF-RFP, and GFP-cODC1-TDegF to measure the GFP
fluorescence in the absence and the presence of the pTEV+ protease. We
found background fluorescence in the absence of the protease in case
of the GFP-cODC1-TDegF construct. This argues for a destabilization of
the construct independently of the cODC degron. Nevertheless, we
detected robust GFP fluorescence in the other constructs in the absence
of the protease. Cells producing the pTEV+ protease showed nearly
background fluorescence in the cODC containing constructs and
reduced GFP fluorescence in case of the constructs GFP-TDegF-RFP and
GFP-cODC1C243A-TDegF-RFP (Figure S1A, B). Depletion of essential yeast
proteins. We checked the production and proteolytic cleavage of the
fusion proteins Cdc14- and Cdc48-GFP-cODC1-TDegF-RFP as well as the
Cdc5-, Cyr1-, and Mcm1-GFP-cODC1-TDegF by immunoblotting. It was
possible to detect all fusion proteins in crude yeast extracts in the
absence of the pTEV+ protease. Presence of the protease resulted in
partial or complete depletion of the target proteins (Figure S2). Sequence
of the GFP-cODC1-TDegF and GFP-cODC1-TDegF-RFP tags. The amino acid
sequence of the GFP-cODC1-TDegF and the GFP-cODC1-TDegF-RFP tags
is given (Figure S3). The sequences of yeast enhanced GFP and mKate
have been published [64,65].

Additional file 2: Information on yeast strains (Table S1) and
plasmids (Table S2) used for this study.
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