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Abstract: An outbreak of SARS-CoV-2 coronavirus (COVID-19) first detected in Wuhan, China,
has created a public health emergency all over the world. The pandemic has caused more than
340 million confirmed cases and 5.57 million deaths as of 23 January 2022. Although carbohydrates
have been found to play a role in coronavirus binding and infection, the role of cell surface glycans
in SARS-CoV-2 infection and pathogenesis is still not understood. Herein, we report that the SARS-
CoV-2 spike protein S1 subunit binds specifically to blood group A and B antigens, and that the
spike protein S2 subunit has a binding preference for Lea antigens. Further examination of the
binding preference for different types of red blood cells (RBCs) indicated that the spike protein S1
subunit preferentially binds with blood group A RBCs, whereas the spike protein S2 subunit prefers
to interact with blood group Lea RBCs. Angiotensin converting enzyme 2 (ACE2), a known target of
SARS-CoV-2 spike proteins, was identified to be a blood group A antigen-containing glycoprotein.
Additionally, 6-sulfo N-acetyllactosamine was found to inhibit the binding of the spike protein S1
subunit with blood group A RBCs and reduce the interaction between the spike protein S1 subunit
and ACE2.

Keywords: blood group; carbohydrate ligand; COVID-19; spike protein

1. Introduction

Since emerging from Wuhan, China in January 2020, the SARS-CoV-2 coronavirus has
widely spread around the globe [1]. As of 23 January 2022, more than 210 countries have
been affected by the pandemic, 340 million people have been diagnosed with the virus,
and more than 5.57 million people have died. Although the number of new cases has been
gradually decreasing, daily activities in most parts of the world have remained restricted.
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Therefore, deciphering the viral infection mechanism is of great urgency to facilitate the
control and treatment of COVID-19.

The densely glycosylated spike (S) protein of SARS-CoV-2, a trimeric class I fusion
protein with a metastable prefusion conformation [2,3], docks to enter host cells. When
binding to a host-cell receptor, the S1 subunit triggers a dramatic structural rearrangement
to fuse the viral membrane with the host-cell membrane, leading to receptor-dependent en-
docytosis [4,5]. These interactions destabilize the prefusion trimer and result in shedding of
the S1 subunit and the transition of the S2 subunit into a stable postfusion conformation [6].
Several studies have shown the possible interactions between SARS-CoV-2 or the spike
protein with the host receptors (angiotensin-converting enzyme 2 (ACE2) [7–10]; dipeptidyl
peptidase 4 (DPP4) [11,12]; glucose-regulated protein 7 (GRP78) [13,14]); however, the
discussion of cell surface glycan receptors used for SARS-CoV-2 viral binding and entry
remained vague [15].

Cell surface glycan receptors are known to play a key role in mediating viral binding
and infection. Jackson et al. indicated that the entry of foot-and-mouth disease virus
(FMDV) into cells is initiated by the contact with heparin sulfate on the cell surface [16].
Sulfated polysaccharides extracted from sea algae have shown potential to prevent the
infection of viruses, including herpes simplex virus (HSV), cytomegalovirus (CMV), human
immunodeficiency virus (HIV), and enterovirus (EV) [17–21]. Lactoferrin, an 80 kDa iron-
binding glycoprotein existing in several mucosal secretions [22,23], has been reported
to inhibit the interaction of the capsid protein VP1 of EV71 with rhabdomyosarcoma
cells [24,25]. In addition, sialic acids were reported as cell-surface ligands for many viral
proteins of influenza virus, parainfluenza virus, reovirus type 3, adenovirus type 37, human
rhinovirus 87, human enterovirus type 70 [26], EV-A71 [27], coxsackievirus A24 [28], and
hepatitis A virus [29]. Human coronaviruses OC43, HKU1, and MERS were also shown
to interact with sialic acids [30–33]. Clausen et al. indicated that the SARS-CoV-2 spike
protein interacts with both cellular heparan sulfate and ACE2 through its receptor-binding
domain [34]. Jayaprakash et al. also showed that the S1A domain of the SARS-CoV-2
spike protein may interact with sialosides by molecular modeling [35]. Furthermore, the
N-glycans of DC-SIGN and L-SIGN that were identified to be the receptors for SARS-CoV-2
could influence the entry of coronavirus [36]. Therefore, it is important to study the role
and function of cell surface glycans in the infection of SARS-CoV-2, which appears to be
indispensable for understanding viral attachment, infection, and pathogenesis.

We employed a solution carbohydrate microarray to analyze the glycan recognition
preference of SARS-CoV-2 spike proteins. The results showed that SARS-CoV-2 spike pro-
teins interacted with several glycans, including blood group antigens, which was coherent
with the binding with groups A and B human red blood cells (RBCs). In addition, the effects
of carbohydrate analogs in the binding of spike proteins with RBCs were also evaluated.

2. Materials and Methods
2.1. Glycan Microarray Analysis

Glycan array screening was carried out using a rapid, nonwashing solution car-
bohydrate array as previously described [37]. Briefly, donor beads (500 ng/well) and
biotin-polyacrylamide (PAA)-sugars (20 ng/well) (GlycoTech, Gaithersburg, MD, USA)
mixed with SARS-CoV-2 spike protein S1 or S2 subunits (10–20 ng/well, REC31806-100
and REC31807-100 from The Native Antigen Company, Kidlington, Oxford, UK) were
incubated at room temperature for 1 h (a total of 15 µL of reaction solution). A mixture of
acceptor beads (500 ng/well) and rabbit antisheep IgG Fc antibodies (10 ng/well, ab102297
from Abcam, Cambridge, UK) was added to the reaction to reach a final volume of 25 µL.
All reactions were performed in the dark. After incubation for 2 h, the binding signals were
measured from a PerkinElmer EnVision instrument and analyzed using the AlphaScreenTM

detection program. The results are expressed as relative fluorescence intensities and based
on the average from three independent assays.
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2.2. Binding of Spike Proteins to RBCs Evaluated by Fluorescence-Activated Cell Sorting

The prewashed A, B, and O blood type RBCs were obtained from the Blood Bank of
Department of Pathology, National Cheng Kung University Hospital. Two micrograms of
spike protein S1 or S2 subunits was incubated with different blood groups of RBCs at 4 ◦C
for 24 h. After incubation, RBCs were isolated from the reaction mixture by centrifugation to
remove the nonbinding spike proteins. Rabbit antisheep IgG Fc antibodies (5 µg, purchased
from Abcam, ab102297) were added to RBCs and the mixture was incubated at 4 ◦C for 24 h.
RBC samples were then washed three times, followed by the addition of Alexa fluor-488-
conjugated goat antirabbit IgG F(ab′)2 (2 µg, 23901 from Leadgene, Tainan, Taiwan) and
incubated for 1 h at 37 ◦C. The fluorescence-activated cell sorting (FACS) analysis of spike
protein bound RBCs was performed on a FACSCalibur flow cytometer (BD Biosciences).
The percentages of blood group A, B, and O RBCs with and without bound spike proteins
are indicated in histograms.

2.3. Inhibition Assays by Flow Cytometry

Lactose and three sulfated carbohydrate derivatives (20 µg/200 µL) were incubated
with spike protein S1 subunits (2 µg) for 12 h and were then mixed with blood group A
RBCs at 4 ◦C for an additional 24 h. After incubation, RBCs were isolated from the reaction
mixture by centrifugation then mixed with rabbit anti-sheep Fc antibody (5 µg) at 4 ◦C for
24 h. Alexa fluor-488-conjugated goat antirabbit IgG F(ab′)2 (2 µg) was added after three
washes and incubated at 37 ◦C for 1 h. The percentage of blood group A RBCs with bound
spike protein S1 subunits was determined from the FL1 channel in flow cytometry.

2.4. Preparation of Lung Tissue Lysate

This study was approved by the National Cheng Kung University Hospital Institu-
tional Review Board (IRB No: A-ER-107-085). The lung cancer tissues were obtained from
the Human Biobank of National Cheng Kung University Hospital. The cancer tissues were
cut into small pieces and then homogenized thoroughly with the addition of RIPA buffer
(Leadgene) and protease inhibitor (Roche). The homogenized tissue samples were cen-
trifuged at 13,000 rpm at 4 ◦C for 20 min. The supernatant was collected as the whole-cell
extract of lung tissue lysate. The protein concentration of the tissue lysate was determined
using the Lowry method.

2.5. Co-Immunoprecipitation Assays

The lung tissue lysate was precleaned by adding 10 µL of Protein A/G Plus Agarose
(Sigma, Merck KGaA, Darmstadt, Germany) and incubated at 4 ◦C for 1 h. Rabbit anti-
ACE2 monoclonal antibody (Proteintech, Chicago, USA), rabbit antiblood group A antibody
(ARP), or antirabbit IgG (Genetex, CA, USA) was mixed with Protein A/G Plus Agarose
and incubated at 4 ◦C for 4 h. The antibody–agarose mixtures were individually mixed
with precleaned tissue lysate and incubated at 4 ◦C overnight. After incubation, agaroses
were washed 5 times with lysis buffer and the bound proteins were eluted with SDS-PAGE
sample buffer.

2.6. Western Blotting

The co-immunoprecipitated proteins were mixed with SDS-PAGE sample buffer
6 times, denatured for 5 min at 95 ◦C, and separated by 6% SDS-PAGE using electrophore-
sis. Proteins were transferred to PVDF membranes (Millipore, Merck KGaA, Darmstadt,
Germany) for 90 min at 300 A and the membranes were blocked for 1 h at 25 ◦C in 5% milk.
Rabbit anti-ACE2 antibody (Proteintech) or mouse antiblood group A antibody (ARP) was
incubated with membranes at 4 ◦C overnight. After being washed 3 times, membranes
were incubated with goat antirabbit IgG or goat anti-mouse IgG for 1 h at 25 ◦C. The
detection of the signal was performed with an enhanced chemiluminescence detection kit
(Millipore). The gels were digitally photographed and scanned using a gel documentation
system (ImageQuant™ LAS 4000).
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2.7. ELISA

Spike protein S1 subunits (1µg/mL) were coated on 96-well ELISA plate at 4 ◦C for
16 h. A blocking procedure was performed by the addition of 0.5% BSA in TBST at 25 ◦C
for 1 h. For inhibition assays, lactose or sulfated carbohydrate derivatives (20 µg/mL) were
added into wells and incubated at 25 ◦C for 1 h followed by two washes. Lung tissue lysates
(10 and 1 µg/mL) were added to the well (with and without inhibiter incubation) and incu-
bated at 25 ◦C for 2 h. After incubation, the reaction mixture in each well was removed and
then washed 3 times with PBS. In order to detect the bound ACE2, human ACE2-specific
rabbit antibodies (1:1000, Proteintech, Chicago, USA) were added for incubation at 25 ◦C
for 2 h. After washing, HRP-conjugated anti-rabbit IgG antibodies (1:5000, Leadgene) were
added for incubation at 37 ◦C for 1 h. After incubation, the unbound HRP-conjugated
antirabbit IgG antibody was washed away and the substrate 3,3′,5,5′-tetramethylbenzidine
(TMB, Sigma, St. Louis, MO, USA) was added for incubation at 25 ◦C for 30 min. Reactions
were quenched by adding H2SO4 (1 N) and the absorbance at 450 nm (OD450) was mea-
sured by an ELISA reader (Epoch BioTek) in order to determine the quantity of ACE2 in
each well.

3. Results
3.1. Sugar-Binding Profiling Analysis of SARS-CoV-2 Spike Proteins

We previously developed a homogeneous solution carbohydrate microarray in which
polyacrylamide-based glycans are used to offer a multivalent environment to screen for
specific carbohydrates. There are two advantages to this microarray. This platform can
be carried out in a high-throughput manner because the washing step is not required
during the screening [37] and is suitable to measure weak binding events that are typical
in carbohydrate–protein interactions. So far, this platform has successfully demonstrated
the carbohydrate-binding specificities of lectins, antibodies, influenza virus hemagglu-
tinins, and influenza viral particles [38,39]. Using this solution carbohydrate microarray
that contains 97 different glycans (Table 1), SARS-CoV-2 spike protein S1 subunits were
bound specifically to 3-HSO3-Galβ (#16), GalNAcα1-3(Fucα1-2)Galβ (Blood Group A trisac-
charide, #75), GlcNAcβ1-3(GlcNAcβ1-6)Galβ1-4Glcβ (#89), and Galα1-3(Fucα1-2)Galβ1-
4GlcNAcβ (Blood Group B type 2 tetrasaccharide, #90) (Figure 1A). SARS-CoV-2 spike pro-
tein S2 subunits displayed preferential interactions with 3-HSO3-Galβ (#16), Galβ1-6Glcβ
(melibiose, #44), Galβ1-3(Fucα1-4)GlcNAcβ (Lea, #58), Galβ1-3(GlcNAcβ1-6)GalNAcα
(#74), and GlcNAcβ1-3(GlcNAcβ1-6)Galβ1-4Glcβ (#89) (Figure 1B). The carbohydrate bind-
ing preferences of spike protein S1 and S2 subunits with a relative intensity cutoff of 50%
are listed in Table 2.

Table 1. List of PAA-glycans.

No. Glycans No. Glycans No. Glycans

1 PAA-biotin (backbone) 34 GlcNAcβ1-3Galβ 67 GlcNAcβ1-2Galβ1-3GalNAcα

2 β-GlcNAc 35 Galα1-4GlcNAcβ (αLacNAc) 68 NeuAcα2-3Galβ1-4GlcNAcβ

3 α-Glucose 36 Glcα1-4Glcβ 69 NeuAcα2-3Galβ1-3Glcβn (3’Sialyl Lec)

4 β-Glucose 37 Galβ1-3GalNAcα, sp = -p-OC6H4- 70 Galα1-3Galβ1-4GlcNAcβ,
sp = -NHCOCH2NH-

5 α-Galactose 38 Galα1-2Galβ 71 GlcNAcα1-3Galβ1-3GalNAcα

6 β-Galactose 39 GlcNAcβ1-4GlcNAcβ 72 NeuAcα2-8NeuAcα2-8NeuAc,
(NeuAcα2-8)3

7 α-Man-6-phosphate 40 GlcNAcβ1-4GlcNAcβ,
sp = -NHCOCH2NH- 73 GlcNAcβ1-3Galβ1-3GalNAcα

8 α-L-Rhamnose 41 NeuAcα2-6GalNAcα 74 Galβ1-3(GlcNAcβ1-6)GalNAcα



Viruses 2022, 14, 330 5 of 14

Table 1. Cont.

No. Glycans No. Glycans No. Glycans

9 β-GlcNAc 42 3-HSO3-Galβ1-4GlcNAcβ 75
GalNAcα1-3(Fucα1-2)Galβ

(Blood Group A),
sp = (CH2)3NHCO(CH2)5NH-

10 α-GalNAc 43 3-HSO3-Galβ1-3GlcNAcβ 76 GlcNAcβ1-3Galβ1-4GlcNAcβ

11 β-GalNAc 44 Galα1-6Glcβ (melibiose) 77 NeuAcα2-3Galβ1-3GalNAcα

12 α-Fuc 45 NeuAcα2-8NeuAcα, (NeuAcα2-8)2 78 GlcNAcβ1-3(GlcNAcβ1-6)GalNAcα

13 α-NeuAc 46 Galβ1-2Galβ 79 Galα1-4Galβ1-4GlcNAcβ

14 α-NeuAc-OCH2C6H4-p-
NHCOOCH2

47 6-HSO3-Galβ1-4GlcNAcβ 80 GlcNAcβ1-4GlcNAcβ1-4GlcNAcβ,
sp = -NHCOCH2NH-

15 MurNAc-lactic
acid-L-Ala-D-isoGln 48 NeuAcα2-3Gal 81 Galβ1-3(NeuAcα2-6)GalNAcα

16 3-HSO3-Galβ 49 3-HSO3-Galβ1-3GalNAcβ
(sulfate-TF) 82 Galβ1-3(NeuAcβ2-6)GalNAcα

17 β-Mannose-PAA-biotin 50 GlcNAcβ1-3GalNAcα 83 NeuAcα2-3(NeuAcα2-6)GalNAcα

18 α-NeuGc 51 GlcNAcβ1-6GalNAcα 84 Galβ1-4GlcNAcβ1-3GalNAcα

19 6-HSO3-GlcNAcβ 52 NeuGcα2-6GalNAcα 85 Fucα1-2Galβ1-3(Fucα1-4)GlcNAcβ
(Leb)

20 GalNAcα1-3Galβ 53 NeuAcβ2-6GalNAcα 86 Fucα1-2Galβ1-4(Fucα1-3)GlcNAcβ
(Ley)

21 Galα1-3Galβ 54 NeuAcα2-3GalNAcα 87 NeuAcα2-3Galβ1-3(Fucα1-4)
GlcNAcβ (sialyl Lea)

22 Fucα1-2Galβ 55 GalNAcα1-3(Fucα1-2)Galβ (Blood
Group A) 88 NeuAcα2-3Galβ1-4(Fucα1-3)

GlcNAcβ (sialyl Lex)

23 Galβ1-3GlcNAc (Lec) 56 Galα1-3(Fucα1-2)Galβ (Blood
Group B) 89 GlcNAcβ1-3(GlcNAcβ1-6)Galβ1-

4Glcβ

24 Galβ1-4Glcβ (Lactose) 57 Fucα1-2Galβ1-4GlcNAcβ (H type2) 90 Galα1-3(Fucα1-2)Galβ1-4GlcNAcβ

25 Galβ1-4GlcNAcβ
(LacNAc) 58 Galβ1-3(Fucα1-4)GlcNAcβ (Lea) 91 Galβ1-3GlcNAcβ1-3Galβ1-4Glcβ

26 Galβ1-3GalNAcα 59 Galβ1-4(Fucα1-3)GlcNAcβ (Lex) 92 (NeuAcα2-8)5-6

27 Fucα1-3GlcNAcβ 60 Fucα1-2Galβ1-3GlcNAcβ, Led

(H type1)
93 Galβ1-4GlcNAcβ1-3(Galβ1-

4GlcNAcβ1-6)GalNAcα

28 Fucα1-4GlcNAcβ 61 NeuAcα2-3Galβ1-4Glcβ
(3’Sialyl Lactose) 94

(NeuAcα2-6Galβ1-4GlcNAcβ1-
2Man)2α1-3,6Manβ1-4GlcNAcβ1-

4GlcNAcβ

29 GalNAcα1-3GalNAcβ 62 NeuAcα2-6Galβ1-4Glcβ
(3’Sialyl Lactose) 95 GalNAcα-Ser

30 GalNAcα1-3GalNAcα 63 3-HSO3-Galβ1-4(Fucα1-3)GlcNAcβ
(3’sulfate Lex) 96 GalNAcα1-3(Fucα1-2)Galβ1-

4GlcNAc

31 Galα1-3GalNAcα 64 3-HSO3-Galβ1-3(Fucα1-4)GlcNAcβ
(3’sulfate Lea) 97

Neu5Acα2-3(6-HSO3)Galβ1-4(Fucα1-
3)GlcNAcβ

(6Gal-HSO3-SiaLex)

32 Galα1-3GalNAcβ 65 Galα1-4Galβ1-4Glcβ 98
Neu5Acα2-3Galβ1-4(Fucα1-3)(6-
HSO3)GlcNAcβ (6GlcNAc-HSO3-

SiaLex)

33 Galβ1-3Galβ 66 Galα1-3Galβ1-4Glcβ 99 H2O

Note: sp: spacer.
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Figure 1. Binding profile of SARS-CoV-2 spike proteins with 97 biotin-PAA-sugars. (A) spike protein
S1 subunit and (B) spike protein S2 subunit.

Table 2. The carbohydrate binding preferences of spike protein S1 and S2 subunits (cut off: relative
intensity >50%).

SARS-CoV-2 Spike Protein S1 Subunit SARS-CoV-2 Spike Protein S2 Subunit

No. Glycan No. Glycan

16 3-HSO3-Galβ 16 3-HSO3-Galβ

75 GalNAcα1-3(Fucα1-2)Galβ
(Blood Group A trisaccharide) 44 Galα1-6Glcβ (melibiose)

89 GlcNAcβ1-3(GlcNAcβ1-6)Galβ1-4Glcβ 58 Galβ1-3(Fucα1-4)GlcNAcβ (Lea)

90 Galα1-3(Fucα1-2)Galβ1-4GlcNAcβ
(Blood Group B trisaccharide) 74 Galβ1-3(GlcNAcβ1-6)GalNAcα

89 GlcNAcβ1-3(GlcNAcβ1-6)Galβ1-4Glcβ

3.2. SARS-CoV-2 Spike Proteins Interact with RBCs

The sugar-binding profiling analysis indicated that SARS-CoV-2 spike proteins dis-
played binding preference for blood-type antigens, including Group A (#75 in Figure 1A),
blood Group B (#90 in Figure 1A), and Lea (#58 in Figure 1B). To investigate if the binding
preference of SARS-CoV-2 spike proteins correlated with the viral infection or pathogenesis,
we examined RBCs that are known to express different blood groups, including group A
(Lea+/Leb−), B (Lea+/Leb−), and O (Lea−/Leb+). The binding assay was conducted using
fluorescence-activated cell sorting (FACS). The results indicated that the SARS-CoV-2 spike
protein S1 subunit binds strongly to group A RBCs, moderately to group B RBCs, and
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relatively weakly to group O RBCs (Figure 2). The SARS-CoV-2 spike protein S2 subunit
displayed higher binding signals with Lea+ RBCs than with Lea− RBCs (Figure 2). This
observation was consistent with the analysis of carbohydrate microarray, which showed
that the spike protein S1 subunit shows a higher preference for blood group A and B RBCs.
The binding preference is related to the glycan structures existing on the surface of RBCs.
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Figure 2. The binding preference of SARS-CoV-2 spike proteins to blood group A, B, and O RBCs. The
histograms of spike protein S1 subunits binding with blood group A, B, and O RBCs show a 51.02%,
36.29%, and 21.07% shift in mean fluorescence intensity (MFI), respectively (red line). The histograms
of spike protein S2 subunits binding with blood group A, B, and O RBCs show a 27.53%, 26.79%, and
13.26% shift in MFI, respectively (blue line).

3.3. Carbohydrate Derivatives Interfere with Interaction of SARS-CoV-2 Spike Protein S1 Subunit
and Blood Group A RBCs

Carbohydrate analogs are able to interrupt the interaction between microorganisms
and host cells by associating with glycoproteins on the surface of either host cells or microor-
ganisms. For example, heparin sulfate mimetics exhibit antiviral activity against dengue
virus by inhibiting the virus adsorption on host cells to prevent virus entry [40]. Neu-
raminidase inhibitors are used for anti-influenza therapy by inhibiting the neuraminidase
activity to modify the cell surface glycans, which results in prevention of virions spreading
to neighboring cells [41]. Since SARS-CoV-2 spike proteins show a binding preference to
blood groups A and B, it is important to examine whether carbohydrate analogs interfere
with the interaction between spike proteins and RBCs, especially galactin-3 inhibitors [42].
Lactose and three other carbohydrate derivatives were examined, including compounds 1
and 2 and TD-139. Each of them was preincubated with SARS-CoV-2 spike protein S1 sub-
unit, followed by the addition of blood group A RBCs to the assay mixture (Figure 3A–D).
The FACS analysis indicated that compound 1 significantly prevented the binding of spike
protein S1 subunit with RBCs up to 45% (Figure 3E, p < 0.01). However, lactose and com-
pound 2 enhanced the interaction of spike protein S1 subunit to RBCs by 53% and 26%,
respectively (Figure 3E). Interestingly, TD139, a potent inhibitor of galactin-3, exhibited
no effect on the spike protein S1 subunit–RBC interaction. The binding inhibition results
indicated that carbohydrate analogs containing both sulfate and LacNAc groups reduce
the binding affinity between the SARS-CoV-2 spike protein S1 subunit and host cells.

3.4. Blood Group A Antigen on ACE2

Since ACE2 is widely recognized as the major binding target for SARS-CoV-2 spike
proteins, it is worth investigating whether the host receptor ACE2 contains the blood group
A antigen. ACE2 protein was obtained from the extraction of lung tissues of a blood group
A person. The ACE2 protein was immunoprecipitated with anti-ACE2 antibody. Western
blotting analysis indicated that the glycoprotein ACE2 in the lung tissue of the blood group
A person contained the carbohydrate chains of the blood group A antigen (Figure 4A).
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affected by carbohydrate derivatives. (A) The histogram of spike protein S1 subunit binding with
blood group A RBC cells shows a 16.44% shift in MFI without carbohydrate inhibitors. Lactose
and three sulfated carbohydrate derivatives were preincubated with spike protein S1 subunit then
subjected to the binding assay. The histograms of spike protein S1 subunit binding with blood group
A RBC cells are shown (green line). The MFI shifts of blood group A RBC cells with carbohydrate
derivatives tested are (A) lactose, 23.76%; (B) compound 1, 8.98%; (C) compound 2, 20.77%; and
(D) TD139, 18.91%. (E) The relative fluorescence shows the binding efficiency of the spike protein S1
subunit to blood group A RBCs influenced by carbohydrate derivatives. (F) Structures of lactose and
three sulfated carbohydrate derivatives. * indicated p < 0.05; ** indicated p < 0.01.
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Figure 4. ACE2 contains blood group A antigen. (A) Western blotting analysis of ACE2 from the
lung tissue of a blood group A patient. Lane 1: markers. Lane 2: the Western blotting of the lung
tissue from blood group A patient immunoprecipitated with anti-ACE2 antibody and immunoblotted
with anti-ACE2 antibody. Lane 3: the Western blotting of the lung tissue from blood group A patient
immunoprecipitated with anti-ACE2 antibody and immunoblotted with anti-A antibody. (B) The
binding inhibition assay of lactose or sulfated carbohydrate derivatives in blocking of the SARS-CoV-2
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spike protein S1 subunit to ACE2. Compounds 1 and 2 showed a reduction in binding efficiency of
ACE2 with the spike protein S1 subunit by 6.7% and 12.5%, respectively. TD139 exhibited no effects
in spike protein S1 subunit–ACE2 interaction. * indicated p < 0.05; ** indicated p < 0.01.

3.5. Carbohydrate Derivatives Interfere with Interaction of SARS-CoV-2 Spike Protein S1 Subunit
and ACE2

To study if it is possible to disrupt the interaction between SARS-CoV-2 spike protein
and ACE2, an ELISA assay was performed to determine the binding inhibition efficiency of
carbohydrate derivatives. SARS-CoV-2 spike protein S1 subunits were initially coated on
96-well microplates and incubated with carbohydrate derivatives. After washing away the
nonbinding carbohydrate derivatives, human ACE2 proteins prepared from lung tissue
lysate by immunoprecipitation were added. The quantities of ACE2 bound on spike
protein S1 subunits were determined by ELISA assay. Both compounds 1 and 2 showed
a significant decrease in the binding efficiency of ACE2 with the spike protein S1 subunit
by 6.7% and 12.5%, respectively (Figure 4B). However, TD139 exhibited no effect on the
interaction between spike protein S1 subunit and ACE2. Our results suggested that the
specific carbohydrate modifications on ACE2 might be responsible for its binding to SARS-
CoV-2 spike protein S1 subunit. Further studies are in progress to decipher the inhibitive
effects of these carbohydrate derivatives on the interaction of spike protein S1 subunit
and ACE2.

4. Discussion

Coronaviruses represent a large family of single-stranded enveloped RNA viruses
and can be divided into four major genera [43,44]. Both SARS-CoV and SARS-CoV-2
belong to the β-genus. An envelope-anchored spike protein mediates the entry of the
coronavirus into host cells by first binding to a host receptor and then fusing viral and
host membranes [4]. A defined receptor-binding domain of the SARS-CoV-2 spike protein
was reported to specifically recognize its host receptor ACE2 [7–10]. The spike protein
of SARS-CoV-2 is a glycosylated, trimeric class I fusion protein with a metastable pre-
fusion conformation [45,46]. According to Clausen et al., the SARS-CoV-2 spike protein
interacts with both cellular heparan sulfate and ACE2 through its receptor-binding do-
main [34]. Li et al. showed that the N-terminal domain of β-coronaviridae spike protein
S1 subunits (including SARS-CoV2) may potentially interact with unknown glycans [47].
Jayaprakash et al. also indicated that the N-terminal domain of SARS-CoV-2 spike protein
binds with sialosides by molecular modeling [35].

ABO blood group antigens have been reported to be associated with diagnosis, progno-
sis, and survival of various diseases [48–52]. The relationships between ABO blood group
antigens and COVID-19 have also been investigated by many researchers. Jawdat et al.
found that blood group B is a risk factor for COVID-19 and blood group O is protective
factor for COVID-19 infection [53]. Zhao et al. analyzed the ABO blood group distribution
among 2173 COVID-19 patients. They found that an increased risk of infection is associated
with blood group A and a decreased risk of infection is associated with blood group O [54].
The same findings were also reported in [55–61]. However, researchers also observed
opposite results in other investigations. Zietz et al. showed that non-O blood group types
represented slightly increased infection prevalence compared to the O blood group [62].
The results of Ishaq et al. indicated that blood groups have no significant association
with severity of COVID-19 disease or COVID-19-associated mortality [63]. Kim et al. also
reported that no relationships between blood type and COVID-19-related mortality or
severity of illness were observed [64].

Using the solution carbohydrate microarray, we first demonstrated that the SARS-
CoV-2 spike protein S1 subunit binds specifically to blood group A and B antigens, and
that the SARS-CoV-2 spike protein S2 subunit exhibits a binding preference for Lea antigen
(Figure 1). The glycan-binding feature was further investigated by examining how the spike
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proteins recognize RBCs (Figure 2). Like many C-type lectin domains, the spike protein of
SARS-CoV-2 exhibited trimeric fusion protein structure which can enhance protein–glycan
interaction by multivalency [65]. Since blood group antigens are available on the surface of
RBCs and all human organs/tissues [66] (including saliva [67]), SARS-CoV-2 could easily
attach to cell surfaces or droplets and could then be spread and transmitted through the air
over time and distance.

Interestingly, COVID-19-induced coagulopathy and a high incidence of thromboem-
bolic events was found in COVID-19-positive deaths [68]. An unknown blood-clotting
complication was also reported, even in the patients that were treated with anticoagu-
lants [69]. Unlike Ebola, Dengue, Lassa, and other hemorrhagic fevers that lead to uncon-
trolled bleeding, SARS-CoV-2 infection was reported to exhibit red, liquid, gel-like blood
clots, as well as tiny clots throughout the lungs of dead patients [70]. Our findings may
explain why SARS-CoV-2 viral particles potentially agglutinate RBCs by spike–glycan
interaction. The proposed unusual agglutination in blood vessels may lead to blood clot
formation. Thus, further studies are necessary to demonstrate the correlation and unravel
the mechanistic details.

Carbohydrate derivatives such as swainsonine [71,72], 1,4-dideoxy-1,4-imino-
D-mannitol [73], deoxymannojirimycin [74,75], and castanospermine [76,77] have shown
anticancer activity in different cancer types. Nucleoside analogs are well-developed antivi-
ral drugs for many viral infections including HIV, HBV, dengue virus, yellow fever virus,
JEV, and Zika virus [78–80]. According to our findings from the solution carbohydrate mi-
croarray, the SARS-CoV-2 spike protein S1 subunit preferentially binds to blood group A/B
antigens and specific terminal sugar moieties including galactose, N-acetylgalactosamine,
and sulfated galactose. We evaluated the effects of lactose and sulfated glycan analogs
(compounds 1 and 2, and TD139) on the interaction between the spike protein S1 subunit
and RBCs. Compound 1, a galectin-3 inhibitor, was shown to blockade the interaction of
the spike protein S1 subunit with RBCs. However, the inhibition activity was not found in
lactose, the other sulfated glycan compound 2, or TD139. This result suggested that the
position of a sulfate group is important, and that sulfated glycans play an important role in
the spike protein–glycan interaction.

Since we demonstrated that the SARS-CoV-2 spike protein binds to host cells through
interaction with the blood group A antigen and this interaction could be interfered with by
glycan analogs, it is worth noting whether the well-known host receptor ACE2 contains the
blood type A antigen. ACE2 extracted from the lung tissue of a blood group A patient has
shown the expression of the blood type A antigen in Western blotting, indicating that the
blood group A antigen is present on ACE2 in the lung tissue of the blood group A person.
Though compound 1 showed a significant binding inhibition of spike proteins and RBCs, it
poorly inhibited the interaction of the spike protein S1 subunit with ACE2. Compound 2,
however, showed no binding inhibition for spike proteins and RBCs, but displayed better
blocking efficiency than compound 1 in the interaction of the spike protein S1 subunit and
ACE2. The binding inhibition experiment implied that the interaction of spike protein and
RBCs is not only through group A antigen but also involves other groups of blood antigens.
The interaction mechanism between these glycan analogs to blood group A antigen or
ACE2 needs to be further investigated in the future.

5. Conclusions

In conclusion, we identified the carbohydrate ligands for SARS-CoV-2 spike proteins
and demonstrated the interactions between SARS-CoV-2 spike proteins with blood group
antigens on RBCs. Blood type A antigen serves as one of the possible binding targets of
SARS-CoV-2 spike protein S1 subunit, suggesting that blood group A patients may be
associated with a higher risk of contracting COVID-19 compared to non-A blood groups.
Since we found carbohydrate derivatives to prevent the binding of the SARS-CoV-2 spike
protein S1 subunit with RBCs, our results are expected to shed light on SARS-CoV-2
drug discovery.
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