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Abstract: The translation of the growing increase of findings emerging from basic nutritional
science into meaningful and clinically relevant dietary advices represents nowadays one of the
main challenges of clinical nutrition. From nutrigenomics to deep phenotyping, many factors need to
be taken into account in designing personalized and unbiased nutritional solutions for individuals
or population sub-groups. Likewise, a concerted effort among basic, clinical scientists and health
professionals will be needed to establish a comprehensive framework allowing the implementation
of these new findings at the population level. In a world characterized by an overwhelming increase
in the prevalence of obesity and associated metabolic disturbances, such as type 2 diabetes and
cardiovascular diseases, tailored nutrition prescription represents a promising approach for both the
prevention and management of metabolic syndrome. This review aims to discuss recent works in
the field of precision nutrition analyzing most relevant aspects affecting an individual response to
lifestyle/nutritional interventions. Latest advances in the analysis and monitoring of dietary habits,
food behaviors, physical activity/exercise and deep phenotyping will be discussed, as well as the
relevance of novel applications of nutrigenomics, metabolomics and microbiota profiling. Recent
findings in the development of precision nutrition are highlighted. Finally, results from published
studies providing examples of new avenues to successfully implement innovative precision nutrition
approaches will be reviewed.

Keywords: precision nutrition; nutrigenomics; physical activity; deep phenotyping; metabolomics;
gut microbiota

1. Precision Nutrition

The Road to Tailored Dietary Advices

One of the ultimate goals of the promising field of precision nutrition is the design of tailored
nutritional recommendations to treat or prevent metabolic disorders [1]. More specifically, precision
nutrition pursuits to develop more comprehensive and dynamic nutritional recommendations based on
shifting, interacting parameters in a person’s internal and external environment throughout life. To that
end, precision nutrition approaches include, in addition to genetics, other factors such as dietary habits,
food behavior, physical activity, the microbiota and the metabolome. Following the completion of the
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mapping of the Human Genome, a cumulative number of association studies have been performed in
order to identify the genetic factors that may explain the inter-individual variability of the metabolic
response to specific diets. In this sense, while numerous genes and polymorphisms have been already
identified as relevant factors in this heterogeneous response to nutrient intake [2–7], clinical evidence
supporting these statistical relationships is currently too weak to establish a comprehensive framework
for personalized nutritional interventions in most cases [8]. Thus, although most of findings on
this topic are still relatively far from giving their fully expected potential in terms of translation
and application of this knowledge to precision nutrition [9], some of them have been successfully
developed in both the public and the private sectors. On one hand, the hypolactasia diagnosis [10], the
celiac disease ruling out [11] or the phenylketonuria screening [12], have allowed the implementation
of tailored nutritional advices based on genetic makeup for years, i.e., avoiding lactose-, gluten- and
phenylalanine-containing products to at-risk individuals. On the private sector, many companies
are already offering genetic tests to customize diets based on the individual response to specific
nutrients. For instance, that is the case of genetic tests based on the specific metabolism of caffeine
(slow or fast metabolizers) [13,14], the predisposition to weight gain by saturated fat intake [15,16],
or the increased risk of developing hypertension by high salt intake [17,18], among others. Together,
these nutritional recommendations solely based on genetic background represents a straightforward
approach to the concept of personalized nutrition. Although quite similar to the concept of precision
nutrition, and sometimes interchangeable, the latter makes reference to a conceptual framework
covering a wider set of individual features allowing an effective and dynamic nutritional approach [1].
Thus, while personalized nutrition based on genes is already being implemented successfully based
on numerous research studies, such as the ones above mentioned, precision nutrition may still lack
sufficient evidence for full implementation given its complexity, as will be reviewed below.

Regarding obesity and metabolic syndrome, recent published studies focusing on
gene-environment interactions have revealed important insights about the impact of macronutrient
intake in the association of genetic markers with metabolic health, fat mass accumulation or body
composition. This is broadly relevant in precision nutrition, since results from these studies, focused
on macronutrient intake, open the door to tailor efficiently diets based on the individual genetic
makeup. In this regard, recent work by Goni et al. [19] analyzed the usefulness of a genetic risk
score (GRS) on obesity prediction, and more interestingly, the impact of macronutrient intake in
the predictive value of this GRS. The GRS was built as an additive summary measure of a set of
16 genetic variants (according to the number of risk alleles for each variant) previously associated
with obesity (rs9939609, FTO; rs17782313, MC4R; rs1801282, PPARG; rs1801133, MTHFR and rs894160,
PLIN1) and lipid metabolism disturbances (rs1260326, GCKR; rs662799, APOA5; rs4939833, LIPG;
rs1800588l, LIPC, rs328, LPL; rs12740374, CELSR2; rs429358 and rs7412, APOE; rs1799983, NOS3;
rs1800777, CETP and rs1800206, PPARA). After the validation of the GRS, i.e., high risk group (subjects
having more than 7 risk alleles) showing increased body mass index (0.93 kg/m2 greater BMI), body
fat mass (1.69% greater BFM), waist circumference (1.94 cm larger WC) and waist-to-hip ratio (0.01
greater WHR), significant interactions between macronutrient intake and GRS prediction values were
observed. For instance, higher intake of animal protein was significantly associated with higher BFM
in individuals within the high-risk GRS group (Pinteraction = 0.032), whereas higher vegetable protein
consumption showed a protective effect among subjects in the low-risk group (Pinteraction = 0.003),
as these individuals were characterized by a lower percentage of BFM [19]. Similar trends were
reported by Rukh et al., where total protein intake was found to modulate GRS association with
obesity in women (Pinteraction = 0.039) [20]. Other studies on gene-macronutrients interactions, in
which a GRS developed on the basis of BMI-associated single nucleotide polymorphisms (SNPs)
was used, have revealed that high intake of sugar-sweetened beverages [21–23], fried foods [24] or
saturated fatty-acids [25] are also able to modulate the risk to develop obesity. Altogether, these results
suggest that the accumulation of common polymorphisms at loci known to influence body weight
may influence one’s predisposition to gain weight when exposed to certain types of diets.
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Over the past recent years, it has become increasingly evident that the assessment of dietary
patterns provides a more reliable picture of real food intake compared to the assessment of
macronutrients intake considered in isolation. In this regard, a recent work focused on the effect of the
obesity-associated MC4R gene on metabolic syndrome has revealed a relevant gene-diet interaction
with dietary patterns [26]. In this case-control study, participants with metabolic syndrome from
the Tehran Lipid and Glucose Study [27] were randomly matched with controls by age and sex,
leading a total of 815 pairs. Healthy and western dietary patterns were identified by factor analysis
based on 25 food groups extracted from a 168-item semi-quantitative food frequency questionnaire
(FFQ). The healthy dietary pattern was characterized by high intake of vegetables, legumes, low fat
dairy, whole grains, liquid oils and fruits, while the western dietary pattern consisted of high intake
of soft drinks, fast foods, sweets, solid oils, red meats, salty snacks, refined grains, high fat dairy,
eggs and poultry. Results from this study revealed that carriers of the rare allele in the MC4R gene
and having the highest score of the western dietary pattern had increased risk (odds ratio—OR) of
developing metabolic syndrome (OR = 1.71 (1.04–2.41); Ptrend = 0.007), as compared to those having
lower scores [26]. Similar gene-dietary pattern interactions were revealed in another study linking
GRS with WHR and BMI, and different diet scores, ranging from healthier (whole grains, fish, fruits,
vegetables, nuts/seeds) to unhealthier (red/processed meats, sweets, sugar-sweetened beverages and
fried potatoes) [28]. Results from this study, where more than 68,000 participants from 18 different
cohorts were used, showed nominally significant associations between diet score and WHR-GRS,
with stronger genetic effect in subjects with a higher diet score (βinteraction (SEinteraction) = 4.77 × 10−5

(2.32 × 10−5); Pinteraction = 0.04), i.e., consuming healthier diets [28].
As above mentioned, the scientific community generally agrees that the future of precision

nutrition will not be solely based on nutrigenetics [29]. Clearly, factors beyond genetics also need to be
considered when designing personalized or tailored diets. In this regard, the usefulness of tailored
dietary advices to adequately anticipate individual responses to nutritional intakes is one of the main
goals of precision nutrition. In order to attain this goal, and as illustrated in the precision nutrition
plate (Figure 1), determinants not only related to nutritional or genetic factors, e.g., lifestyle including
physical activity (PA) habits, metabolomics or gut microbiomics, are also emerging as significant
contributors that merit consideration in the field of precision nutrition [30–32].
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This is the case of a recent study where the power of a machine-learning algorithm to predict
postprandial glucose levels was tested [33]. In this study, the ability of an algorithm to forecast
postprandial glycaemia as well as an expert-based prediction was reported. To do that, the high
inter-individual variability of postprandial glycemic response was first revealed by using subcutaneous
sensors that accurately monitored glucose levels (every 5 min during 7 full days) in a cohort of
800 subjects, resulting in over 1.5 million glucose measurements, corresponding to nearly 47,000 real-life
meals and over 5000 standardized meals. A comprehensive profiling including data derived from a
FFQ, sleep and PA habits, medical histories, anthropometric measures, blood tests and microbiota
profiling was assessed for each participant. These features were then included in the prediction
algorithm, which was first tested in the cohort of 800 subjects and further successfully validated in
an independent cohort of 100 patients. Further analyses allowed the quantification of the partial
contribution of each parameter of the algorithm, from meal nutrient content (carbohydrates, fat,
dietary fibers, sodium) to microbiome-based features, in the prediction of postprandial glucose levels.
Finally, the predictive performance of the algorithm was examined in a two-arm blinded randomized
controlled trial with 26 new participants. In the first arm, after the 1-week profiling, 12 participants
were sequentially assigned to an unhealthy or a healthy diet according to the postprandial glycemic
responses predicted by the algorithm for each participant. In the second arm, 14 participants followed
the same unhealthy and healthy diets, but dietary advices were given by a registered dietitian and a
scientist experienced in analyzing continuous glucose monitoring data. The tailored dietary advice
in both the predictor and the expert arms resulted in a significant decrease of postprandial glucose
levels when participants were assigned to the healthy diet. More specifically, the correlation between
postprandial glucose levels measured during the profiling and the intervention weeks was 0.7 in the
expert arm, and it reached 0.8 with the algorithm-predicted values. These results, in spite of providing
support for the potential of this personalized nutrition approach, should be taken with caution
until further studies are completed, since some observations mainly concerning the inter-individual
variability in glycemic responses have been recently pointed out [34]. In any case, such an innovative
prediction algorithm, which utilizes clinical, nutritional and lifestyle variables, as well as microbiome
profiles as input parameters, exemplifies the great possibilities offered by these sophisticated methods
for the further implementation of precision nutrition.

According to the International Society of Nutrigenetics/Nutrigenomics (ISNN), the future of
precision nutrition should be discussed at three levels: stratification of conventional nutritional
guidelines into population subgroups by age, gender and other social determinants, individual
approaches issued from a deep and refined phenotyping, and a genetic-directed nutrition based
on rare genetic variants having high penetrance and impact on individuals’ response to particular
foods [29] (Figure 2). This categorization of precision nutrition pillars includes a more in-depth
exploration of the challenges that nutrition science must face in next years to evolve in the context
of an increasing prevalence of obesity and associated metabolic disorders, resulting largely from the
wide-scale adoption of unhealthy feeding behaviors in an obesogenic food environment in which it has
become increasingly difficult to adhere to healthy dietary patterns.
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In this regard, a better understanding of the inter-individual variability in the response to diet
has been recently identified by the American Society of Nutrition (ASN) as one of the six top research
priorities to be addressed in nutrition science to face the forthcoming challenges in population health
management [35]. Moreover, the ASN has identified the required tools to attain these research needs
for enabling an accurate nutritional impact prediction on health (omics technologies), an enhanced
patient information survey (bioinformatics and database management), and a suitable assessment of
disease progression and patient response to a nutritional treatment (biomarkers, metabolomics, etc.).

This paper will review the recent advances in the field of precision nutrition, with special emphasis
on the novel approaches of dietary habits assessment, food behavior evaluation, PA monitoring, as
well as on the novel techniques applied to deep phenotyping, metabotyping and microbiota profiling.

2. Dietary Habits

Fine-Tuning Adherence

The main goal sought with nutritional interventions is to assess potential associations between
feeding behaviors and metabolic outcomes such as body composition, insulin sensitivity and markers
of the lipoprotein-lipid profile. These potentially causal relationships should then enable to draw
conclusions on the clinical relevance of specific nutritional recommendations for population subgroups.
Unfortunately, one of the most common obstacles that nutritional science needs to tackle when
exploring such associations is that conventional nutritional intervention studies often lack the power to
detect subtle effects of diet on metabolic parameters, either because of the short duration of such studies
or by the small number of participants involved [36]. The problem resulting from lack of statistical
power may be amplified by several additional issues among which inter-individual variability and
limited adherence evaluation stand out as potential determinants of modest study outcomes and
underestimation of diet effects [37]. Regarding the impact of nutrition on genetic makeup and vice
versa, the capacity to accurately monitor food and energy intake remains a major challenge in precision
nutrition research.

A better characterization of dietary habits throughout an intervention study will ultimately
increase one’s chance of generating clear findings. This implies, however, thorough data acquisition
in terms of individual food consumption and other factors that could affect adherence evaluation of
a particular intervention [38]. The limitations of subjective and memory-based dietary assessment
methods (M-BM), such as FFQ, 24-h dietary recall (24H), dietary record (DR) and dietary history
(DH) have been known for a long time [39] and continue to be questioned today [40], with under-
or over-reporting not being accounted for in many studies, which may lead to biased results in
nutritional intervention studies. Other than recall bias inherent in self-reported data, limitations shown
by subjective dietary assessment methods comprise the high cost and time-consuming of DH and of
multiple 24H and DR, which could also drive to unintentionally changes in participants’ diet due to
repeated measurements [41]. Since a reliable dietary assessment is key for interpreting diet-induced
metabolic outcomes, many approaches aimed at overcoming these issues from different perspectives
have been proposed.

Two examples of novel dietary adherence methods are the Mediterranean Diet Adherence Screener
(MEDAS) [42,43] and the Mediterranean Lifestyle index (MEDLIFE) [44]. The MEDAS consists
of a simple 14-point-instrument to overcome the classical time-consuming FFQ. This time saver
questionnaire allows a more robust estimation of Mediterranean diet adherence that can be used
in clinical practice. The final MEDAS score ranges from 0 (worst adherence) to 14 (best adherence),
according to 9 items from a previously validated index [45], plus three questions on Mediterranean food
consumption frequency (nuts per week, sugar-sweetened beverages per day, and tomato sauce with
garlic, onion and olive oil per week), and two more questions about Spanish Mediterranean food intake
habits (olive oil as the principal source of fat for cooking and preference of white meats—chicken, rabbit,
turkey—over red meats—beef, pork, etc.). The MEDAS has been validated within the Prevención
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with Dieta Mediterránea (PREDIMED) study [46], a primary prevention nutrition-intervention trial
that will be presented below. Using a holistic approach, the MEDLIFE index is the first to include PA
and social interaction to the classical assessment of food consumption [44]. The MEDLIFE index has
been validated with previous diet quality indices, the Alternate Healthy Eating Index (AHEI) [47],
the alternate Mediterranean Diet Index (aMED) [48] and the MEDAS [42], and it consists of 28 items
divided into three blocks. The first two blocks are dedicated to estimate food consumption frequency
and Mediterranean dietary habits, such as the previous MEDAS index [43]. The third block consists of
six items that include information about PA (more than 150 min/week or 30 min/day jogging, walking
quickly, dancing or doing aerobics) and social habits (time spent sitting, watching television or in front
of a computer, sleeping or socializing with friends). The MEDLIFE index is the first to measure other
variables beyond food consumption that are part of the Mediterranean lifestyle and it is expected to
help in the refinement of association testing between metabolic diseases and diet/lifestyle, as well as
in the improvement of measuring adherence to a Mediterranean lifestyle.

Some authors have proposed that more complex and sophisticated statistical methods may help
monitoring the adherence of patients to a nutritional intervention, which would lead to a more accurate
detection of the potential associations between dietary interventions and metabolic improvements.
In this regard, Sevilla-Villanueva et al. [49] have recently reported that adherence evaluation through
trajectory analysis allows researchers to observe how study participants evolve during a nutritional
intervention depending upon their assigned nutritional group. This artificial intelligence-based
approach considers an initial classification of individuals according to the Integrative Multiview
Clustering [50], which uses 65 parameters divided in two blocks to group individuals. These two
blocks are the baseline block, describing the health condition (biometric measures, tobacco and drug
consumption, socio-demographic characteristics, diseases and biomarkers) and the habits block, which
describes food habits and PA. This clustering process is performed at the beginning and at the end
of the study, creating a trajectory map showing how the individuals belong to one or other final
class by observing changes in diet indicators and depending on the initial state and the assigned
intervention. Adherence to the intervention was tested in a randomized, parallel, controlled clinical
trial with three dietary interventions (Mediterranean diet plus virgin or washed olive oil, and a
control group with habitual diet) [51] where the previously mentioned MEDAS was used to assess
individual diet scores [42]. By using this approach, researchers are able to unmask dietary changes
within a given intervention group and to discriminate participants according to their particular
diet trajectories during the study, and not only by their assigned intervention groups. This type of
study allows a more specific evaluation of adherence and a more accurate characterization of the
impact of the intervention. In any case, the application of these algorithms will likely continue to
be influenced by inadequate self-reported-based estimates of energy intake that are, after all, the
input parameters of such sophisticated algorithms [52]. In this sense, a recent study has revealed
that energy intake under-reporting keeps being a major concern in nutrition research, regardless of
self-reporting method [53]. In this study, a total of 200 men and women from the SCAPIS study
(Swedish CArdioPulmonary bioImage Study) [54], and aged 50–64 years were recruited and invited
to complete a rapid FFQ (the MiniMeal-Q) and a 4-day web-based food record tool (the Riksmaten
method). Reported energy intake by the MiniMeal-Q and the Riksmaten method were tested against
total energy expenditure measured with the double-labelled water technique in 40 participants.
Both methods are widely used in national dietary surveys in Sweden and in large-scale epidemiological
studies, and have been partially validated. Results of this study showed that both methods displayed
a similar degree of energy intake under-reporting, with a reporting accuracy of 80% and 82% for the
for MiniMeal-Q and the Risksmaten methods, respectively [53].

Aiming at a better standardization of adherence monitoring in restricted and free-living
individuals, self-reported assessment methods should then be used with caution, and priority should
be given to the development of alternative techniques to assess food and energy intake. In this
regard, new methods to measure food consumption in a more accurate way are emerging and being
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validated. A food image-based method, called the Remote Food Photography Method (RFPM) [55],
has been recently validated for measuring energy and nutrient intake [56] and has been proposed
as a cheap, easy, and reliable method for detecting individual adherence better than classical FFQ.
This method involves participants capturing images of their meals and plates waste with a phone
camera. These images are further sent to a server where energy and nutrient intake are estimated by
validated methods [55]. Another method based on wrist motion tracking aims to give consistent energy
intake measurements from daily living by monitoring food bites thanks to a wearable (watch-like)
device coupled with a micro-electro-mechanical gyroscope [57]. Although these methods still need
to be fine-tuned, they appear to be promising for the optimization of dietary monitoring focused on
estimated energy intake and to assess adherence to a nutritional intervention.

Innovative and sophisticated tools to estimate food and energy intake are expected to be further
improved and validated, while more precise devices and techniques such as the above mentioned
must be developed. Further research is also needed to test whether these high-tech methods can be
widely used in free-living subjects [58].

3. Food Behavior

Foodstyle Monitoring

In addition to the measurement of total food intake, additional key aspects concerning precision
nutrition that must be considered are, for instance, the frequency at which we consume foods
throughout the day, the time we have lunch or dinner, and our snacking habits. Again, relying
on methods able to collect accurate and valid clinical observations are key priorities as we strive to
obtain reliable research results that will ultimately lead to unbiased interpretations.

Innovative technologies in this area are being developed, such as the Universal Eating Monitor
(UEM), a table-embedded scale able to precisely quantify the amount of food consumed by a given
person over time [59]. Initially conceived to monitor unrestricted eating, currently existing algorithms
can be used only under restricted laboratory conditions. Nevertheless, the ability of the UEM to
monitor different eating behavior parameters such as eating rate, bite size or food-to-drink ratio makes
this tool a potentially useful device in precision nutrition. Accordingly, the Automatic Ingestion
Monitor (AIM) is a wearable device designed to monitor the food intake behavior, such as snacking,
night eating or weekend overeating, and analyze eating behavior in free living conditions [60]. In this
regard, the AIM uses three different sensors (jaw motion, hand gesture and accelerometer) that allow
obtaining reliable eating behavior measurements. These systems are two examples of how technology
can be implemented to account for inter-individual differences in feeding behavior.

One important aspect of food behavior lies in its interaction with the circadian system, a
physiological internal clock working autonomously with rhythms and oscillators synchronized by
external time cues, and regulating a variety of physiological functions [61]. Several authors have
already shown the relevance of the circadian system in human nutrition. Results from the ONTIME
study, a clinical trial focused on the interaction between meal timing, genetics and weight loss
showed that carriers of variants at the PLIN1 locus exhibited lower weight loss within individuals
assigned to the group of late lunch eaters (after 15:00), as compared to early lunch eaters (before 15:00)
(7.21 ± 0.67 kg vs. 10.63 ± 0.56 kg; p = 0.001) [62]. Other food behaviors, such as frequent snacking have
also been pinned down to genetics. Garaulet et al. reported that carriers of PER2 variants displayed
extreme snacking, suffered from diet-induced stress and bored-eating, among other behavior atypical
patterns [63]. Results of two other recent studies have underscored the relevance of genes linked to the
circadian clock in scheduled food behavior. For instance, significant interactions between specific gene
variants within the CLOCK [64] and the CRY1 [65] circadian genes, with low-fat diet and carbohydrate
intake, respectively, have been identified.

In the first study, the interaction between SNPs at the CLOCK locus (rs1801260, rs3749474,
rs4580704) with a Mediterranean diet and a low-fat diet was tested in 897 patients with coronary
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heart disease from the Coronary Diet Intervention with Olive Oil and Cardiovascular Prevention
(CORDIOPREV) clinical trial (ClinicalTrials.gov: NCT00924937). After 12 months of intervention, a
significant interaction was found between rs4580704 and low-fat dietary pattern for high sensitivity
C-reactive protein (hsCRP) levels and the ratio high-density lipoprotein cholesterol/apolipoprotein
A1 (HDL/ApoA1). Specifically, after the low-fat diet intervention, rs4580704 major allele carriers
(CC) displayed a significant decrease of CRP levels, as compared to minor allele carriers (GG + CG)
(~42% vs. ~12.5%; p < 0.001) and increased HDL/ApoA1 ratio (~4% vs. ~1.2%; p < 0.029) , whereas
no changes were observed between genotypes after the Mediterranean diet intervention, thereby
suggesting that some metabolic disturbances, such as inflammation or dyslipemia, may be improved
with personalized nutritional advices based on the genetic background of circadian rhythm [64].

On the other hand, a SNP (rs2287161) at the CRY1 locus was tested for interaction with
carbohydrate intake in predicting insulin resistance [65]. Results showed that increased carbohydrate
intake led to a significant increase of fasting insulin (βinteraction (SEinteraction) = 0.0040 (0.0015);
Pinteraction = 0.007) and the homeostatic model assessment of insulin resistance (HOMA-IR) (βinteraction

(SEinteraction) = 0.0040 (0.0016); Pinteraction = 0.011) only among individuals homozygous for the
rs2287161 rare allele. The initial results found in the Mediterranean population of 728 subjects
following a Mediterranean diet were further replicated in a North American population of 820 subjects
participating in the Genetics of Lipid Lowering Drugs and Diet Network (GOLDN) study.

These and other findings reviewed by Asher & Sassone-Corsi and Oike et al. [66,67] highlight
the relevance of chrono-nutrition, i.e., the study of how food components interact with circadian
clocks and how meal times affect metabolic processes [67], in the application of precision nutrition.
Concretely, these findings point to circadian genetic variability as a relevant factor to be considered
when developing scheduled and personalized nutrition programs aimed to face metabolic disorders
associated with obesity.

4. Precision Physical Activity

Physical Activity: A Key Factor to Proper Precision Nutrition

There is a wide consensus in the literature that a sedentary lifestyle is one of the main factors
contributing to the epidemic of cardiometabolic diseases [68]. Monitoring of PA should be then
considered as a central factor when approaching precision nutrition. In words of Betts and González:
An optimal diet can therefore be personalized not only to what an individual is currently doing but to what
they should be doing [1]. In this context, Bouchard et al. have shown that besides the inter-individual
variability in the beneficial response to a PA intervention regarding cardiovascular disease (CVD)
and type 2 diabetes (T2D) risk factors, some individuals may even experience negative responses,
such as a decrease in plasma HDL-C or an increase in systolic blood pressure, fasting plasma insulin
and plasma triglyceride (TG) levels [69]. Thus, tailored dietary recommendations should take into
account the PA profile of individuals, which will open the door to more integrative interventions,
including personalized PA prescriptions. Moreover, not only the inter-individual variability in PA rates
is relevant when tailoring nutritional advices, but even greater is the within-individual PA variability
with time. In this regard, a recent study has shown the relevance of accounting for day-to-day
individual variability of insulin and glucose levels in response to a standardized PA intervention.
In this study, 171 sedentary, middle-aged abdominally obese adults were randomly assigned to
four exercise groups (non-exercise, a low-amount/low-intensity, high-amount/low-intensity and
high-amount/ high-intensity). The intervention consisted of walking on a treadmill five times per
week at the required intensity (relative to the cardiorespiratory fitness) for 24 weeks. The day-to-day
variability was calculated as the square root of the sum of squared differences of repeat measures
(glucose and insulin baseline and 24-week levels in the control group), divided by the total number of
paired samples and multiplied by two. Taking into account this individual variability, approximately
80% of the participants did not improve glucose and insulin levels, independently of the PA
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intensity, underscoring the need for a more comprehensive assessment of the PA-derived metabolic
outcomes [70]. This study stressed that within-subject variation must be accurately assessed when
evaluating the inter-individual differences in precision nutrition approaches. In this regard, Atkinson
& Betherman [71] have proposed a logical framework to identify true inter-individual differences after
an intervention, as well as to evaluate their clinical relevance. Such approach includes a comparator
arm where standard deviation from the intervention arm should be compared to for the identification
of reliable differences among participants.

Recent approaches have started to scrutinize the potential role of PA in previously detected genetic
associations with obesity and related metabolic disturbances. For example, it has been reported that a
sedentary behavior, estimated as prolonged television watching, accentuates genetic predisposition
(measured as GRS) to increased BMI in two prospective cohorts, the Nurses’ Health Study and the
Health Professionals Follow-up Study [72]. Specifically, an increment of ten points in the GRS was
associated with 0.8–3.4 kg/m2 higher BMI across the different categories of television watching
(1–40 h/week; Pinteraction = 0.001). Recent findings have also reported that the impact of gene variants
within FTO gene, the first and most strongly obesity-associated gene [73,74], on obesity development
is in fact attenuated by PA, i.e., the increase in BMI is 76% more pronounced in inactive individuals
carrying the risk allele (Pinteraction = 0.004) [75]. Additional studies have also reported a protective
effect of PA (assessed using self-administered questionnaires) on the impact of obesity-associated
genetic variants in the form of aggregated GRS [76,77]. Results from Li et al. [76] revealed that the
genetic predisposition to obesity in individuals with high-risk GRS could mitigated by higher levels of
PA, as illustrated by BMI differences in physically active vs. sedentary participants. More specifically,
the BMI difference between high- and low-risk GRS individuals in the sedentary group amounted
to 0.74 kg/m2, whereas this difference was 0.41 kg/m2 in the physically active group. These results
were also replicated in a meta-analysis of 11 cohorts [77], where a significant but weak association was
reported (0.65 kg/m2 vs. 0.53 kg/m2). Despite the adequate power to detect small effects and the large
number of participants in above-mentioned studies, over 20,000 and 100,000 individuals, respectively,
gene × PA interactions are not strong enough to establish causal relationships between increased PA
and decreased risk of genetic predisposition to develop obesity, or to use them in clinical practice, as
reported by Ahmad et al. [77]. Likewise, a more recent GWAS meta-analysis of 200,452 subjects from
60 previous studies analyzing gene-PA interactions revealed 11 novel loci associated with adiposity,
suggesting that accounting for PA could facilitate the uncovering of novel biological determinants of
obesity [78]. Nevertheless, the search for PA interactions with obesity-associated loci only provided
significant results with the FTO gene, showing a decrease of 30% of FTO effect in active as compared
to sedentary subjects [78]. Although it has been hypothesized that highly penetrant genetic variants
may be less influenced by environmental factors [79], it is important to point out that PA is most often
estimated by self-reported questionnaires in population studies. In this regard, it is worth highlighting
that the majority of studies included in this meta-analysis used self-reported PA data (self-administered
or interviewer-administered questionnaires) instead of objective measures (only two studies measured
PA by accelerometry), and PA was finally treated as a dichotomous variable (active and inactive
individuals) to harmonize this parameter, with the resultant loss of power to detect associations.

It then becomes crucial to replicate these findings with direct and objective measures of PA. In this
sense, the recent use of accelerometers to objectively measure PA levels has consistently revealed that
both BMI-associated GRS [80] and FTO impact on obesity susceptibility [81] are attenuated by higher
levels of objectively measured PA. With direct PA measurements, results from the FTO-related work [81]
are similar to previous findings [75,82], but the attenuation of FTO impact on obesity-associated
features, such as BMI and WC, is quantitatively more important. These findings could be explained,
according to the authors, by the higher precision of PA measurements and its ability to accurately
categorize PA intensity into light, moderate or vigorous.

These findings underscore the importance of a reliable assessment of PA for a more accurate
interpretation of its potential modulating effect on the association between diet and health outcomes.
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Up to now, motion sensors such as accelerometers could be considered as the gold standard to obtain
accurate PA measurements [83], and their use in biomedical research in increasing [84,85]. A recent
systematic review of the use of accelerometers for measuring PA under free-living conditions revealed
that triaxial accelerometers were the most commonly used, followed by biaxial and uniaxial [86].
Among triaxial accelerometers, the most used models in longitudinal assessment of PA in studies
related to health and disease [87] were ActiGraph GT3X (ActiGraph LLC, Pensacola, FL, USA) [70,88]
and TracmorD (DirectLife, Philips Consumer Lifestyle, Amsterdam, The Netherlands) [81,89].
Nevertheless, these methods have some limitations for large prospective epidemiological studies, e.g.,
intrusiveness, elevated cost or specialized training for an efficient use [90], limitations that researchers
should try to overcome in order to develop precision nutrition approaches that integrate the important
notions of energy expenditure and energy balance. In this regard, together with an accurate knowledge
of dietary habits, food behaviors, genetics and gut microbiota factors, as well as a precise metabolic
phenotyping, precision energy expenditure measurements, including resting energy expenditure (REE),
thermic effect of food and activity-related PA should be considered when implementing precision
nutrition approaches, as depicted in Figure 3. Regarding activity-related PA, a multidimensional
representation of PA (including factors such as occupational PA, sedentary time and leisure activities)
has been recently proposed as a way to provide a more comprehensive picture of PA, reducing the bias
associated to a unidimensional approach solely based on PA per se [91].
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5. Deep Phenotyping

High-Quality Phenotypes to Stratify Obesity

The need for precise measures to refine phenotypes emerges as a key pillar to understand
inter-individual variability observed for certain pathologies, as well as over time variability for an
individual [92]. This is of special relevance when the impact of a given diet or lifestyle advice on
specific phenotype features is the pursued goal. Accurate and well-defined disease stratification,
taking into account phenotypic heterogeneity, is then required in order to obtain reliable associations
in nutritional interventions (Figure 3).

Complex diseases mean complex phenotypes. This is the case of most metabolic disorders,
such as obesity, CVD or T2D. The development of new tools or methods with the ability to stratify
and distinguish different phenotypes in terms of etiology, severity or underlying mechanisms thus
represents a challenge in the field of precision nutrition. In this regard, although obesity is a condition
associated with increased risk of T2D, CVD and other metabolic complications, a significant proportion
of individuals with excess body weight are characterized by a much healthier metabolic risk profile
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than what could be expected form their excess adiposity [93], thereby suggesting that BMI does
not reflect the actual health status of an individual. On the other hand, individual with a normal
BMI may still be characterized by metabolic dysfunction if they carry excess visceral or hepatic fat.
Since excess visceral adipose tissue (VAT) accumulation and adipose tissue dysfunction are tightly
related to the development of obesity-related metabolic complications [94], it has been proposed
that the combined measure of WC and plasma TG levels may represent an inexpensive and useful
biomarker of both VAT accumulation and dysfunction, as well as a potential predictor of T2D and
CVD risk [95,96]. Results from a study including 21,787 apparently healthy individuals, followed for
approximately 10 years as part of the EPIC-Norfolk prospective population study, have shown that the
hypertriglyceridemic-waist phenotype (the combination of elevated WC and plasma TG levels) was
associated with increased risk (unadjusted hazard ratio—UHR) for coronary artery disease in both
men (UHR = 2.40 (2.02–2.87)) and women (UHR = 3.84 (3.20–4.62)) [97].

Several imaging studies have now shown that VAT accumulation has a more deleterious effect
than subcutaneous adipose tissue (SAT) on metabolic health [94,98]. Assessment of VAT accumulation
represents a challenge when stratifying subjects with abdominal obesity. In this regard, a recent study
has shown that epigenetic factors, such as DNA methylation marks, could discriminate VAT from
SAT after weight loss surgery [99]. Given that VAT biopsies represents an invasive technique, there
is a need to find surrogate biomarkers in more accessible tissues such as blood, allowing a better
characterization of obesity in addition to the traditional clinical outcomes, such as BMI or WC. Recent
studies have also suggested that whole genome differential methylation patterns derived from blood
leukocytes (BL) may be used as surrogates of those derived from VAT. More specifically, a set of
differentially methylated cytosine-phosphate-guanine (CpG) sites, common in VAT and BL, were
shown to successfully discriminate men with or without metabolic syndrome [100]. These and other
results suggest that BL methylation levels could be a good marker of VAT DNA methylation [101], and
could then be used to determine the effect of a nutritional intervention on the epigenetic profile, and
therefore on metabolic health related to VAT accumulation. Thus, knowledge of epigenetic variations
predictive of metabolic complications among individuals with obesity could be of considerable
relevance to the field of precision nutrition. For instance, recent studies focusing on DNA methylation
differences between responders and non-responders to a weight loss intervention (energy restriction
or bariatric surgery) [102–105] suggest that these epigenetic marks may be used as biomarkers to
identify high-risk individuals who may be targeted in personalized nutritional programs focused on
prevention, management and treatment of obesity.

Robinson has defined deep phenotyping as the precise and comprehensive analysis of phenotypic
abnormalities in which the individual components of the phenotype are observed and described [106].
Traditional risk factors for T2D and CVD, such as blood pressure, lipid profile or BMI, are not
always representative enough of a given health condition. Rather, in some instances, a thorough,
individualized and precise evaluation of a number of metabolic parameters, e.g., continuous glucose
monitoring in T2D, could be required [106,107]. This means that a much more detailed phenotyping is
required in order to capture the diverse, interindividual and time-dependent, variability of disease
manifestations for a better disease stratification.

An example of this extensive phenotyping is the Maastricht Study, where a cohort of
10,000 individuals with an overrepresentation of patients with T2D are being surveyed in a regular
basis for T2D traditional risk factors, etiology and associated metabolic disturbances [108]. In this study,
traditional (hypertension, dyslipidemia, obesity or inflammation status) and advanced phenotyping
techniques (body composition by dual energy X-ray absorptiometry, electrophysiology of the heart,
ocular pressure, corneal confocal microscopy or lung function evaluation by spirometry) are being
used to elucidate the underlying pathophysiology of T2D and associated metabolic disturbances.
This large epidemiological study will likely provide important clues on how detailed phenotyping
can be extracted and eventually applied in precision nutrition. In-depth phenotyping methods
utilized in this study can be divided into four different approaches: exhaustive biobanking for an
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efficient risk stratification (whole blood for DNA and RNA extraction, 24 h and morning urine,
fasting and post-oral glucose tolerance test serum samples), advanced cardiovascular imaging for
better knowledge of T2D-associated CVD risk (microvascular assessment by nail fold microscopy,
vascular and cardiac ultrasound), use of accelerometry to objectively measure PA and sedentary time,
and the study of psychosocial factors through personality questionnaires. The use of advanced and
objective measurements (abdominal fat ultrasound, triaxial accelerometry), combined with traditional
and self-reported data (FFQ, PA) represents a strength of this study [108] and a step forward in
precision nutrition.

As previously outlined in the Precision nutrition section, a similar strategy was carried out by
Zeevi et al. in their work about prediction of glycemic responses and personalized nutrition [33].
This work represents a proof-of-concept for the feasibility of individualized prediction of the response
to a meal by combining traditional and in-depth measurements, such as FFQ, food diaries, blood tests
and microbiome profiling, being able to assign specific diets allowing to successfully lower post-meal
blood glucose.

The strengths of deep phenotyping span from providing a much more detailed picture of a given
pathology, which allows a better clinical decision-making, to deepening the knowledge of mechanisms
governing the progression of the pathology, which improves the evaluation of intervention outcomes.
Thus, despite its limitations, such as the high cost, the need for intensive clinical measurements, or the
necessity of accurate evaluation by trained professionals, deep phenotyping represents an essential tool
for the optimal stratification of diseases to easily and efficiently manage each subtype according to its
particular characteristics [107,109]. Translational and precision nutrition approaches shall then profit
from this specific and fine-grained phenotype information to adequately apply novel and personalized
dietary advices.

6. Metabolomics

Towards a Better Characterization of Eating

The accurate understanding of how nutrients are metabolized, and how these metabolites are
able to illustrate the body’s response to a diet has been previously addressed in many studies [110].
Regarding precision nutrition, metabolomics stands as a cornerstone in the knowledge of the real
impact of foods on an individual’s health. By identifying food-derived biomarkers, scientists can now
determine how different individuals metabolize the same foods distinctly, and how such food products
or metabolites may further influence health outcomes in different healthy or unhealthy situations, as
well as in atypical conditions, such as intolerances or allergies. In this regard, the standardization of
reference values for metabolites is necessary for the further use of them as food-derived biomarkers in
the setting of precision nutrition. A recent study carried out in 800 French healthy volunteers where
185 plasma metabolites were analyzed has established a reference dataset for the majority of them [111].
Moreover, this study allowed to differentiate normal metabolomes between men and women, elderly
and young subjects, and to determine the main sources of variation between population subgroups.
As an example, results of this study revealed that individuals with high total cholesterol levels were
also characterized by higher plasma sphingomyelins and phosphatidylcholine concentrations [111].

As previously mentioned in the Dietary habits section, objective measurement of the adherence to a
dietary pattern remains a major challenge of precision nutrition. Recent advances in metabolomics offer
a glimpse into promising avenues for better eating characterization. For instance, it could be possible
to identify individual foods or nutrients, such as polyphenols, wheat, sugar-sweetened beverages
or walnut consumption [112–115]. A further step in metabolomics usefulness is to test its ability to
determine the overall picture of an individual food consumption [116]. In this sense, spectroscopic
profiling of urine with the use of proton nuclear magnetic resonance (1H-NMR) has recently been
validated for the objective measurement of an overall dietary pattern [117]. The 19 participants
of this randomized, controlled, crossover trial were assigned to four dietary interventions with
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a stepwise variance in concordance with the World Health Organization (WHO) healthy eating
guidelines. Adherence to the intervention was strictly monitored by food and plate waste weighing,
and urine samples were collected daily over three time periods. A global metabolomic profiling
with a combination of 16,000 spectral variables was used to generate representative metabolite
patterns relevant to each diet. Systematic differences were found in metabolomic profiles between
diets 1 and 4 (the most and the least concordant diets to the WHO guidelines). Among individual
metabolites, significantly higher concentrations of hippurate (fruit and vegetables), tartrate (grapes)
or dimethylamine (fish) were found in the urine of participants assigned to diet 1, as compared to
participants assigned to diet 4, while others were significantly lower, such as carnitine (red meat).
The ability of this technique to discriminate metabolomic profiles of participants and classify them
according to their assigned healthy or unhealthy diet during a nutritional intervention was further
successfully validated in free-living populations [117]. However, the low specificity and sensitivity of
this method in the discrimination of dietary patterns must be addressed, and some other challenges
such as its potential to capture diet dynamics thorough long-term studies have to be considered [118].
The same 1H-NMR technique has also been used to characterize the metabolomic profiles of a whole
meal [119]. In this study, a cereal breakfast and an egg and ham breakfast were distinguished by
identifying acute metabolomic fingerprints and key discriminatory metabolites in postprandial urine
samples. Concretely, phosphocreatine/creatine, citrate and lysine were at higher concentrations
after an egg and ham breakfast, whereas erythrose showed a higher concentration after a cereal
breakfast [119].

Metabolomics has also been successfully applied in the development of novel population
classification methods according to the metabotype, which stands for a group of individuals with
similar metabolic profiles, and therefore represents a pillar of deep phenotyping [120]. One of
the advantages of stratifying population according to the metabolic profile (metabotyping) is the
possibility to scale precision nutrition advices to relatively uniform groups of individuals. As an
example, since low-grade inflammation is known to be an important factor in insulin resistance
development, the search for nutritional strategies focused on alleviating the inflammatory state
becomes an attractive approach for precision nutrition [121–123]. In this regard, recent studies
based on baseline metabolic profiles, e.g., plasma lipoprotein and fatty acid profiles, cardiometabolic
biomarkers or insulin and glucose fasting and postprandial levels, have revealed the ability to a
priori discriminate between responders and non-responders to a specific treatment or nutritional
intervention, as recently reviewed by Riedl et al. [124]. Moreover, preliminary results from a dietary
intervention in overweight and obese adolescents (ClinicalTrials.gov: NCT01665742) suggest that
the beneficial effects of anti-inflammatory supplements (omega-3 polyunsaturated fatty acids—n-3
PUFA—vitamin C, vitamin E, and polyphenols) on insulin sensitivity are limited to the patients with
the least favorable metabotype, whose different components (high HOMA-IR and cholesterol levels)
also serve as independent predictors of nutritional supplementation outcomes [125].

Emerging evidence suggests that both pre- and post-metabolic profiles in patients undergoing a
nutritional intervention can provide valuable information about capabilities of metabotypes to predict
a given response to nutrients, and to determine the influence of individual foods, whole meals and
dietary patterns on plasma metabolite levels. Thus, the potential of metabolomics has to be further
explored in precision nutrition approaches.

7. Microbiota Phenotyping

Diet-Gut Microbiome Interplay

Gut microbiota profiling is becoming a top priority in nutritional interventions, and the impact
of specific dietary factors on the ecological diversity of the gut is currently the subject of many
ongoing investigations. The development of nutritional interventions based on individual profiles are
focused on optimizing gut microbial composition, both richness and diversity, and emerging evidence
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suggests that gut microbiota profiling should be included as a key feature of precision nutrition [126].
In fact, both composition and diversity of gut microbiota have been identified as potential risk factors
for the development of several metabolic disorders including the metabolic syndrome, T2D and
CVD [127]. In this regard, the previously discussed study of Zeevi et al. [33] is an example of how
gut microbiome profiling could represent a tool allowing accurate glucose response prediction after
a meal. In this study, gut microbiota profiling was performed in stool samples of the entire cohort
of 800 participants by 16S rRNA and metagenomics sequencing. Numerous microbiome features of
composition and function were then integrated into the postprandial glucose response prediction
algorithm. The analysis of the contribution of each factor to algorithm predictions revealed 21 beneficial
and 28 non-beneficial (decreased or increased predicted postprandial glucose response, respectively)
microbiome-based features. For instance, Eubacterium rectale abundance was mostly beneficial, whereas
Parabacteroides distasonis was found to be non-beneficial by the prediction algorithm. Other studies
have also highlighted the potential relevance of gut microbiota in tailoring diets. For instance, the
FRUVEDomics Study, a behavioral interventional trial (ClinicalTrials.gov ID: NCT03115866), aims at
identifying metabolomic and microbiome risk factors that may be subjected to modification through a
nutritional intervention, mainly based on increasing fruit and vegetable consumption in young adults
at risk for the metabolic syndrome. For that purpose, 36 participants were randomized into three
intervention groups. The first one was based on a dietary intake of 50% fruit and vegetables, and the
other two groups were based on the same 50% fruit and vegetables plus low refined carbohydrate
or low fat. Although it is expected that this trial will be completed in 2019, preliminary results have
suggested that individuals with a higher risk of developing metabolic syndrome also exhibited a
higher Firmicutes to Bacteroidetes ratio before the intervention [128–130]. Other than being able to
identify different combinations of diets to improve metabolic health, this type of trial is an example of
group-based nutritional interventions (at-risk metabolic syndrome young adults). Studies like this
have the potential of revealing novel biomarkers, both metabolomic and issued from microbiome
profiling, allowing a phenotype refinement that could eventually be used in further individually
tailored studies.

A relevant aspect of the gut microbiome is the fact that its composition and diversity can be
modulated by host genetic makeup [127]. But even more relevant for the precision nutrition field
is the fact that the interaction between diet and host genetic background is also able to modulate
the composition of the gut microbiota. A recent study aiming at documenting the impact of host
genetics on the gut microbiome found that, in addition to 9 novel loci associated with gut microbial
taxonomies and other chromosomal regions related to food preferences, gene-diet interactions regulate
Bifidobacterium abundance [131]. This study was carried out in three independent Dutch population
cohorts: a discovery cohort of 1539 individuals, and two replication cohorts of 534 and 105 individuals,
respectively. Interestingly, a functional variant at the lactase (LCT) locus, tightly associated with
lactase persistence in Europeans [132], was associated with higher abundance of Bifidobacterium. Dairy
product consumption was not altered significantly by this haplotype, nor by increased Bifidobacterium
abundance. Nevertheless, the interaction between this haplotype and the intake of dairy products was
associated to Bifidobacterium abundance [131]. These results pointed out the potential modulation of
the microbiome through the interaction between diet and genetic makeup as a target to be considered
in further precision nutrition studies [133].

Other examples highlighting the relevance of gut microbiota in precision nutrition have reported
its role in the relationship between red meat consumption and the development of atherosclerosis
and CVD [134,135]. In these studies, increased fasting plasma levels of trimethylamine (TMA),
produced by gut microbiota metabolism, and its proatherogenic metabolite trimethylamine-N-oxide
(TMAO) were observed in mice and humans, concomitant with increased risk of atherosclerosis,
after oral intake of L-carnitine [134] and phosphatidylcholine [135], both having red meats as a major
source. Interestingly, as suggested by Zmora et al. [136], these pieces of work suggest that the general
recommendation of reducing the intake of red meat [137] may be better focused on subjects with
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gut microbial configurations more prone to metabolize such nutrients into proatherogenic species.
This study also revealed that the association between red meat intake and mortality could be due to
a certain extent to gut microbiota-derived metabolites. Other general recommendations, such as the
substitution of sugar consumption by artificial sweeteners, have also revealed that such an approach
may not potentially be beneficial for a population subgroup, as reported by Suez et al. [138]. In this
study, an increase in the intake of sweeteners led to the development of glucose intolerance in the
subgroup of individuals having a sensitive gut microbiota [138]. However, given the high dose of
sweetener used (5 mg saccharin/kg body weight—FDA’s maximum acceptable daily intake) and the
limited number of participants (n = 7), the results issued form the study of Suez et al. [138] are still
controversial and have generated a broad discussion in the field [139,140]. Although there is mounting
evidence supporting the impact of sweeteners on microbiota in rodents [141], larger studies in humans
are still needed. In this regard, a recent study has shown that gut bacterial diversity could be affected
by recent (four-day food record) sweetener consumption (aspartame and acesulfame potassium) [142].

In summary, recent findings summarized herein suggest a link between microbiome biomarkers
and nutritional intervention outcomes [33], the ability of gene-diet interactions to modify gut
microbiota composition [131], and the existing link between food consumption, disease development
and gut bacteria diversity [134,135]. Altogether, these findings suggest that gut microbiota should be
considered when designing individualized nutrition advices.

8. Recent Advances in Precision Nutrition

8.1. From Nutrigenomics to Tailored Nutrition

Genetics have been frequently considered in association studies as an independent factor
predisposing to obesity, increased adiposity, T2D and CVD [143–146]. Both GWAS and candidate gene
studies have mostly focused on the impact of genetics on metabolic health [147–150]. Although this
strategy has identified strong statistical associations, knowledge about the underlying molecular
mechanisms affected by these genetic variants, and allowing to interpret their clinical relevance in
the development of such pathologies is still scarce [151]. As already mentioned in this review, the
physiological consequences of genetic variants and of their interactions with nutrient intake and other
lifestyle factors, such as PA [76–78] or dietary habits [19,20,28] have been carried out in the field of
precision nutrition.

Besides the fact that interesting findings have emerged from these studies, more ambitious,
comprehensive and overarching strategies are currently broadening the knowledge about factors
involved in the different response to a given nutritional intervention. This is the case of two large
randomized control trials, PREDIMED and Food4me.

8.2. PREDIMED

Given that previous studies have reported that increasing adherence to the Mediterranean diet
has beneficial effects on cardiovascular health [152,153], the PREDIMED study was designed as a
multicenter, randomized, controlled trial to determine the impact of this diet on cardiovascular
outcomes in participants at high cardiovascular risk [46]. The general guidelines to follow the
Mediterranean diet were provided to participants as a personalized dietary advice according to
their prior adherence to this type of diet, evaluated by the previously mentioned 14-item MEDAS
questionnaire [42]. These guidelines consisted in abundant use of olive oil for cooking, generous
consumption of vegetables and fresh fruits, legumes, fish or seafood, nuts and seeds, selection
of white meats instead of red and processed meats, and cook regularly with tomato, garlic and
onion. Further recommendations were focused on reducing the consumption of certain foods, such as
butter, sugar-sweetened beverages, pastries or French fries. The unique aspect of this study was the
intensive utilization of a constellation of omics techniques (transcriptomics, genomics, epigenomics or
metabolomics), the analysis of intermediate phenotypes (plasma lipid concentrations, inflammation
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markers or blood pressure) and end points (myocardial infarction, stroke, and death from CVD causes),
and a robust dietary adherence assessment with a validated 14-item questionnaire [42,154], all of them
key pillars in in the field of precision nutrition [155]. The plethora of biomarkers analyzed in the
PREDIMED study ranged from genetic, epigenetic and transcriptomic, to proteomic, lipidomic and
metabolomic determinants, allowing an in-depth evaluation of the effect of Mediterranean diet on the
basis of an integrated framework. For instance, the use of this integrative approach allowed further
analysis focused on the genetic makeup, such as the TG-lowering effect of a genetic variant (rs3812316)
at the MLXIPL locus. Such TG-lowering effect was strengthened in subjects having a high adherence
to the Mediterranean diet (OR = 0.63 (0.51–0.77); p = 8.6 × 10−6), as compared to those having a
low adherence (OR = 0.88 (0.70–1.09); p = 0.219), which also enhanced the protective effect against
myocardial infarction among carriers vs. non-carriers of this SNP (HR = 0.34 (0.12–0.93); p = 0.036)
vs. (HR = 0.90 (0.35–2.33; p = 0.830), respectively). [156]. Previous nutritional interventions focused
on gene-diet interactions have also revealed that TG levels can be modulated by diet depending
upon the genetic background [157]. In that study, 210 participants received a daily supplementation
of n-3 PUFA (5 g of fish oil) during 6 weeks to investigate the interindividual variability in plasma
TG response to such supplementation. The GRS built with 10 SNPs showing significant frequency
differences between extreme responders (the most significant reduction in plasma TG levels) and
non-responders (no change in plasma TG levels) explained 21.5% of the variation in TG response.
Another example of the distinctive effect of the Mediterranean diet depending on genetic background
was found in a recent case-control study with more than 7000 participants, with or without T2D, issued
from the PREDIMED study [158]. A significant interaction was observed between the adherence score
to the MEDAS 14-item questionnaire and a GRS formed by two SNPs at the FTO and MC4R loci in
determining T2D risk (Pinteraction = 0.006). Specifically, carriers of the rare alleles of these two loci had
higher T2D risk when adherence to the Mediterranean diet was low, but this association disappeared
as adherence increased [158].

Metabolomic tools such as liquid chromatography and mass spectrometry are also being
used in the PREDIMED study to characterize walnut or cocoa consumption under free-living
conditions [115,159], providing a better assessment of dietary exposure to specific nutrients, which
might be successfully applied in precision nutrition for the assessment of complex dietary patterns.
More examples of gene-diet interactions, metabotyping and the Mediterranean diet impact on gene
expression, epigenetic or lipidomic biomarkers emerged from the PREDIMED study are extensively
reviewed by Fitó et al. [155].

8.3. Food4Me

Advanced tools and innovative approaches in nutrition assessment are being developed within the
Food4Me project (food4me.org). This project, which started in 2011, is carried out by an international
consortium focused on the translation of current nutrition knowledge into tailored diets and nutritional
advices by meeting three fundamental elements: reliable dietary intake assessment, deep phenotyping
(metabotyping), and universal genotyping [160]. The Food4Me project represents a step forward in
the potential application of precision nutrition, since in collaboration with stakeholders from different
areas (consumers, industry, regulators, etc.) it also seeks to report the attitudes and beliefs of study
participants [161], as well as the legal and ethical aspects of this type of nutritional interventions.

Regarding dietary assessment, an innovative web-based tool was tested in a large randomized,
controlled trial where participants were randomly assigned to intervention groups for a 6-month
period [162]. Nutritional interventions were divided into conventional dietary advice, personalized
nutritional advice based on baseline diet and phenotype and, finally, a third group where personalized
nutritional advice where based on diet, phenotype and genotype. Baseline diet was evaluated by means
of the validated Food4Me online-FFQ [163,164] and phenotypes were assessed by using self-reported
anthropometric measurements (body weight, height and upper thigh, waist and hip circumferences)
and metabolic parameters (glucose, total cholesterol, carotenoids, n-3 fatty acid index and 32 other
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fatty acids, and vitamin D). Genetic information used for deriving genotype-based personalized
nutrition advice was based on loci associated with BMI, weight and WC (FTO; rs9939609), n-3 PUFA
(FADS1; rs174546), fat intake (TCF7L2; rs7903146), saturated fat (ApoE(e4); rs429358/rs7412) and
folate (MTHFR; rs1801133). This type of study design was applied to test the efficacy of personalized
nutritional advices for improving consumption of a Mediterranean diet [89], that was estimated on
the basis of the PREDIMED 14-item questionnaire [42,154]. In this last study, personalized nutritional
interventions were divided as previously mentioned (based on baseline diet, phenotype and genotype),
plus on the basis of PA, that was evaluated by using the Baecke questionnaire [165] and accelerometer
data. Results from this study revealed that adherence scores to a Mediterranean diet were greater
among individuals assigned to personalized intervention groups, as compared to the control group
(non-personalized general dietary advice) (5.48 ± 0.07 vs. 5.20 ± 0.05, respectively; p = 0.002), with the
largest differences found when genotype data was included in the analysis of the intervention group
(5.63 ± 0.10 vs. 5.38 ± 0.10, respectively; p = 0.029). Similarly, a recent randomized controlled trial
illustrated how disclosing genetic information can lead to greater behavioral changes in dietary habits
than population-based or general nutritional recommendations [166]. Specifically, sodium intake
after a 12-month intervention in participants informed that they possessed a risk allele of the ACE
gene (associated with increased sodium sensitivity) [17,18], and given a targeted recommendation,
was significantly reduced as compared to participants in the control group, who received a general
recommendation for sodium intake (mean change in mg: −287.3 ± 114.1 vs. 129.8 ± 118.2, p = 0.008).
On the other hand, the intervention group composed of non-risk ACE participants and receiving a
general recommendation for sodium intake did not show significant differences as compared to the
control group (mean change in mg: −244.2 ± 150.2 vs. 129.8 ± 118.2, p = 0.11), suggesting that a
targeted nutritional advice based on genotype information impact the intake of specific nutrients in a
greater extent than a general recommendation.

It is worth highlighting that the optimal assessment of nutrient intake remains the foundation
for personalized nutritional advice in the Food4Me study [160]. In this regard, dietary data was
collected by a validated online FFQ [163,164] and participants received regular feedback with practical
advice to improve, increase or decrease, the intake of specific nutrients. Likewise, besides traditional
parameters (self-reported BMI and WC), deep phenotyping was performed by means of metabolomic
measurements (glucose, cholesterol, carotenoids and lipid profile) collected using a dried blood spot
technique [162]. Finally, dietary advice was also controlled regarding individual genotype information,
that was referred to five diet-responsive SNPs located within genes linked to different anthropometric
(body weight) and metabolic functions (total fat, saturated fatty acids, n-3 PUFA and folate) [162].

Recent findings from the Food4Me project have revealed promising advances around the three
levels stated: dietary intake, deep phenotyping and genotyping. First, it has been reported that a
personalized nutritional advice only based on individual baseline diet information (first level) could
lead to greater positive changes in nutritional behavior than a conventional dietary advice after a
6-month intervention, i.e., decreased consumption of red meat (8.5%), saturated fat (7.8%) and salt
(8.9%), and increased consumption of folate (11.5%), leading to significantly higher Healthy Eating
Index (HEI) scores [167,168]. Second, it was also reported that deep phenotyping information could
serve as predictor of the response to a nutritional intervention. For instance, baseline fatty acid
profiles were able to predict the cholesterol response to a personalized dietary intervention [169].
Finally, regarding genotyping data, although disclosure of information about FTO genotype risk had a
greater effect on body weight and WC reduction in risk carriers, as compared to the non-personalized
control group, these changes were similar to the previously mentioned levels of personalized dietary
advice [170]. In line with these results, a previous meta-analysis carried out with data from eight
randomized controlled trials revealed that carriage of the FTO minor allele was not associated with
significant differences in BMI, body weight or WC change in response to a weight loss intervention
(dietary, PA or drug-based) [171].
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9. Conclusions

Altogether, the studies reviewed herein illustrate the most recent approaches to precision nutrition
from different perspectives, highlighting the need for an integrative framework that takes into account
the richness of innovative tools and methods in this field. This review was an attempt to stress the
most important challenges and issues that nutritional science has to overcome in order to successfully
translate basic and clinical knowledge into an effective precision nutrition care.

Up to date, the PREDIMED study and the Food4Me project could be considered as state-of-the-art
trials in the field of precision nutrition, and two of the most stimulating wide-scale approaches in this
field, that will hopefully provide guidance about how precision nutrition could be used to successfully
prevent and manage cardiometabolic disorders. As already mentioned, such integrated approaches
have the potential to improve dietary behaviors in an individualized or in a group-based manner, and
to generate new and innovative tools, methods and procedures.

It is worth mentioning that although precision nutrition remains in its infancy, it does not take
away from the fact that great approaches have been translated into general practice, mainly in the
field of nutrigenetics. As extensively reviewed in [172], the large body of evidence supporting
this genetic-based approach warrant further progress in this field. At this point, it is important to
underscore some limitations encountered by genetic-based nutrition in its translation into general
practice, such as the skeptical views of registered dietitians toward genetic testing and the scarcity of
such personalized approach in higher education curricula of health professionals [173,174]. In this
regard, the feasibility of the whole precision nutrition framework will depend on joint efforts of
all actors involved. On one hand, while nutrition professionals are expected to start adopting
new diagnosis and follow-up techniques, policy makers should elaborate appropriate policies
assuring, among others, an adequate protection of personal information issued from intensive data
collection. On the other hand, a substantial part of the task of translating precision nutrition into a
widely applicable procedure in nutritional practice remains on private industries, by pursuing the
development of precision nutrition tools affordable and accessible to the general population. Thus, as
highlighted in the position statement of the International Society of Nutrigenetics/Nutrigenomics [175],
ethical and legal aspects around precision nutrition, as well as the built environment and social contexts
that influence food consumption have to be considered for a wide and fruitful implementation of this
promising concept of modern nutrition into the general population.
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