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Abstract

Hop (Humulus lupulus L.) is known for its use as a bittering agent in beer and has a rich his-

tory of cultivation, beginning in Europe and now spanning the globe. There are five wild varie-

ties worldwide, which may have been introgressed with cultivated varieties. As a dioecious

species, its obligate outcrossing, non-Mendelian inheritance, and genomic structural variabil-

ity have confounded directed breeding efforts. Consequently, understanding the hop genome

represents a considerable challenge, requiring additional resources. In order to facilitate

investigations into the transmission genetics of hop, we report here a tandem repeat discov-

ery pipeline developed using k-mer filtering and dot plot analysis of PacBio long-read

sequences from the hop cultivar Apollo. From this we identified 17 new and distinct tandem

repeat sequence families, which represent candidates for FISH probe development. For two

of these candidates, HuluTR120 and HuluTR225, we produced oligonucleotide FISH probes

from conserved regions of and demonstrated their utility by staining meiotic chromosomes

from wild hop, var. neomexicanus to address, for example, questions about hop transmission

genetics. Collectively, these tandem repeat sequence families represent new resources suit-

able for development of additional cytogenomic tools for hop research.

Introduction

Humulus lupulus (hop) is a dioecious twining bine in the Cannabaceae family of flowering

plants with a long history of cultivation [1,2] for various uses including medicine (as reviewed

by [3,4] and animal fodder [5], but is most commonly known as a flavoring agent in the brew-

ing industry. The quest for complex taste and aromas in the rapidly expanding craft brewing

industry has placed increasing demands on breeders to produce new varieties of plants with

specific desirable traits including disease resistance [6–8]. However, hop presents multiple

challenges to the production of new varieties due to its extended juvenile phase of two years to

first flowers and its non-Mendelian inheritance patterns [9].

Cytogenetic analysis of male meiosis in hop has revealed a tendency for unusual meiotic

configurations such as multivalent chromosomal complexes [9–12]. Recent 3D molecular
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cytology has shown that pervasive whole chromosome or segmental aneuploidy exists in hop

and is exacerbated by passage through meiosis, particularly in cultivated hop [7]. Inheritance

patterns of hop wild varieties remains largely unexplored. To date, there are limited cytological

tools for assessing segregation patterns and establishing hop karyotypes (9 autosomes, XY).

These tools have included telomere, 5S rDNA, HSR1 (Humulus subtelomeric repeat 1)

[13,14], and more recently HSR0 (Humulus subtelomeric repeat 0) [7]. Despite these advances,

most genomes of model hop varieties remain to be sequenced, assembled, and fully annotated,

except for partial assemblies of Shinshu Wase, H lupulus var. cordifolius [15] and Teamaker

[16]. Given the importance of cytogenetics in guiding studies of chromosomal structural geno-

mics and the challenge presented by hop transmission genetics, more cytogenetic tools are

needed. Among the more valuable FISH probes are those corresponding to tandemly repeated

sequences [7,17–22]. Here, we set out to identify new tandem repeat sequences that could

serve as candidates for future FISH probe development in hop.

Tandem repeats are among the fastest evolving components in genomes [23–25] and are

typically found in heterochromatic, noncoding DNA at centromeric, pericentromeric, or sub-

telomeric regions. Plants, particularly angiosperms, are characteristically rich in repetitive

DNA, which can account for the vast majority of plant nuclear genomes [26]. Hop has been

previously reported to contain around 34% repetitive elements in the assembled portions of

the genome [15], but that value will likely increase as more complete genome assemblies are

produced.

Here we use long-read genomic sequences to find and characterize new families of hop tan-

dem repeats. We describe our discovery pipeline using k-mer filtering and dot plot analysis of

single molecule long read sequence data from cultivar Apollo, resulting in the identification of

17 new tandem repeat families. We also include evidence that aberrant meiosis, previously

observed in cultivated hop, extends to two wild-collected neomexicanus hop accessions. As

proof of concept, we developed and used FISH probes from two of the tandem repeat families,

HuluTR120 and HuluTR225, to show their utility in marking meiotic chromosomes from

non-cultivated wild hops.

Methods

Plant materials, collection, and fixation

Forest Products Free Use Permit for collections of botanical specimens to be used for

scientific purposes was obtained from the USDA (Permit Number: RO-289). Male panicles

were collected before pollen shedding and fixed in Farmer’s fluid as previously described [7,9].

Developing male flowers from wild hops, H. lupulus var. neomexicanus were collected from

the Coronado National Forest in Arizona (U.S.A.). The hop variety named Apollo is a patented

cultivar from Hopsteiner, Inc. Flowers from plant SH2 were collected from plants growing

wild on Mt. Lemmon. Flowers from plant TM2-82C were collected on Mt. Bigelow.

Identification of tandem repeats in long-read PacBio sequences

Tandemly repeated sequences were discovered essentially using the approach previously

described for the tandem repeat HSR0 [7]. Previously unreported details, parameters, and pro-

cedures are further described. DNA sequence input was hop (Apollo) genomic DNA from

long-read PacBio DNA Single Molecule, Real-Time (SMRT) cells (libraries submitted Dec

2014, University of Washington PacBio Sequencing Services, Center https://pacbio.gs.

washington.edu/) using single molecule sequencing without circular consensus error correc-

tion. The sequences from 32 SMRT cells had a library size range 3–20 kb, an average RQ (read

quality) range of 81.5–82.55, and an Average Polymerase Mean Read Length (bp) ranged of
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4,093–5,048. For repeat detection, PacBio single molecule FASTA sequences greater than 5 kb

(n = 1,037,871) were subjected to k-mer analysis in which all 12mers were counted and sorted

by abundance for each read. Sequences were filtered for retention if meeting the criterion

where the fifth most repeated 12mer occurred at least eight times within a single read using

"ksift" (https://github.com/dvera/ksift) as previously reported [7]. These settings were derived

by trial and error to optimize TR detection and simple repeat avoidance. This filter reduced

the total list to 1,121 sequences (S2 file, FASTA sequences), reflecting ~1000-fold enrichment.

These k-mer filtered sequences were then used to produce a document, referred to as the

"HuluTR PDF book".

Characterization of tandem repeat families

Using the online YASS dot-plot genome server (https://bioinfo.lifl.fr/yass/yass.php), reads

with TRs were grouped into families if their pairwise dot-plots between two different reads dis-

played parallel diagonals indicating repeating units of similar sequences between the two. For

this, we used the default parameters from the YASS genome server which included Scoring

matrix [match = +5, transversion = -4, transition = -3, other = -4 (composition bias correc-

tion)]; Gap costs [opening = -16, extension = -4]; [E-value threshold = 10]; [X-drop thresh-

old = 30], and display DNA strain [fwd&rc] [27]. To facilitate this process, we concatenated

sequences representing each TR family into a single customized file here named "polySeq" (S2

Fig) and used it in each pairwise alignment with unclassified reads. New families (those not

matching any of the repeats in the polySeq file) were added to the end of the polySeq file as

they were discovered and included in blocks of sequence at 1kb intervals for ease of positional

recognition in the output dot plots. The S2 Fig contains the full "polySeq34_v7" FASTA

sequence with embedded locators, a table of synonyms to guide location to 1Kbp blocks, and

individual dot plots of the polySeq vs. each HuluTR consensus sequence. We also used Flexi-

Dot [28], flexidot_v1.06.py from https://github.com/molbio-dresden/flexidot/, to produce

self-alignment PNG plots with the following command line settings (python flexidot_v1.06.py

-i filename.fas -k 10 -c 0 -p 0 -B green -C purple -M 1 -f 0 -s 1 -E 12).

For each TR family grouped by sequence similarity, we established an average consensus

unit length based on results from the Tandem Repeats Finder server at https://tandem.bu.edu/

trf/trf.html [29]. Parameter settings used for TRF were default and as follows: alignment param-

eters (match = 2, mismatch = 2, indels = 7), minimum alignment score to report repeat = 50,

Maximum period size = 1000, Maximum TR array size (bp, millions) = 2. Because of minor var-

iation in the exact repeat lengths as determined by TRF, we rounded to the nearest 5bp and des-

ignated each HuluTR family accordingly (S3 Fig). The nomenclature used here is illustrated the

example "HuluTR120-r479", which refers to Humulus lupulus Tandem Repeat of ~120 bp Pac-

Bio read number 479 from the k-mer filtered set of 1,121 reads (S1 and S2 Datas).

For analysis of monomer divergence within and between reads of HuluTR120, we extracted

11 monomers from an internal contiguous cluster for each of 10 reads. These were analyzed

using a multiple sequence alignment tool, Clustal Omega (Clustal 2.1, https://www.ebi.ac.uk/

Tools/msa/clustalo/). The resulting Percent Identity Matrix was imported into MS Excel and

the sequence identity values were visualized for the individual monomers or their read-to-read

averages (Fig 3) using the Conditional Formatting tool with 2-Color Scale set from 40 (black)

to 70 (yellow).

FISH and 3D cytology

Male meiocytes from hop plants were prepared, analyzed, and imaged using 3D deconvolution

microscopy as previously described [7]. Prehybridization, hybridization, post-hybridization
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washes, DAPI counterstaining, and slide mounting were done as described [20] using denatur-

ation temperature of 92˚C. Nucleoli were measured using the Measure Distances program in

the DeltaVision Software. Their diameter measurements were taken from central optical sec-

tions of each nucleolus, which are primarily spherical. Seventeen nucleoli were measured for

cells with only one nucleolus (n = 17 cells) and sixteen were measured for cells with two nucle-

oli (n = 8 cells). Average diameters were converted to volume in cubic microns.

Tandem repeat oligo names, sequences, and associated dyes utilized and reported in FISH

experiments are as follows: “TR120Y” is 5’ -[ATTO647N]-GAGCACGAGATATTGATAAAAA,

“TR225Y” is 5’-[ATTO647N]-TTAGTGCAATGTTATCTAGT. Additional resources for syn-

thetic consensus sequences were designed in order to provide new information as additional

tools for hop cytogenetics. The synthetic consensus sequences were made (GenScript Biotech

Corp.) and inserted into plasmids to enable their use as templates to make FISH probes via

conventional labeling techniques. These plasmids (pHTR120syn, pHTR225syn, pHTR600syn,

pHTR390syn, an pHTR060syn) and their descriptions are available from AddGene (addgene.

org).

Results

In this study, we set out to develop new FISH probe candidates that can be used for cytogenetic

tracking of individual chromosomes in the Humulus lupulus species. To date, there exist only

a few such probes including those for rDNA repeats and other tandemly repeated clusters.

These have served to establish basic hop karyotypes, but more cytogenomic information is

necessary in order to further delineate individual chromosomes, integrate physical and linkage

maps, and to explore questions about transmission genetics in both cultivated and wild varie-

ties for this group of plants.

Finding tandem repeats with K-mer and dot plot analyses of PacBio long-

read sequence data

We and others have successfully mined sequence data to identify tandem repeats that have

been developed into FISH probes [7,26,30–32]. Here we carried out a thorough analysis of Pac-

Bio Single Molecule, Real-Time (SMRT) reads (n = 1,037,871 reads), each consisting of

sequences greater than 5,000 bp long. These reads, from 2014, produced single molecule DNA

sequence, not circular consensus corrected, and are expected to contain an estimated error

rate of ~10% based on alignments with a telomeric test case (S4 Fig). A k-mer computational

filter designed to detect repetitive sequences resulted in a list of 1,121 reads which were visual-

ized as self-aligned Dot Plots using the YASS program [27] and FlexiDot [28] as summarized

in Fig 1. Self-aligned dot plots using the same sequence on the X and Y axis produce a single

main diagonal line of identity and for tandem repeats, a series of parallel diagonals whose fre-

quency and spacing reflect their abundance and unit lengths.

Several types of repeat sequence patterns were observed among the 1,121 reads that passed

the k-mer screen. The dot-plot pattern types can be grouped as those with low complexity and

no obvious tandem repeats (Fig 1A, no conspicuous parallel diagonals) or those with more

clearly revealed tandem repeats, which fall into several subgroups (Fig 1B–1E). The spacing

between the diagonals resulting from tandem repeats is proportional to the repeat unit length,

and these plots provide easy to interpret summary diagrams. Low complexity reads (e.g. Fig

1A) comprised ~20% of the k-mer filtered reads and included homopolymeric runs of single

or simple sequence repeats or microsatellites, but were not further analyzed. In contrast, desir-

able reads of larger tandem repeats showed more conspicuous dot-plot diagonals. These could

be further subdivided into groups where the tandem repeats fill an entire read (Full Read TRs,
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Fig 1B), a single portion of a read (Partial Read TRs, Fig 1C), multiple but separate patches of

the same repeat in a read (Interspersed TRs, Fig 1D), or separate patches of dissimilar repeats

in a read (Combo TRs, Fig 1E). The reads with the Combo TRs account for ~2% of the full k-

mer set (Fig 1F) and often include repetitive sequence clusters with relatively short repeat

lengths of ~30–50 bp, but were not prioritized for further analysis. By mining long-read

sequence data, our pipeline identified nearly 900 PacBio SMRT reads with tandem repeats.

Among these were reads housing known tandem repeat families (5S rDNA, HSR1, HSR0) and

those housing new uncharacterized tandem repeat families.

Defining HuluTRs: The tandem repeat families of hop

To consolidate and sort out the newly discovered TR families, we grouped them by sequence

similarity into families using dot plot analysis as summarized in Fig 2. The process is illustrated

for four previously known TRs (Fig 2A): telomere, HSR0, HSR1, and 5S rDNA. For each TR, a

1kb block representing a TR family was made by a concatenation of a single repeating unit or

consensus sequence repeat. These 1-kb TR family-specific sequence blocks provide convenient

Fig 1. Dot plot outputs of k-mer analysis, showing different pattern types. PacBio Single Molecule, Real-Time (SMRT) DNA sequences were screened

for tandem repeats. For each read, a self-aligned dot-plot is shown. The parallel diagonals represent internal tandem repeats. (A) Pattern 1: Example

showing the HuluTR-r44 read showing no conspicuous parallel diagonals, indicating lack of long or regular tandem repeats. The low complexity simple

repeats often present as blocks in these dot plots (Low complexity block) which are distinct from uniform tandem arrays. (B) Pattern 2: Example showing

the HuluTR385_HSR1-r84 read in which the tandem repeats occupy an entire read. (C) Pattern 3: Example showing the HuluTR180_HSR0-r1057 read in

which the tandem repeats occupy part of the read. (D) Pattern 4: Example showing the HuluTR135-r253 read in which the tandem repeats occupy multiple

but interspersed regions of the read. (E) Pattern 5: Example showing the HuluTRCombo-r626 read in which more than one tandem repeat family is present

in the same read. (F) Percentages of each of the five HuluTR pattern types from the 1,121 k-mer-filtered reads.

https://doi.org/10.1371/journal.pone.0233971.g001
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Fig 2. Using polySeq to define HuluTR families. A concatenation of consensus sequences for each known repeat

family was made for use in the YASS dot-plot analysis to group tandem repeats into existing or new families, one read

at a time. (A) Previously known repeats, Telo, HSR0, HSR1 and 5S rDNA showing 1 kb blocks in a dot plot of self-

aligned polySeq. (B) Dot plot output of all 34 polySeq repeat sequences (FASTA sequence in S3). Examples of read

matching are indicated by the dark red bars denoting alignment to polySeq regions at 3 kb, corresponding to TR120,

and at 16 kb, corresponding to TR 135. (C) HuluTR120-r9 with a Full read TR pattern, matching with the polySeq at 3

kb. (D) HuluTR120-r782 with a Partial read TR pattern, matching with the polySeq at 3 kb. (E) HuluTR135-r253 with
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visual delineations on the dot plot and were concatenated to produce a customized file called

"polySeq". The resulting 4-TR polySeq (shown as self-aligned in Fig 2A) was used as one of the

two inputs to screen new reads by dot plotting, one at a time. For each new, uncharacterized

read (those not matching sequences in the existing polySeq), we gave them a name (based on

unit repeat length or discovery number) and appended them to the polySeq file as a 1kb block

of repeats, or 2kb blocks for large repeats. This process was repeated for each read, eventually

producing a polySeq set of 34 distinct TR families (S2 Fig), shown as a self-aligned dot plot

(Fig 2B). The TR family assignment procedure is illustrated for four different reads in panels

C-F (Fig 2). For these examples, the dot plot shows the result with the polySeq on the X-axis

and the query read on the Y-axis. The TR patterns shown include examples designated full

read TRs (Fig 2C), partial read TRs (Fig 2D), interspersed TRs (Fig 2E), or combo TRs (Fig

2F). The fact that the self-aligned polySeq-34 dot plot (Fig 2, panel B) as well as the pairwise

queries (Fig 2C–2F) show sequence similarity diagonals within but not between the different

TR families demonstrates the strength and specificity of this approach, even when using error-

prone long reads.

Using this approach to define families of TRs by dot plot-guided sequence similarity group-

ing, we selected a subset omitting smaller repeats (<50 bp), and avoiding those that tended to

occur in combination with other TRs in the same read (e.g. Fig 2F). This resulted in a total of

17 new HuluTR families, listed in Table 1, sorted sequentially by relative abundance then by

repeat length. The six most abundant TR families found in the library range from 34 to 232

TR-containing reads per million, and included previously known sequences HSR1, HSR0, and

5S rDNA, and newly discovered sequences, HuluTR120, HuluTR225, and HuluTR060. Their

relative abundance makes them good candidates for FISH probes. The other families were

found to occur at a lesser frequency, including six that were found in only one read of the k-

mer-filtered set.

Several TR clusters feature a high %A+T (AT content), as is often observed for tandemly-

repeated macrosatellite sequences [34]. The average AT content ranged from an unusually low

value of 42% for HuluTR135 to a high value of 79% for HuluTR390. The AT content for these

TR sequence families is higher than global library average, as is generally expected for satellite

DNA. This TR discovery strategy greatly expands the number of published hop TR sequence

families while illustrating an approach that could be applied to other plant species for which

long-read sequence datasets are available.

Development of new tandem repeat FISH probes: Selection of

representative sequences for TR FISH probe production

Once the tandemly repeated DNA sequences were categorized by family, we aimed to produce

representative oligonucleotide FISH probes for cytogenetic detection of the corresponding

chromosomal loci. Oligo FISH probes are advantageous because of their small size, uniformity

of labeling, and consistency across experiments. The goal of identifying the best region of a

tandem repeat family to use as a FISH probe is complicated by considerable sequence variation

that is commonly observed in tandem repeat sequence families [35]. For instance, as summa-

rized in Fig 3 for sequences of HuluTR120 family, we observed variation from one read to

another in the dot plot patterns. We consider the more continuous, parallel diagonals to reflect

tandem repeats with a high degree of similarity (Fig 3A, 1st two plots). Such sequences were

an Interspersed TR pattern, matching with the polySeq at 16 kb. (F) HuluTRCombo-r232 with a Combo TR pattern,

matching with the polySeq at two locations, 27 and 37 kb.

https://doi.org/10.1371/journal.pone.0233971.g002
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given high priority for probe development. However, some reads exhibited a less continuous

appearance of diagonals (Fig 3, 3rd plot), which we interpret as having undergone sequence

divergence, and were excluded from use in probe development.

To illustrate the range of sequence similarity variation both between and within reads, we

selected 10 reads assigned to the HuluTR120 family (Fig 3B). For each read, we extracted an

internal, contiguous 11-repeat block of HuluTR120 monomers and separated them to quantify

all possible monomer-to-monomer pairwise sequence similarities. This resulted in 122 pair-

wise similarity values for each read-to-read comparison. The average value for these 122 are

shown in the cells of the grid (Fig 3B). The highest within-read average was surprisingly low at

67% (for 782 x 782), even if adjusted for the known long read error rates. In contrast, the

between-read averages were 46% (for 782 x 801, 677, or 440).

Given that the sequences of the monomeric repeating units tended to vary within and

between individual reads, we decided to use consensus sequence data to guide oligo FISH

design (Fig 3C). For high priority reads, those with higher continuity parallel diagonals, we

used the Tandem Repeats Finder program [29] to define read-specific consensus sequences.

We next carried out multiple sequence alignments of these consensus sequences to identify the

most highly conserved sequence regions which were considered ideal for design and produc-

tion of fluorescent oligonucleotide probes (Fig 3C). A list of new and previously published tan-

dem repeats and FISH probes for hop are summarized in Table 2. Collectively, these represent

Table 1. Hop tandem repeats.

HuluTR Family(A) Repeat Size (bp)(B) TR-containing reads per million(C) % A+T Representative PacBio Read(D) GenBank Accession

HuluTR385 (HSR1) 385 232 61 r55 GU831574

HuluTR180 (HSR0) 180 163 62 r120 MH188533.1

�HuluTR120 120 69 67 r782 MN537570

HuluTR335 (5SrDNA) 335 63 55 r243 MN537579(E)

�HuluTR225 225 46 64 r397 MN537574

�HuluTR060 60 34 59 r91 MN537567

�HuluTR450 450 8 77 r873 MN537581

�HuluTR135 135 5 42 r253 MN537571

�HuluTR600 600 4 69 r823 MN537582

�HuluTR390 390 2 79 r15 MN537580

�HuluTR360 360 2 66 r642 MN537578

�HuluTR240 240 2 71 r1001 MN537575

�HuluTR185 185 2 49 r424 MN537573

�HuluTR100 100 2 62 r983 MN537569

�HuluTR350 350 1 67 r625 MN537577

�HuluTR280 280 1 69 r934 MN537576

�HuluTR150 150 1 60 r390 MN537572

�HuluTR070 70 1 73 r541 MN537568

�HuluTR055 55 1 64 r292 MN537566

�HuluTR050 50 1 57 r33 MN537565

A. � Indicates Tandem Repeat Families newly described in this study.

B. Repeat size rounded to nearest 5 or 10 bp using the most abundant consensus sequence reported by Tandem Repeats Finder for the Representative PacBio Read

listed.

C. Rounded number of reads harboring the corresponding TR family per million original reads before k-mer filtering and polySeq family assignments.

D. PacBio Read Number assigned the 1,121 seqeunces after k-mer filtering (e.g. the associated fasta title for r55 is >hulupacbiokf_r0055)

E. The hop 5S rDNA repeat in this clone matches E00464 for 5S rDNA from the 5sRNAdb [33]

https://doi.org/10.1371/journal.pone.0233971.t001
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the beginning of a new toolkit for hop cytogenomics, suitable for future investigations for

structural genomics, segregation patterns, and chromosome evolution in hop. Their utility is

Fig 3. Sequence variation in the HuluTR120 family. (A) Differences observed in diagonal patterns from reads that match the HuluTR120

family. Dot plot patterns are designated according to the aspects of the parallel diagonal morphology and designated as "Higher continuity" or

"Lower continuity" in reads with Full or Partial TR occupancy. (B) Pair-wise heat map matrix of average sequence similarity (% identity)between

any two reads. The diagonal boxes report within-read average. The numbers on the left and across the top identify the PacBio source read. The

color scheme is shown to the right. (D) CLUSTAL Omega sequence alignment example for identification of short sequence OLIGO for

fluorescent labeling and subsequent FISH probe design.

https://doi.org/10.1371/journal.pone.0233971.g003
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demonstrated below using two of these new reagents, the oligo FISH probes for HuluTR120

and HuluTR225, in wild collected var. neomexicanus hop.

Aberrant meiosis and HuluTR FISH in wild hop

An important question in hop genome evolution is whether or not aberrant meiosis is a natu-

ral, intrinsic feature of hop or whether it can be explained entirely as a result of breeding and

cultivation with structurally diverse genomes. To begin to address this issue and to demon-

strate a possible application of these new FISH probes, wild hop was collected from what are

thought to be isolated populations [36] in the Arizona Sky Islands and male meiosis analyzed

cytologically as shown in Figs 4–6.

We found evidence of aberrant chromosomal behavior at metaphase I (Fig 4A) and ana-

phase I (Fig 4B) using 3D imaging of DAPI-stained meiocytes. At metaphase, chromosomes

typically congress on the metaphase plate, but in the example shown, two presumed ring biva-

lents (arrows, Fig 4A) are seen to be excluded from the metaphase plate, indicative of a chro-

mosomal positioning problem. The frequency of irregularities was conspicuous and

occasionally extreme as seen in the low magnification image of 22 anaphase-stage cells from a

single plant (TM2-82C from Mt. Bigelow), 11 of which exhibited chromosome bridges

(arrows, Fig 4B). Another way to track chromosome bivalency is through observation of nucle-

oli, which we were able to observe via autofluorescence. When homologous rDNA regions

with NORs pair and synapse, their associated nucleoli fuse into a single nucleolus. Given that

reported hop karyotypes have a single NOR locus [14,37], we would expect that normal pairing

would result in fusion of the homologous NORs to give one large nucleolar region by mid-pro-

phase. However, tracking nucleoli number in mid-late meiotic prophase, we found that the

meiocytes from wild hop (plant SH2 from Mt. Lemmon) could show either of two different

patterns, single nucleoli (´´´n" in Fig 5A) or double (“n1”, “n2” in Fig 5B). Interestingly, the

double nuclei occurred at an unusually high frequency, observed in 11 of the 22 nuclei imaged

in 3D. We interpret the presence of double nucleoli as deviation from normal disomic, homol-

ogous pairing at the NOR regions. Consistent with this interpretation, we observed that the

average nucleolar volumes were 14 μ3 for single-nucleolus cells (n = 17 nucleoli) and 5 μ3 for

double-nucleolus cells (n = 16 nucleoli in 8 cells), a 2.8 fold difference.

In order to test our new FISH probes on wild and non-Apollo hops, we applied two of

them, HuluTR120 and HuluTR225, to meiocytes of two var. neomexicanus plants, SH2 and

Table 2. HuluTR family-specific oligo FISH probes.

Probe name(A) Sequence(B) Fluorophores(C) Reference(D)

MTLF 5'-F-CCCTAAACCCTAAACCCTAAACCCTAAA F 1

5SBob1 5'-F-GCACCGGATCCCATCAGAACTCC F 2

5SBob2 5'-F-AGTTAAGCGTGCTTGGGCGAGAG F 2

5SBob3 5'-F-GTGACCTCCTGGGAAGTCCTCGTG F, R, Y 2

HSR1 5'-F-GGTACCCCTCTGGTGAATTGGA F 2

HSR0/ZERO 5'-F-AGAAATATGAGTGAATTACGAAATCGC R, Y 2

TR120 5'-F-AGAGCACGAGATATTGATAAAAA F, R, Y

TR225 5'-F-TTAGTGCAATGTTATCTAGT F, Y

A. Probes 5SBob1-3, HSR1, HSR0, and TELO were previously published; others are newly described in this study

B. Oligonucleotides synthesized with 5’ fluorophores (5’-F-)

C. Co-synthetically attached fluorophore designations are F, FITC channel, Alexa448; R, TRITC channel, Alexa546; Y, Cy5 channel, ATTO646N

D. 1 = Bass et al. (1997) [17], 2 = Easterling et al. (2018)[7].

https://doi.org/10.1371/journal.pone.0233971.t002
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TM2-82C, as shown in Fig 6. We show that both of these HuluTR probes, designed from

Apollo sequence data, successfully hybridized as discrete foci on the chromosomes of wild

hop. In one case, the HuluTR120 probe gave two bright signals in plant SH2 as seen at mid-

prophase (Fig 6B) and metaphase I (Fig 6C), a pattern indicative of paired homologous loci. At

the tetrad stage, the HuluTR120 signals were distributed equally (Fig 6D, 1:1:1:1). In another

case, the HuluTR225 probe gave more complex patterns in plant TM2-82C, with variable

brightness and size. The 10–12 FISH signals are seen at mid-prophase (Fig 6F) and at meta-

phase I (Fig 6G). The FISH signals appear to be distributed in an irregular pattern at both

metaphase I and the post-meiotic tetrad-like stage (Fig 6H). The examples represent multiple

occurrences of meiotic abnormalities from a single plant (Figs 4B and 6E–6H). Therefore, TR

probes designed from one genotype can be used in others, and wild hops show both balanced

(D) and unbalanced FISH signal distribution (H), similar to recent observations with 5S

rDNA FISH [7]. his approach to develop new cytogenomic tools enabled the discovery and

characterization of a class of tandem repeats with demonstrated utility for investigating the

mysterious mechanisms of hop genome transmission and chromosomal evolution.

Discussion

Interest in tandem repeats has prompted investigators to develop new software programs to

find or characterize tandem repeats using DNA sequencing data [24,26,38]. Among the pro-

grams used are Tandem Repeat Finder [29], which uses string matching algorithms, and those

utilizing graph-based clustering, such as RepeatExplorer [39] and TAREAN [32]. These pro-

grams allow for the mining of existing and public repositories of genomic data to identify tan-

dem repeats for various studies related to phylogenetics, genome evolution, and cytogenetics

[26,40,41]. More recently, long-read sequence data has been used to support FISH probe devel-

opment in plants, with the aid of RepeatExplorer and TAREAN [42,43].

Here, we describe an approach using long-read sequences that allows for TR discovery

aided by direct visual inspection of single self-aligned read dot plots. Even with these error-

prone early generation single-molecule reads, we were able to uniquely and unambiguously

find and group tandemly repeated sequence families and build consensus sequences. The

DNA sequences from these reads were screened by k-mer analysis using criteria that yielded

~1000X enrichment for reads with the desired sequence features. The k-mer filtered dot plots

provide highly informative way to visualize the data, making it easy to quickly interpret tan-

dem repeat patterns within their genomic context one read at a time without any requirement

for assembly. Compared to other methods, the approach described here has several notable

advantages including (1) intuitive visualization of the genomic structure of the repeats, (2)

highly sensitive ability to detect tandem repeats, as illustrated by the discovery of reads with

HuluTR families present once per million reads (e.g. HuluTR050, HuluTR055, HuluTR070,

HuluTR150, HuluTR280, and HuluTR350), (3) the retention of adjacent flanking genomic

sequence, possibly useful for guiding genome assembly efforts, and (4) the retention of the

individuality of TR clusters, which may come from multiple different loci. This last advantage

may be helpful for future consideration of homologous alleles, homeologous alleles from

hybrids, or multi-chromosomal loci on different paths of divergence. In contrast, the approach

Fig 4. Meiotic abnormalities in Arizona Sky Island wild neomexicaus hop, plant TM2-82C. DAPI stained through-

focus projections of (A) metaphase I, with bivalents (arrows) outside of the metaphase plate (MP), indicated by dashed

line; (B) group of meiotic cells at anaphase I where half of the dividing nuclei exhibit anaphase bridges (arrows). The

length of the scale bars are indicated in micrometers. More than 30 nuclei from plant TM2-82C were imaged and

analyzed over multiple slides (n = 6) during metaphase I. More than 30 nuclei from plant TM2-82C were imaged and

analyzed over multiple slides (n = 6) during anaphase I.

https://doi.org/10.1371/journal.pone.0233971.g004
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reported here has disadvantages such as the requirement for long-read sequences as the input

data and the fact that the larger repeats, the less likely they will meet our k-mer threshold for

Fig 5. Single and double nucleoli during pachytene in Arizona Sky Island wild neomexicanus hop, plant SH2. Male flower buds

were harvested and fixed in Farmer’s Fluid, then exchanged into Buffer A and formaldehyde fixed before microdissecting pollen

mother cells from anthers for 3D acrylamide telomere FISH. The background fluorescence in the FISH channel reveals the location

and number of nucleoli. Through-focus maximum-intensity sequential projections through two individual nuclei are shown in gray-

scale for individual wavelengths or in color for overlay images, as labeled on the left. (A) Hop nucleus at mid-prophase showing a

single nucleolus (‘n’ in FITC and BOTH). (B) Hop nucleus at mid-prophase showing two separate nucleoli (‘n1’, ‘n2’ in FITC and

BOTH). The lengths of the scale bars (3 microns) are indicated. More than 70 nuclei from plant SH2 were imaged and analyzed over

multiple slides (n = 14) during pachytene.

https://doi.org/10.1371/journal.pone.0233971.g005
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5–10 kbp reads. On the whole, we consider this a robust and versatile approach as evidenced

by our ability to find both known (5S rDNA, HSR1, HSR0, and telomere repeats) and many

new TRs (Table 1).

Repetitive sequences pose the greatest challenge for assembling complete genomes. The 1C

genome size estimates for hop range from 2.5–3.0 Gb according to flow cytometric methods

[15,44,45] but only 2.1 Gb according to a recent from genome assembly [15]. Therefore,

sequence assemblies currently account for only 80% of the known genome size, indicating that

a large fraction of the genome is not represented in contemporary assemblies. Tandem repeat

sequences are often mis-assembled and under-represented, being particularly prone to the

repeat collapse problem in genome assembly. These discrepancies contribute to the genome

size under-estimations while exacerbating problems associated with accurate contig assembly.

For instance, markers flanking a TR cluster may be separated by only a few Kbp of TR, but

reside on different contigs if only short read sequences guide the assemblies. Accurate incorpo-

ration of TR clusters is especially important in hop given its high degree of structural variabil-

ity and segregation distortion [7,9].

A primary goal of this study was to produce new molecular cytology tools for hop chromo-

some research. To that end, we have described 17 new tandem repeat families (Table 1) and

shown FISH results with probes for HuluTR120 and HuluTR225. To date, most of the hop

chromosomes are numbered and distinguished by their relative size and in some cases their

centromere locations as inferred from the primary constriction on mitotic chromosomes [12].

The most current hop karyotype includes HSR1, 5S rDNA, NOR, and telomere signals, which

together uniquely tag 4 of the 10 chromosomes [13,14,37]. Notably, centromere-specific

sequences have yet to be identified in hop. It is possible that among our HuluTR families are

one or more that reside at centromeres. Alternatively, hop centromere repeats may not be

organized as tandem repeats or their size and copy number may have resulted in their exclu-

sion from our k-mer filtered subset of 1,121 reads. Indeed, a recent study in wheat found that

centromeric tandem repeats enriched at CENH3 ChIP seq peaks can exceed 500 bp in repeat

unit length [25].

FISH probes are also invaluable for tracking meiotic chromosome interactions and post-

meiotic transmission of discrete genetic loci. For instance, hop 5S rDNA FISH probes were

previously used to document abnormal chromosomal interactions during pairing at late pro-

phase and cytological segregation distortion in tetrads [7]. Here we present two new FISH

probes that hybridize to a small number of discrete foci in wild hop plants. HuluTR120 FISH

signals showed equal distribution of signals at the tetrad stage (1:1:1:1) in meiocytes from one

wild plant, SH2. HuluTR225 FISH signals showed clear irregularities in meiocytes from a dif-

ferent wild plant, TM2-82C. An emerging picture is that there is considerable variation in

FISH patterns even when using the same probe on cells from the one plant, siblings, or differ-

ent varieties. This highlights the magnitude of the challenge of sorting out the hop genome

Fig 6. HuluTR120, 225 dot plots and FISH signals during meiosis in plants SH2 and TM2-82C. (A) Dot plot for

HuluTR120. (B-D) Hop nucleus from plant SH2 hybridized with oligo FISH probe (TR120-Y) for HuluTR120 at (B)

mid-prophase, (C) metaphase I and (D) tetrad stage. Meiotic prophase nuclei show two signals and an equal

distribution of 1:1:1:1 after meiosis II at tetrad stage. (E) Dot plot for HuluTR225. (F-H) Hop nucleus from plant TM2-

82C hybridized with oligo FISH probe (TR225-Y) for HuluTR225 at (F) mid-prophase, (G) metaphase I and (H) tetrad

stage. Meiotic prophase nuclei show approximately 10–12 FISH signals per nucleus with variable size and brightness

per signal spot. The tetrad-stage cell shows highly variable signals at the second meiotic division of approximately

(5:4:2:4:7) and a micronucleus, labeled MN. The lengths of the scale bars are indicated in micrometers. More than 80

nuclei from plant SH2 were imaged and analyzed over multiple slides (n = 5) stained with HuluTR120 during various

meiotic stages. More than 80 nuclei from plant TM2-82C were imaged and analyzed over multiple slides (n = 4)

stained with HuluTR225 during various meiotic stages.

https://doi.org/10.1371/journal.pone.0233971.g006

PLOS ONE Hop tandem repeats

PLOS ONE | https://doi.org/10.1371/journal.pone.0233971 June 5, 2020 15 / 19

https://doi.org/10.1371/journal.pone.0233971.g006
https://doi.org/10.1371/journal.pone.0233971


and the importance of developing new markers of all types. With advances in hop genomics,

and as the connections between physical chromosomes and linkage groups are elucidated, a

cytological toolkit of TR FISH probes will accelerate an integrated view of the hop genome.

Wild hop populations occur naturally across the US in three varieties and are morphologi-

cally distinct but are not necessarily reproductively isolated [36]. They have been described as

monophyletic [46] and are known to exhibit high levels of genetic diversity, particularly var.

neomexicanus [47]. It is worth noting that cultivated, escaped hop plants, also referred to as

ferals, can be mistaken for wild varieties, especially near areas where hop is cultivated or bred.

In this study, we intentionally wanted wild neomexicanus hops and collected, therefore, from

remote southwest US regions in the Arizona Sky Islands where the hop plants are morphologi-

cally distinct var. neomexicanus. Our cytological data in these wild plants (Figs 4–6), together

with previously reported meiotic segregation irregularities [7,9] establish that such meiotic

abnormalities are clearly not limited to cultivated hop and can also occur in the wild. These

findings, while limited in scope, highlight the recurrent observations of genomic instability in

some members of the species. Similar phenomena have been observed Oenothera sp. and

Clarkia sp., members of the Onagraceae family [48,49]. Interestingly, some of these have stabi-

lized structural variation though specialized meiotic behavior possibly contributing directly to

speciation events [50]. It remains to be determined whether the evolutionary dynamics of hop

has contributed to speciation or divergence in the wild, questions that can be addressed using

chromosome-marking FISH probes.

Here we considerably increased the number of known tandem repeat sequence families in

hop using an innovative bioinformatic pipeline for de novo identification, visualization, and

classification of TRs from long-read sequence data. This approach and the resulting cyto-

genetic resources should prove useful for further investigations into evolutionary, cytogenetic,

or structural genomic research in hop.
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