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RGMa inhibition with human 
monoclonal antibodies promotes 
regeneration, plasticity and repair, 
and attenuates neuropathic pain 
after spinal cord injury
Andrea J. Mothe1,2, Nardos G. Tassew1, Alirezha P. Shabanzadeh1, Romeo Penheiro1,2, 
Robin J. Vigouroux1, Lili Huang3, Christine Grinnell3, Yi-Fang Cui4, Emma Fung3, Philippe P. 
Monnier1,5, Bernhard K. Mueller4 & Charles H. Tator1,2,6

Traumatic spinal cord injury (SCI) causes a cascade of degenerative events including cell death, axonal 
damage, and the upregulation of inhibitory molecules which prevent regeneration and limit recovery. 
Repulsive guidance molecule A (RGMa) is a potent neurite growth inhibitor in the central nervous 
system, exerting its repulsive activity by binding the Neogenin receptor. Here, we show for the first 
time that inhibitory RGMa is markedly upregulated in multiple cell types after clinically relevant impact-
compression SCI in rats, and importantly, also in the injured human spinal cord. To neutralize inhibitory 
RGMa, clinically relevant human monoclonal antibodies were systemically administered after acute 
SCI, and were detected in serum, cerebrospinal fluid, and in the injured tissue. Rats treated with RGMa 
blocking antibodies showed significantly improved recovery of motor function and gait. Furthermore, 
RGMa blocking antibodies promoted neuronal survival, and enhanced the plasticity of descending 
serotonergic pathways and corticospinal tract axonal regeneration. RGMa antibody also attenuated 
neuropathic pain responses, which was associated with fewer activated microglia and reduced CGRP 
expression in the dorsal horn caudal to the lesion. These results show the therapeutic potential of 
the first human RGMa antibody for SCI and uncovers a new role for the RGMa/Neogenin pathway on 
neuropathic pain.

Spinal cord injury (SCI) is a devastating condition with great personal and societal costs. Despite advances in 
clinical care, currently there is no effective treatment to enhance regeneration after major SCI. Following the 
initial trauma, there is a cascade of molecular and degenerative events including apoptosis, ischemia, excitotox-
icity, and the upregulation of inhibitory molecules1. Neuronal death and inhibition of axonal regeneration limit 
neurological recovery following injury. CNS axons show a limited capacity to regenerate and often retract away 
from the injury site or undergo secondary axonal degeneration due to intrinsic mechanisms and the inhibitory 
environment of the injured spinal cord. Early studies demonstrating that adult CNS axons can regenerate through 
a peripheral nerve graft2 suggested that the local environment of the adult CNS is a major cause for the lack of 
regeneration. Extracellular inhibitory proteins such as Nogo-A, myelin associated glycoprotein, and oligoden-
drocyte myelin glycoprotein are present in CNS myelin and combined with the accumulation of chondroitin 
sulfate proteoglycans (CSPG), comprise the inhibitory glial scar that forms after SCI. Neutralization of these 
inhibitory proteins by antibodies3, 4 or enzymatic treatment to reduce CSPG-induced inhibition5–7 have shown 
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Figure 1.  RGMa is upregulated in the adult rat spinal cord after injury. (A) Schematic diagram illustrates the 
extradural impact-compression spinal cord injury produced with a modified aneurysm clip. The red hatched 
area depicts the lesion site. The lesion epicentre demonstrates central cavitation with a spared rim of white 
matter as shown in the LFB/H&E stained section. Schematic diagram depicts regions (boxed areas) of the 
spinal cord that were imaged in the uninjured cord and in the injured cord immediately caudal to the lesion 
site. (B) RGMa immunostaining in the ventral horn gray matter in uninjured rat spinal cord and at 1 week 
post-SCI. Quantification of % RGMa+ area showed significant upregulation after SCI. Data are mean ± SEM 
(uninjured, n = 3; SCI, n = 4); *p < 0.05 (Student’s t-test). (C) In the uninjured rat spinal cord, RGMa was 
primarily expressed by neurons. Insets show higher magnification of RGMa (green) and NeuN (red) double-
labeled cells. After injury, perilesional neurons showed increased expression of RGMa (shown 1 week post-SCI). 
The same regions of the dorsal horn (box C in Fig. 1A) were imaged in transverse sections of the uninjured and 
injured cord. Quantification of % RGMa+ area in the NeuN immunoreactive (IR) regions showed significant 
upregulation after SCI. Data are mean ± SEM (uninjured, n = 3; SCI, n = 4); **p < 0.01 (Student’s t-test). (D) 
In the uninjured and injured rat spinal cord, oligodendrocytes (CC1, red) expressed RGMa (green). RGMa+ /
CC1 + double-labeled cells are indicated by arrows, and RGMa+ /CC1− cells are indicated by the arrowheads. 
Comparable regions of the white matter (box D in Fig. 1A) were imaged in the uninjured and injured spinal 
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partial improvements. Thus, a better characterization of inhibitory molecules in the injured CNS and strategies 
that reduce inhibition are of great interest.

Repulsive Guidance Molecule A (RGMa)8 is a GPI-linked glycoprotein that exists in membrane-bound and 
soluble forms, both of which inhibit neurite growth9 by binding to its neuronal receptor, Neogenin10. Notably, 
RGMa is present in both the glial scar and myelin and accumulates in lesioned areas after traumatic injury of the 
brain and spinal cord in rodent models11–14. RGMa is also present in multiple sclerosis patients’ active and chronic 
lesions and in amyloid plaques of patients diagnosed with Alzheimer’s disease14, 15. Neutralization of RGMa with 
rat antibodies recognizing the C-terminal portion of RGMa promoted axonal growth in rats with a thoracic dor-
sal hemisection spinal cord lesion13.

The RGMa receptor, Neogenin, requires localization to lipid raft domains in the plasma membrane to either 
transmit guidance signals or control cell death16. Lipid rafts are microdomains within the plasma membrane 
of cells which are enriched with protein receptors important for cell signalling17. Lipid rafts have been impli-
cated in regulating the activity of various guidance receptors, such as the Netrin-1 receptor Deleted in Colorectal 
Cancer18, and allows neurons to respond to cues such as Brain Derived Neurotrophic Factor or Semaphorin19. 
Using a peptide strategy to prevent Neogenin translocation to lipid rafts, we could promote neuroprotection and 
axonal regeneration after rat SCI16.

Toward the goal of clinical translation, we developed clinically relevant human anti-RGMa monoclonal anti-
bodies that also prevent Neogenin association with lipid rafts. These human monoclonal antibodies (mabs) are 
selective for the N-terminal portion of RGMa which act similarly to both neutralize RGMa and inhibit Neogenin 
function14. A limitation to clinical application of antibodies is the route of administration as intrathecal delivery 
may induce secondary damage, thus there is great interest in developing strategies that allow systemic treatment 
of SCI. Here, we characterized RGMa expression after impact-compression injury and we examined the efficacy 
of inhibiting RGMa by systemic administration of two different human anti-RGMa antibodies in a clinically 
relevant model of acute SCI.

Results
Inhibitory RGMa is upregulated following rat and human spinal cord injury.  The most common 
form of SCI in humans is impact-compression, however it was unknown whether RGMa is upregulated after 
this type of injury as was shown after hemisection SCI in the rat11, 13. Here, we showed that RGMa is markedly 
upregulated after clip impact-compression injury of the rat spinal cord, which is a clinically relevant model of 
SCI reflecting human pathology. The bilateral impact-compression model of SCI we used demonstrates central 
cavitation with a spared rim of white matter tissue, as shown in Fig. 1A. At 1 week after SCI, there was a significant 
15-fold increase in RGMa expression (Fig. 1B). As shown by double-label immunostaining, RGMa was primar-
ily expressed by neurons (RGMa+/NeuN+) and oligodendrocytes (RGMa+/CC1+) in the normal uninjured 
rat spinal cord, and after impact-compression injury, RGMa expression was significantly upregulated (Fig. 1C). 
After SCI, RGMa was expressed in neurons (Fig. 1C), oligodendrocytes (Fig. 1D), astrocytes as shown by GFAP 
labeling (Fig. 1F), activated microglia and macrophages as shown by Iba-1 (Fig. 1F) and ED-1 (Fig. 1E), and 
within CSPG scar-rich regions within and surrounding the lesion site (Fig. 1F). CSPG expression is low in the 
normal adult spinal cord, coincident with lower levels of RGMa. In the uninjured spinal cord, there was also low 
RGMa expression in Iba-1+ microglia, and very little RGMa staining apparent in GFAP+cells (data not shown). 
Quantification of the upregulation of RGMa expression was determined in sections double-labeled for RGMa and 
cell-type specific markers (Fig. 1C–E).

We then asked whether RGMa is similarly expressed in the adult human spinal cord after injury. For the first 
time, we demonstrate RGMa expression in the human spinal cord and its upregulation after injury. In the unin-
jured human spinal cord, RGMa was expressed at low levels in neurons, as shown by RGMa immunostaining of 
neurons identified via characteristic neuronal morphology in the intermediate gray matter (Fig. 2A,B) and glial 
cells in the dorsal column (Fig. 2D). In the injured human spinal cord at 3 days post-SCI, RGMa expression was 
significantly upregulated in neurons, axons, glial cells, and myelin enriched white matter regions (Fig. 2E–G). 
Furthermore, the RGMa receptor Neogenin, was expressed by neurons in both rat (data not shown) and human 
spinal cord (Fig. 2H).

Human anti-RGMa mabs promote neurite outgrowth in vitro.  Previous experiments showing 
that RGMa neutralization promotes functional recovery after hemisection SCI13 were performed using rabbit 
polyclonal antibodies. Hence, the development of a clinically relevant monoclonal antibody for human RGMa 

cord. High magnification confocal Z-stack images of an oligodendrocyte in spared gray matter of the injured 
spinal cord showing RGMa+/CC1+ double-labeling in the XZ and YZ orthogonal planes. Merged panels show 
DAPI nuclear counterstaining. Quantification of % RGMa+ area in the CC1 immunoreactive (IR) regions 
showed significant upregulation of RGMa after SCI. Data are mean ±SEM (uninjured, n = 3; SCI, n = 4); 
*p < 0.05 (Student’s t-test). (E) RGMa expression was apparent in ED-1 + regions (box E in Fig. 1A) after SCI. 
Insets show higher magnification of RGMa (green) and ED-1 (red) double-labeled macrophages. The uninjured 
spinal cord showed no ED-1 immunoreactivity. Quantification of % RGMa+ area in the ED-1 IR regions (box 
E) showed significant upregulation of RGMa after SCI. Data are mean ±  SEM (uninjured, n = 3; SCI, n = 4); 
*p < 0.05 (Student’s t-test). (F) After SCI, RGMa was expressed by astrocytes (GFAP), and within CSPG scar-
rich regions within and surrounding the lesion site. Activated microglia and macrophages also expressed 
RGMa (Iba-1 + microglia shown). RGMa+ /Iba-1 + double-labeled cells are indicated by arrows, and RGMa-/
Iba-1 + cells are indicated by the arrowheads. Merged panels show DAPI nuclear counterstain.
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that promotes regeneration has become the target of intense investigation. The human antibodies AE12-1 and 
AE12-1Y are high-affinity RGMa-selective mabs with comparable binding to human, rat and mouse RGMa. The 
2 mabs differ in their half-life, with AE12-1 having a longer half-life of 6 days compared to AE12-1Y half-life of 2 
days. As shown previously, the monoclonal antibodies are specific for RGMa20. In Western blots of mouse cortical 
neuron lysates, both mabs are specific for RGMa and no cross-reactivity was observed between other RGM mem-
bers (Fig. 3A). Cultured mouse primary cortical neurons also expressed RGMa, as shown by immunostaining 
with the AE12-1Y mab (or AE12-1, immunostaining not shown) (Fig. 3B). We then showed that the anti-RGMa 
antibodies promote neurite outgrowth in vitro. Cultured embryonic mouse cortical neurons plated on laminin 
and inhibitory RGMa showed minimal extension of neurites when incubated with human IgG (hIgG) isotype 
control whereas incubation with AE12-1 and AE12-1Y RGMa antibodies resulted in significantly more extensive 
neurite outgrowth (Fig. 3C). In Western blots, the Neogenin receptor was detected as a 200-kDa band (Fig. 3D) 
and Neogenin was also expressed by cultured mouse cortical neurons (Fig. 3E).

RGMa human antibodies are detected in rat serum, CSF, and injured spinal cord.  Factors limit-
ing potential treatments for SCI include mode of administration of the therapeutic. As intrathecal administration 
via osmotic pumps and catheters may result in secondary tissue damage or associated problems such as catheter 
occlusion, we performed systemic administration of the RGMa mabs. A summary of the study design is depicted 
in Fig. 4A. Rats were pre-trained and then clip impact-compression SCI was made at T8, immediately followed by 
local intraspinal and intravenous (i.v.) injections of the mabs or controls (hIgG isotype control or PBS (phosphate 
buffered saline) vehicle). The i.v. injections were repeated weekly for 6 weeks. At 6 weeks post-SCI, cerebrospi-
nal fluid (CSF) was sampled via lumbar puncture and the tracer biotinylated dextan amine (BDA) was injected 
into the sensorimotor cortex for anterograde labeling of the corticospinal tract (CST). At 9 weeks post-SCI, 3 
weeks after the last antibody dose, serum was collected and rats were perfused. Using a ligand-based assay, we 
determined the concentration of human antibody in CSF and serum samples from AE12-1, AE12-1Y and hIgG 
treated rats. The antibody concentration in the CSF of rats injected with AE12-1 ranged from 0.25–8.20 ug/ml, 
and for AE12-1Y the antibody concentration range was 0.33–6.77 ug/ml, and for hIgG the range was 0.16–0.77 
ug/ml (Fig. 4B). In comparison, antibody concentration in serum was considerably higher, approximately 10-fold 
greater than in CSF as the antibodies were injected intravenously (Fig. 4C). Furthermore, antibody concentration 
remained elevated in serum 3 weeks after the last dose. We also showed that the human antibodies were detected 
in the injured rat spinal cord by immunostaining of rat spinal cord tissue with anti-human IgG. Human IgG 
immunoreactivity was detected in tissue from rats injected with AE12-1, AE12-1Y, or hIgG control antibody but 
not in PBS vehicle controls (Fig. 4D). Staining of human antibody was apparent around blood vessels and within 

Figure 2.  RGMa is expressed in the adult human spinal cord and upregulated after injury. (A–D) Cross-
sections of uninjured human spinal cord (obtained from a 52 year old female donor) showing low levels 
of RGMa. (A) Low magnification image showing low levels of RGMa. (B) Higher magnification of boxed 
region (box labeled B in panel A) showing RGMa expression in neurons (arrows) in the anterior horn (inset 
shows higher magnification of RGMa+ neurons). (C) Adjacent section stained with RGMa antibody pre-
absorbed with RGMa peptide showing specificity of staining (inset shows higher magnification). (D) Higher 
magnification of boxed region (box labeled D in panel A) showing RGMa immunoreactivity in the dorsal 
column (arrows, glia; arrowheads, axons). (E–G) Cross-sections of injured human spinal cord (3d post-injury 
from an 84 year old male patient) showing upregulation of RGMa. (E) Low magnification section caudal 
to lesion site showing higher levels of RGMa expression. (F) Higher magnification of boxed region (box 
labeled F in panel E) showing RGMa expression in spared neurons (arrows) in the anterior horn (inset shows 
higher magnification). (G) Higher magnification of boxed region (box labeled G in panel E) showing RGMa 
immunoreactivity in axons and glia in the dorsal column. (H) Expression of the RGMa receptor, Neogenin, in 
anterior horn neurons in uninjured human spinal cord.
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Figure 3.  Human mabs recognize and neutralize RGMa. (A) Human mabs AE12-1 and AE12-1Y recognized a 
50 kDa band on Western blots of mouse cortical neuron lysates. No bands were apparent with the hIgG isotype 
control antibody. Full-length blots are presented in Supplementary Figure 1. (B) Cultured mouse primary 
cortical neurons (immunostained with βIII-tubulin, green) expressed RGMa (red) as shown by AE12-1Y 
immunostaining. No staining was apparent with the hIgG isotype control. (C) Axonal outgrowth assay. E18 
mouse cortical neurons plated on laminin and inhibitory RGMa showed minimal extension of neurites in 
controls incubated with hIgG. In contrast, incubation with AE12-1 and AE12-1Y RGMa antibodies resulted 
in more extensive neurite extension (βIII-tubulin, green; DAPI, blue). Neutralization of RGMa with AE12-1 
and AE12-1Y significantly increased cortical neurite outgrowth. Experiments performed in triplicate. Data 
are mean ± SEM; *p < 0.05; **p < 0.01 (t-test compared to control). (D,E) Expression of the RGMa receptor 
Neogenin. (D) Western blot of adult rat brain lysates showing Neogenin expression. (E) Cultured mouse cortical 
neurons (3 days in vitro; F-actin, green) expressed Neogenin (red).

http://1
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Figure 4.  Study design, antibody concentration in CSF and serum, and detection of antibodies in spinal cord 
tissue. (A) Summary of experimental timeline. Rats were pre-trained on the ladderwalk and CatWalk prior to 
SCI. The mabs AE12-1 or AE12-1Y or controls (hIgG or PBS vehicle) were injected immediately after impact-
compression SCI. Rats were tested for the BBB locomotor score and motor subscore at 1 day post-SCI and 
then weekly. Rats were tested weekly on the ladderwalk when they were able to cross the horizontal ladder. 
Gait parameters were assessed using CatWalk at 6 weeks post-SCI, and sensory testing was conducted at 2 
and 6 weeks post-SCI. At 6 weeks post-SCI, cerebrospinal fluid (CSF) was sampled via lumbar puncture and 
BDA was injected into the sensorimotor cortex for anterograde labeling of the corticospinal tract (CST). At 9 
weeks post-SCI, serum was collected and rats were perfused for histological analysis. Using an ELISA assay, the 
concentration of human IgG in AE12-1 and AE12-1Y and hIgG treated rats was measured in (B) CSF sampled 
at 6 weeks post-SCI (AE12-1, n = 9; AE12-1Y, n = 9; hIgG, n = 6), and in (C) serum obtained at endpoint at 9 
weeks post-SCI (AE12-1, n = 9; AE12-1Y, n = 9; hIgG, n = 7). (D) Immunostaining of rat spinal cord tissue with 
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CSPG+scar tissue around the lesion site (Fig. 4D). Importantly, this suggests that RGMa mabs penetrated CNS 
tissues to neutralize RGMa.

RGMa mabs improve functional recovery after SCI.  We then examined the effect of inhibiting RGMa 
with AE12-1 and AE12-1Y after acute impact-compression SCI. Neurological recovery was monitored weekly 
using the BBB locomotor rating scale, motor subscore, and horizontal ladderwalk test. Acute treatment with 
AE12-1 showed significant recovery of the BBB as early as 1 week post-SCI compared to PBS or hIgG controls 
which was maintained for the duration of the study (Fig. 5A). In contrast, AE12-1Y showed a delayed improve-
ment on the BBB with a statistically significant difference at 6 weeks post-SCI relative to controls (12.6 vs 9.9 
PBS). The difference in recovery profiles of AE12-1 and AE12-1Y may be due to the longer half-life of AE12-
1. Both mabs also showed a trend towards a higher motor subscore compared to controls (Fig. 5A). We also 
assessed hindlimb coordination with the ladderwalk test in which footfall errors are scored, a higher score reflect-
ing poorer coordination. The ladderwalk test showed a trend toward reduced footfall errors in rats treated with 
AE12-1 or AE12-1Y, with a statistically significant difference at 3 weeks post-SCI for AE12-1 (p < 0.05) and a 
trend towards reduced errors at weeks 4, 5, and 6 (Fig. 5B). At 6 weeks post-SCI, both AE12-1 and AE12-1Y 
treated rats showed a higher percentage of successful hindlimb steps (68.4% and 64.2%) compared to controls 
(hIgG 41%, PBS 29%). To further characterize the effects of RGMa neutralization on neurobehavioral function, 
we performed gait analysis using the CatWalk system at 6 weeks post-SCI and treatment (Fig. 5C). Rats treated 
with both mabs showed significant improvement in the regularity index relative to control groups, reflecting bet-
ter inter-paw coordination (AE12-1 89.3%, AE12-1Y 88.3%, hIgG 65.8%, PBS 63.4%) (Fig. 5D). The mab treated 
rats also showed a trend towards improved hindlimb stride length and swing speed approaching the pre-SCI val-
ues, although this did not reach statistical significance. Interestingly, the mean intensity with which the hindpaws 
contacted the glass walkway significantly increased in AE12-1 treated rats compared to controls (Fig. 5D). The 
intensity threshold has previously been used to assess mechanical allodynia in a model of chronic neuropathic 
pain21. In addition, treatment with the human mabs did not alter rat weight (data not shown). Thus, this is the first 
study to show functional recovery after SCI and systemic injection of RGMa antibodies.

RGMa mabs enhance neuronal survival.  In a rat model of optic nerve injury22, inhibiting the function 
of the Neogenin receptor promoted neuronal survival. Previously we showed that inhibiting Neogenin function 
with a peptide approach enhanced perilesional neuronal sparing16. Membrane fractionation experiments also 
demonstrated that injection of AE12-1Y altered the localization of Neogenin to the heavy membrane fraction, 
thus preventing the association of Neogenin with lipid rafts and blocking cell death signaling14. Therefore, we 
examined if neutralizing RGMa with the monoclonal antibodies could attenuate neuronal loss after SCI. After 6 
weeks of AE12-1 or AE12-1Y treatment, perilesional neurons were quantified with the neuronal marker NeuN at 
9 weeks post-SCI. Treatment with the RGMa antibodies increased the number of perilesional neurons approxi-
mately 1.5-fold compared to controls (Fig. 6A and B). To determine if the neuronal sparing was due to fewer neu-
rons undergoing apoptosis after injury, rats were treated as before with acute injection of AE12-1. Double-labeling 
with NeuN and TUNEL staining was performed at 7 hours post-SCI, a time point when neurons have been shown 
to undergo apoptosis after injury23. There were significantly fewer NeuN+/TUNEL+ neurons in AE12-1 treated 
rats relative to control (2-fold difference) (Fig. 6C and D).

We then examined whether mab treatment affected the lesion size after SCI, but there was no significant differ-
ence between groups in either the percentage cavitation or the volume of the cavity (Fig. 6E,F). We also quantified 
the area of CSPG immunoreactivity around the lesion site and found a trend towards reduced CSPG expression 
in mab treated rats (Fig. 6G).

Treatment with anti-RGMa mabs promote axonal regeneration.  We examined the effect of inhib-
iting RGMa with the mabs on axonal regeneration. We quantified the mean number of 5HT+ serotonergic fibers 
caudal to the lesion site, and found a significantly higher number of 5HT+ fibers in AE12-1 treated rats relative to 
controls (Fig. 7A,B). Rats injected with AE12-1Y showed a trend towards a higher number of 5HT labeled axons 
although there was significant variability in the number of 5HT fiber counts in the AE12-1Y groups as reflected 
in the large standard error. Furthermore, we also examined the effect of RGMa neutralization on descending CST 
pathways. We injected BDA tracer into the sensorimotor cortex to anterogradely label the CST. Our SCI model 
of impact-compression injury in which both the dorsal and ventral aspects of the spinal cord are simultaneously 
compressed results in central cavitation of the gray matter and adjacent white matter, severing all CST axons in 
the dorsal CST, leaving only a spared rim of subpial white matter. Treatment with AE12-1 or AE12-1Y showed 
BDA labeled CST fibers caudal to the lesion site 6 weeks after SCI (Fig. 7C). These fibers showed a highly irregular 
morphology, unlike BDA labeled CST fibers rostral to the lesion or in uninjured rats which are typically long and 
straight. Both the number and average maximal length of BDA labeled CST fibers was increased in rats injected 
with either AE12-1 or AE12-1Y (Fig. 7D,E). In contrast, no BDA fibers were observed caudal to the lesion site 
in control rats. We also quantified the mean axonal length and number of BDA labeled fibers in another group 

anti-human IgG (red). No immunoreactivity for hIgG was apparent in rats injected with PBS. Immunoreactivity 
for hIgG was detectable around the lesion site in rats injected with hIgG, AE12-1, and AE12-1Y, as shown in 
the low magnification images in the upper panels. Higher magnification images are shown in the other panels. 
Human IgG (red) was detected around blood vessels as shown with RECA-1 (green) (tissue from rats injected 
with AE12-1 and AE12-1Y shown in panels, also same for hIgG) and within scar tissue (CSPG, green) (AE12-1 
shown, also same for AE12-1Y and hIgG).
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Figure 5.  RGMa inhibition with human monoclonal antibodies promotes functional recovery after SCI. (A) 
Rats treated with mab AE12-1 showed significant improvement in BBB relative to hIgG and PBS controls at 
1–6 weeks post-SCI. AE12-1Y treated rats showed significant improvement at 6 weeks post-SCI relative to 
controls. AE12-1 and AE12-1Y treated rats showed higher motor subscores relative to controls but this was 
not statistically significant. Data are mean ± SEM (AE12-1, n = 9; AE12-1Y, n = 9; hIgG, n = 9; PBS, n = 8); 
*p < 0.05, two-way repeated-measures ANOVA with Bonferroni’s post-hoc test. (B) Rats treated with AE12-1 
showed fewer hindlimb footfall errors on the ladderwalk compared to PBS controls at 3 weeks post-SCI 
(*p < 0.05) and a trend towards reduced errors at 6 weeks (p = 0.07). At 6 weeks post-SCI, AE12-1 treated rats 
showed a higher percentage of successful hindlimb steps compared to control. Data are mean ± SEM (AE12-1, 
n = 9; AE12-1Y, n = 9; hIgG, n = 9; PBS, n = 8); two-way repeated-measures ANOVA, Bonferroni’s post-hoc 
test. (C) Representative footprints obtained from CatWalk gait analysis from pre-SCI and from each group at 
6 weeks post-SCI. Forelimb paw prints are brighter than the hindlimb paw prints. (D) Rats treated with both 
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of similarly injured rats treated with AE12-1Y and injected with BDA at 4 or 6 weeks post-SCI. There were more 
BDA labeled regenerated CST fibers at 6 weeks compared to 4 weeks and BDA labeled fibers were significantly 
longer at 6 weeks (Fig. 7F,G) suggesting the regeneration of CST axons following treatment with anti-RGMa 
mabs.

RGMa mabs attenuate neuropathic pain.  We assessed the effect of RGMa neutralization on the devel-
opment of neuropathic pain following SCI. Interestingly, we found that mab treatment reduced at-level mechan-
ical allodynia and thermal hyperalgesia. At 6 weeks post-SCI, rats administered AE12-1 showed significantly 
fewer adverse responses to the 4 g vonFrey stimulus compared to controls (Fig. 8A,B). Rats treated with either 
AE12-1 or AE12-1Y showed reduced latency to withdrawal of the tail in response to a heat stimulus compared to 
controls (Fig. 8C). We then examined the correlation of Iba-1 expression in the spinal cord, but found no signifi-
cant difference in the percentage area of Iba-1 + staining rostral or caudal immediately adjacent to the lesion site 
(data not shown). This quantitation included all Iba-1 immunostained cells, including both activated microglia 
and macrophages. However, Iba-1 + macrophages can easily be distinguished morphologically further rostral or 
caudal to the lesion site, thus we then specifically examined activated microglia caudal to the lesion at level T10. 
We quantified Iba-1 + microglia in the spinal cord dorsal horn in cross-sections at T10 caudal to the lesion, as 
exacerbated microglial activation in the dorsal horn has been associated with the severity of neuropathic pain24. 
In this analysis, only Iba-1 + microglia were counted (Fig. 8D). Although not statistically significant, there were 
fewer Iba-1 + microglia in the dorsal horn at T10 in mab treated rats relative to controls. Conversely, significantly 
more Iba-1 + cells were counted in the dorsal horn in injured controls compared to uninjured cord (Fig. 8E). 
We also quantified Iba-1 + microglia in the dorsal horn of spinal cords at C4, and found no significant differ-
ence between groups (Fig. 8F), highlighting the differences seen caudal to the lesion site (Fig. 8E). Furthermore, 
we examined changes in CGRP expression, shown to be involved in spinal pain mechanisms25, 26. Control rats 
showed significantly greater CGRP + immunoreactive fibers in the dorsal horn compared to mab treated rats 
(Fig. 8G,H), suggesting a positive effect of RGMa neutralization on the plasticity of pain afferents entering the 
dorsal horn caudal to the level of injury.

Discussion
Cell death and the lack of axonal regeneration due to the inhibitory environment of the injured spinal cord are 
primary causes for poor recovery after SCI. Both intrinsic and extrinsic factors are important for CNS regenera-
tion27. Most strategies to repair SCI have focused on either neuroprotection to limit cell death following injury or 
strategies to promote axonal regeneration. We report here the novel finding that neutralizing the effects of inhib-
itory RGMa with N-terminal-RGMa-specific human antibodies promotes both neuronal survival and axonal 
regeneration after impact-compression SCI. Importantly in view of clinical translation, we used human antibod-
ies administered systemically in a clinically relevant model of SCI. Our study demonstrates several key findings: 
(1) RGMa is upregulated after a clinically relevant impact-compression SCI in rats and also in the injured human 
spinal cord. (2) Neutralizing RGMa inhibition with clinically relevant human antibodies improved neurobehav-
ioural recovery after acute SCI in multiple functional tests. (3) Inhibiting RGMa promoted perilesional neuronal 
survival. (4) RGMa inhibition enhanced the plasticity of descending serotonergic pathways and promoted corti-
cospinal tract axonal growth. (5) RGMa inhibition also attenuated neuropathic pain responses, reducing micro-
glial activation and CGRP expression in the dorsal horn caudal to the lesion site. Collectively, these data show the 
therapeutic benefit of neutralizing inhibitory RGMa with clinically relevant human RGMa-specific antibodies 
after acute SCI.

RGMa, a potent inhibitor of axonal growth8, was previously shown to be upregulated in myelin and the glial 
scar after dorsal hemisection SCI and ischemic stroke in rats11, 13, 14 and in the human brain after traumatic brain 
injury and focal cerebral ischemia12. In the present study, we show for the first time that RGMa is upregulated 
in multiple cell types after impact-compression SCI in rats and importantly, also in the human spinal cord after 
traumatic SCI.

Previously we demonstrated a selective interaction between the N-terminal part of RGMa and the immu-
noglobulin domain in Neogenin that mediates Neogenin recruitment to lipid rafts that is both RGMa and BMP 
(bone morphogenetic protein)-dependent, and where the receptor acts to transmit guidance signals and control 
cell death16. Using a peptide (4Ig) designed against the immunoglobulin domain prevented RGMa-Neogenin 
interaction and blocked Neogenin transport into lipid rafts which promoted neuroprotection and axonal regen-
eration after SCI16. In the present study, we used clinically relevant human monoclonal antibodies that are selec-
tive for the N-terminal portion of RGMa. We recently showed in biochemical studies that these mabs neutralize 
inhibitory RGMa by blocking Neogenin function14. Thus pleiotropic effects regulated by the mabs reflect the 
involvement of the Neogenin pathway and the RGMa-BMP pathway. Since the human anti-RGMa mabs show 
cross-reactivity with rat RGMa, this enabled testing the mabs in a rat SCI model.

In a partial lesion model of thoracic dorsal hemisection injury, intrathecal administration of antibodies gener-
ated against the C-terminal portion of RGMa promoted CST axonal growth and functional recovery on the BBB 
locomotor test13. In the present study, we utilized a clinically relevant model of impact-compression SCI that pro-
duces pathology similar to human SCI. We show that neutralizing RGMa with systemic injection of the N-RGMa 

mabs showed significant improvement in the regularity index relative to control groups. The mab treated rats 
showed a trend towards improved hindlimb stride length and swing speed. Rats injected with AE12-1 showed 
significantly higher hindlimb intensity values relative to controls. Data are mean ± SEM (AE12-1, n = 8; 
AE12-1Y, n = 8; hIgG, n = 8; PBS, n = 7); *p < 0.05, two-way ANOVA, Sidak’s multiple comparisons.



www.nature.com/scientificreports/

1 0Scientific Reports | 7: 10529  | DOI:10.1038/s41598-017-10987-7

Figure 6.  RGMa inhibition promotes neuronal survival by attenuation of apoptosis. (A) Low magnification 
of parasagittal sections of injured spinal cord 9 weeks post-SCI immunostained with the neuronal marker 
NeuN. Solid line boxed regions are magnified in bottom panels which contain insets showing neurons at high 
magnification. NeuN + neurons within regions outlined with dotted lines shown in low magnification images 
were quantitated. (B) Rats administered mabs AE12-1 and AE12-1Y showed significantly higher perilesional 
neuronal sparing than rats that received hIgG and PBS. Data are mean ± SEM (AE12-1, n = 7; AE12-1Y, n = 8; 
hIgG, n = 6; PBS, n = 7); *p < 0.05, **p < 0.01, one-way ANOVA with Bonferroni’s post-hoc test. (C) In a 
separate experiment, apoptosis of neurons was examined at 7 hour post-SCI from rats administered AE12-1 
or PBS. Double-labeling with NeuN (green) and TUNEL (red) identified apoptotic neurons (arrows) in gray 
matter adjaent to the lesion. (D) The average number of NeuN+/TUNEL+ cells counted per section was 
significantly less in AE12-1 treated rats than in rats administered PBS vehicle. Data are mean ± SEM (AE12-1, 
n = 5; PBS, n = 3); *p < 0.05, t-test. (E) There was no significant difference in the percentage cavitation or (F) 
the volume of cavity between groups. (G) AE12-1 and AE12-1Y treated rats showed a trend towards reduced 
% CSPG + area at the lesion site. Data are mean ± SEM (AE12-1, n = 8; AE12-1Y, n = 8; hIgG, n = 6; PBS, n = 7).
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Figure 7.  Treatment with anti-RGMa human mabs promotes axonal regeneration in the injured spinal 
cord. (A) 5HT immunoreactive serotonergic fibers (arrows) caudal to the lesion. (B) Quantification of the 
mean number of 5HT+ axons caudal to the lesion binned into progressive distances caudally. A significantly 
higher number of 5HT+ fibers were apparent in AE12-1 treated rats. Data are mean ± SEM (AE12-1, n = 8; 
AE12-1Y, n = 8; hIgG, n = 6; PBS, n = 6); *p < 0.05, one-way ANOVA with Bonferroni’s post-hoc test. (C) To 
visualize axons from the CST, BDA was injected at 6 weeks after SCI, and CST tracing analysis was performed 
at 9 weeks after SCI. Low magnification images of spinal cord. Rostral is at the top and the lesion cavity is 
outlined, and boxed regions are shown at higher magnification in the insets. Tracing with BDA revealed labeled 
fibers (arrows) caudal to the cavity in AE12-1 and AE12-1Y treated rats, but not in controls (PBS control 
shown). BDA+ fibers showed an irregular tortuous morphology. (D,E) Average maximal length of BDA 
labeled CST fibers increased after AE12-1 and AE12-1Y treatments, and rats treated with the mabs showed 
more BDA + axons/section. Data are mean ± SEM (AE12-1, n = 4; AE12-1Y, n = 7; hIgG, n = 4; PBS, n = 4); 
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mabs promoted behavioural recovery on several functional tests, including the open field BBB, the horizontal 
ladderwalk, and computerized CatWalk gait analysis. Treatment with AE12-1 showed earlier functional recovery 
compared to AE12-1Y where recovery was delayed. The early difference in recovery profiles between these mabs 
may be due to the longer half-life of AE12-1. This early recovery profile on the BBB test suggests a neuroprotective 
effect of RGMa inhibition, also supported by the peri-lesional neuronal sparing observed after acute treatment 
with AE12-1. Following weekly administration of the mabs for 6 weeks, we found antibody concentration still 
remained elevated in the serum 3 weeks after the last injection. At 6 weeks post-SCI, most of the mab treated rats 
showed consistent plantar stepping with coordination compared to the control groups. Similarly, the mab treated 
rats showed fewer footfall errors with a higher success rate on the ladderwalk test, reflecting improved fine motor 
function, hindlimb weight support, precise paw placement, and better coordinated balance. Moreover, gait analy-
sis demonstrated improved inter-limb coordination in mab treated rats with the hindlimb stride length and swing 
speed approaching pre-SCI values.

Here we demonstrate multiple mechanisms by which RGMa inhibition with the human mabs facilitates neu-
roanatomical plasticity of the injured spinal cord. After traumatic brain and spinal cord injury, neurons undergo 
apoptosis concomitant with axonal degeneration. We found that mab treatment increased neuronal survival after 
SCI with fewer neurons undergoing apoptosis resulting in a greater number of perilesional neurons remain-
ing after injury. Recently we showed that AE12-1Y mab increased retinal ganglion cell survival in retinal whole 
mounts following oxygen glucose deprivation, and in vivo after ligation of the ophthalmic artery14. Furthermore, 
our data shows inhibition of RGMa enhances the plasticity of descending serotonergic pathways and promotes 
corticospinal tract axonal growth after SCI. Kyoto et al.28 showed enhanced CST synapse formation in the cervical 
region after thoracic SCI and RGMa inhibition. Feng et al.29 used RNA interference to knock down RGMa via 
recombinant adenovirus injections after middle cerebral artery occlusion in rats resulting in an increase in CST 
axonal sprouts towards the ischemic region. Treatment with AE12-1Y mab reduced ischemic damage after middle 
cerebral artery occlusion resulting in decreased brain infarct size and improved recovery14.

Interestingly, we also found that RGMa neutralization attenuated neuropathic pain responses after SCI, with a 
reduction in mechanical allodynia and thermal hyperalgesia. This was associated with fewer activated microglia 
and reduced CGRP expression in the dorsal horn caudal to the lesion. Neuropathic pain has been associated 
with microglial activation and increased CGRP expression in the dorsal horn24–26. Moreover, rats treated with 
RGMa antibody showed increased pressure of hind paws during stance obtained from gait analysis which has 
previously been shown to correlate with reduced mechanical allodynia21. Activated microglia have been shown 
to inhibit axonal growth through RGMa, and treatment with RGMa-neutralizing antibodies or transfection of 
RGMa siRNA attenuated the inhibitory effects of microglia on axonal outgrowth30. In a focal spinal targeted EAE 
model in rats, treatment with human anti-N-RGMa mab reduced activated microglia and macrophages promot-
ing regeneration and functional recovery14. After SCI, we did not observe fewer macrophages at the lesion site 
in parasagittal sections from anti-N-RGMa mab injected rats. However, it is conceivable that there was a mac-
rophage shift to an anti-inflammatory phenotype in response to a more permissive microenvironment31 although 
we did not investigate this in the current study. Collectively, these data suggest the therapeutic potential of reduc-
ing neuropathic pain responses after SCI with RGMa inhibition and thus warrants further investigation. These 
data also suggest a new role for the RGMa/Neogenin pathway on neuropathic pain.

In summary, we show therapeutic benefit of neutralizing inhibitory RGMa with clinically relevant novel 
human RGMa-specific monoclonal antibodies, producing both neuroprotective and regenerative effects in the 
injured spinal cord and promoting neurological recovery and a reduction in neuropathic pain after SCI.

Methods
Ethics statement.  All animal procedures were approved by the Animal Care Committee of the Research 
Institute of the University Health Network (UHN) in accordance with policies established by the Canadian 
Council on Animal Care. For the harvesting of human spinal cord tissue, approval was obtained from the UHN 
Research Ethics Board and from the Trillium-Gift of Life Foundation which oversees organ donation in Ontario. 
In accordance with the guidelines and regulations of the UHN Research Ethics Board, informed consent was 
obtained for study participation and publication of images from tissue samples. All methods were performed 
in accordance with the guidelines and regulations of the UHN Research Ethics Board in compliance with the 
Ontario Personal Health Information Protection Act. All experiments and outcome measures were performed 
using appropriate blinding.

Generation of human RGMa monoclonal antibodies.  AE12-1 and AE12-1Y are human anti-RGMa 
monoclonal antibodies (mabs) generated by AbbVie via PROfusion mRNA display using in vitro RNA libraries 
which allow expression and selection of single chain Fv antibodies. Both AE12-1 and AE12-1Y are high affinity, 
RGMa-selective monoclonal antibodies. These mabs exhibit comparable binding affinity to human, cynomolgous 
macaque, rat and mouse RGMa. AE12-1Y is a variant of AE12-1 by replacement of an unpaired Cysteine residue 
(Cys226) in light chain complementarity determining region 3. AE12-1 and AE12-1Y, dosed at 4–5 mg/kg intra-
venously in rats, show a half-life of 6d and 2d in rats, respectively. The anti-RGMa antibody levels in serum used 

*p < 0.05, **p < 0.01, one-way ANOVA with Bonferroni’s post-hoc test. (F–G) In a separate experiment, 
injured rats were treated with AE12-1Y and were injected with BDA at either 4 or 6 weeks post-SCI, and the (F) 
length and (G) number of BDA labeled axons was measured. The average axonal length was significantly greater 
when BDA was injected at 6 weeks compared to 4 weeks. Data are mean ± SEM (n = 4 per each condition); 
*p < 0.05, one-way ANOVA, Bonferroni’s post-hoc test.
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Figure 8.  Inhibition of RGMa with mabs attenuates neuropathic pain. Mechanical allodynia at the level of the 
SCI was assessed with (A) 2 g and (B) 4 g vonFrey monofilaments. At 6 weeks post-SCI, AE12-1 treated rats 
showed fewer adverse responses to the 4 g stimulus relative to controls. Data are mean ± SEM (AE12-1, n = 9; 
AE12-1Y, n = 9; hIgG, n = 7; PBS, n = 7); *p < 0.05, one-way ANOVA with Bonferroni’s post-hoc test. NS, not 
significant. (C) Thermal hyperalgesia was evaluated by the tail flick test by recording the latency to withdrawal 
of the tail in response to noxious skin heating. At 2 and 6 weeks post-SCI, mab treated rats showed reduced 
withdrawal to the heat stimulus relative to controls. Data are mean ± SEM (AE12-1, n = 9; AE12-1Y, n = 9; 
hIgG, n = 7; PBS, n = 7); *p < 0.05, one-way ANOVA, Bonferroni’s post-hoc test. (D) Caudal to the lesion at 
T10, the number of Iba-1 + microglia were counted in the dorsal horn within the boxed region, as shown in the 
first panel. Representative regions from each group are shown at higher magnification. (E) Significantly more 
Iba-1 + cells were counted in the dorsal horn in injured controls compared to uninjured normal cord. Fewer 
activated microglia were quantified in the dorsal horns of mab treated injured spinal cords, although this was 
not statistically significant. Data are mean ± SEM (normal, n = 5; AE12-1, n = 8; AE12-1Y, n = 8; hIgG, n = 7; 
PBS, n = 7); *p < 0.05, one-way ANOVA with Bonferroni’s post-hoc test. (F) In comparison, rostrally at C4 
there was no difference in microglial activation in the dorsal horns between groups. NS, not significant. (G) 
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for determining the half-life were measured by Mesoscale Discovery (MSD) assay employing biotinylated human 
RGMa (0.5 µg/mL) for capture and goat anti-human sulfotag antibody (0.5 µg/mL) for detection as described in 
the section below. The two mabs do not cross-react with the other two RGM family members RGMb and RGMc, 
as determined by Surface Plasmon Resonance using BIAcore instrument. Both AE12-1 and AE12-1Y mabs neu-
tralize RGMa activity in functional assays such as chemotaxis, neurite outgrowth, and BMP-responsive reporter 
gene assays. Human IgG (hIgG) was used as an isotype control for the in vitro and in vivo studies and was recom-
binantly produced in CHO cells.

Assay for measuring antibody levels in serum and CSF.  Serum and CSF samples from treated ani-
mals were analyzed with a MSD assay employing biotinylated human RGMa (0.5 µg/mL) for capture and goat 
anti-human sulfotag antibody (0.5 µg/mL) for detection. The samples were analyzed at a 1% final matrix concen-
tration. MSD standard curve fitting and data evaluation was performed using XLfit4 software (Version 4.2.1 Build 
16). A calibration curve was plotted from MSD luminescence units versus theoretical standard concentrations. 
A four-parameter logistic model was used for curve fitting. The regression equation for the calibration curve was 
then used to back calculate the measured concentrations. The background intensity from animals treated with 
PBS was subtracted before calculating concentrations from the standard curve. The lower limit of quantitation 
was 0.007 µg/mL, and the linear range was 5–0.007 µg/mL. Plates were considered valid when at least 2/3 of the 
quality controls were within 30% of the expected values.

Western blots.  Mouse cortical neurons were lysed in RIPA buffer containing a protease inhibitor cocktail. 
Samples were denatured at 95 °C for 5 min in a 6X Lamelli buffer (50 mM Tris-HCl [pH6.8], 2% SDS, 10% glyc-
erol, 1% β-mercaptoethanol, 12.5 mM EDTA, and 0.02% bromophenol blue). Samples were loaded on a 10% 
acrylamide gel in Tris-Glycine running buffer (25 mM Tris, 192 mM Glycine, and 0.1% SDS) and transferred onto 
a nitro-cellulose membrane. Blots were blocked with 5% nonfat dry milk in PBS, and probed with the anti-RGMa 
mabs (AE12-1; 1:1000 (1 mg/ml) and AE12-1Y; 1:1000 (1 mg/ml)) and anti-Neogenin (E20; Santa Cruz; 10 mg/
ml) at 4 °C overnight. After three washes in PBS containing 0.1% Tween-20, blots were probed with an Odyssey 
goat anti-mouse secondary antibody (1:4000; Li-COR, Lincoln, Ne, USA) for 2hr at room temperature.

In vitro neuronal immunostaining and neurite outgrowth assay.  E18 mouse cortical neurons were 
plated on poly-L-Lysine (PLL)-coated glass coverslips treated with laminin (Invitrogen; 10 mg/ml) for 24hr 
and then immunostained with βIII-tubulin (Sigma; 1:500), AE12-1 (1:250), AE12-1Y (1:250) or hIgG (1:250). 
Embryonic cortical neurons were also stained with F-actin (Molecular Probes; 1:100) and Neogenin (Santa Cruz; 
1:200). For the neurite outgrowth assay, E18 mouse cortical neurons were plated on PLL-coated glass covers-
lips treated with laminin (Invitrogen; 10 mg/ml) and RGMa proteins (5 mg/ml) and incubated for 24hr at 37 °C 
with control hIgG antibody (1 mg/ml) or anti-RGMa (AE12-1 or AE12-1Y; 1 mg/ml). Cultures were fixed with 
4% paraformaldehyde 24hr after plating, and neurons were immunostained with βIII-tubulin (Sigma; 1:500). 
Experiments were done in duplicates and repeated 3 times. Thus 6 coverslips of neuronal cultures were counted 
from several areas of the coverslip, and at least 20 neurons were measured per coverslip, as previously described14, 

16. Fiber length was quantified using Image Pro 5.0.

Animals.  A total of 63 adult female Wistar rats (330–345 g; Charles River, St. Constant, QC, Canada) were 
used (n = 40 functional/BDA tracing/histological analysis; n = 8 separate BDA tracing experiment; n = 7 RGMa/
Neogenin immunostaining; n = 8 TUNEL staining). Efforts were made to minimize the numbers of animals used. 
Pre-operatively, rats were acclimatized and trained for baseline behavioral assessment. Animals were allocated to 
treatment and control groups in a randomized manner post-injury.

Spinal cord injury and injections.  Rats were anesthetized by inhalation of 2% isofluorane in combination 
with a mixture of nitrous oxide and oxygen (1:2, v/v). Under aseptic conditions, a laminectomy was performed at 
level T9/10. A clip impact-compression injury was made at spinal cord level T8 with a 20 g force for 1 min with a 
modified aneurysm clip as reported previously32, 33. Briefly, and as illustrated in Fig. 1A, the clip is applied extra-
durally producing a bilateral impact force followed by sustained dorsal-ventral compression, a clinically relevant 
model of SCI reflecting human pathology33, 34. Immediately following SCI, rats were intraspinally injected with 
either AE12-1, AE12-1Y, hIgG isotype control, or PBS vehicle. There were four groups of rats: 1) AE12-1 (n = 10), 
AE12-1Y (n = 11), hIgG (n = 11), and PBS (n = 8). The experimental protocol is summarized in Fig. 4A. A total 
of two injections (2 μg/μL, 3 μL each) were made intraspinally 1 mm rostral and 1 mm caudal to the lesion site 
and adjacent to the midline vein. All rats received a 20 mg/kg dose of either AE12-1 or AE12-1Y mabs or hIgG 
or equivalent volume of PBS i.v. via the internal jugular vein, as we previously described16. Rats received weekly 
jugular vein injections for two more weeks and then weekly tail vein injections until 6 weeks post-SCI. In a sep-
arate set of rats, SCI was performed as described above and the rats were sacrificed 1 week later and tissue was 
used for immunostaining for Neogenin and RGMa (n = 4 SCI; n = 3 uninjured). Bladders were expressed three 
times daily until spontaneous voiding was established. Rats were provided Clavomax (amoxicillin trihydrate/

CGRP immunoreactivity in dorsal horn at T10 showing fewer CGRP + fibers in laminae III – V (L III - V) in 
AE12-1 and AE12-1Y treated rats compared to hIgG and PBS controls. (H) % CGRP + area was significantly 
reduced in AE12-1 and AE12-1Y treated rats relative to controls. Data are mean ± SEM (AE12-1, n = 8; 
AE12-1Y, n = 9; hIgG, n = 7; PBS, n = 5); *p < 0.05, one-way ANOVA with Bonferroni’s post-hoc test.
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clavulanate potassium) (62.5 mg PO BID for 7 days) in their drinking water to prevent hematuria or urinary tract 
infection, and rats were housed singly in a temperature-controlled room at 26 °C with a 12hr light/dark cycle.

BBB and motor subscore.  All tests were performed by two independent examiners blinded to treatments. 
Locomotor function was evaluated using the Basso, Beattie and Bresnahan (BBB) open-field locomotor rating 
scale35 which ranges from a score of 0 indicating no hindlimb movement to 21 indicating normal locomotion 
as observed in an uninjured rat. Rats were placed individually in an open field with a non-slippery surface and 
hindlimb motor function including joint movements, stepping ability, coordination, and paw placement were 
video-recorded. Motor subscores were determined as previously reported36 to assess additional measures such as 
toe clearance, predominant paw position, and absence of instability. A maximal motor subscore of 7 represents 
normal locomotion.

Ladderwalk.  Fine motor function was assessed with the horizontal ladderwalk apparatus previously 
described37. Rats with a BBB score > 11 were placed on the ladderwalk and 3 runs were recorded which were 
analyzed in slow motion, and the total number of footfalls per hindlimb was scored for each run and averaged. 
Injured rats with dragging hindlimbs were scored the maximum footfalls which was 6 footfalls per hindlimb. 
Uninjured rats had 0 or occasionally 1 footfall per crossing. The relative success rate on the test was calculated as 
previously described38.

CatWalk.  To further elucidate motor function, we performed computerized gait analysis using the CatWalk 
analysis system39 (Noldus Information Technology, Netherlands). Baseline gait assessments were obtained 
pre-operatively and compared to assessment at 6 weeks post-SCI. Briefly, the system consists of a horizontal glass 
plate walkway and video capturing equipment placed underneath the walkway and connected to a computer. 
Digital footprints were acquired with the same experimental settings for each rat and each run was within range 
for crossing time and speed. A minimum of 3 correct crossings (without pausing or interruption) per animal were 
obtained and digital footprints were labeled.

Assessment of mechanical allodynia and thermal hyperalgesia.  For tests for neuropathic pain, 
mechanical allodynia was assessed with vonFrey filaments and the tail flick test was used for thermal hyperalgesia. 
VonFrey filaments (Stoelting) were used to assess cutaneous sensitivity to normally innocuous mechanical stim-
ulation and were applied to the dermatomes at the level of the SCI as described40. A 2 g and 4 g filament was used 
at each time point. Ten mechanical stimuli to the dorsal surface of the trunk around the level of injury at T8 were 
made in a clock-wise direction25 starting with the 2 g vonFrey filament. Each stimulus was separated by at least 
a 5 sec interval. Avoidance behavior was defined by one of the following actions: vocalization, flinching, turning 
away, licking or escaping from the stimulus to another area of the cage. The number of avoidance responses out 
of 10 was counted to obtain a response percentage. Thermal hyperalgesia was evaluated by the tail flick test by 
recording the latency to withdrawal of the tail in response to noxious skin heating. An automated analgesia meter 
(IITC Life Science, Woodland Hills, CA) was used to apply a beam of light to the dorsal surface of the tail at 4 cm 
from the tip41. The time for the rat to flick its tail away from the heat stimulus was recorded, and 3 measurements 
were made during a 30 min testing session and averaged.

Tissue processing.  Rats were sacrificed and transcardially perfused with 4% paraformaldehyde in 0.1 M 
PBS, pH 7.4 at 9 weeks after SCI after behavioural assessments and anterograde axonal tracing had been per-
formed. A 1.5 cm segment of tissue encompassing the lesion site at T8 was excised and cryoprotected in 30% 
sucrose in 0.1 M PBS, embedded in Shandon Cryomatrix (VWR Laboratories) and cryosectioned parasagittally 
into 20 μm serial sections.

Anterograde axonal tracing.  To visualize axons from the CST, anterograde axonal tracing with BDA 
was performed 6 weeks after SCI following completion of the functional assessment. Animals (n = 4–7) from 
each group were randomly selected for BDA injection. As previously described16, burr holes were drilled bilat-
erally to expose the sensorimotor cortex and 1 μl of BDA (10% dissolved in 0.01 M PBS, 10,000 MW; Invitrogen 
(Thermofisher)) was injected stereotactically at 6 sites16 in each sensorimotor cortex at a depth of 1.2 mm. Rat 
were perfused as described above 3 weeks later and a 1.5 cm segment of tissue encompassing the lesion site was 
excised and processed as 20 μm parasagittal cryosections. In addition, segments of tissue 5 mm caudal from the 
brainstem and 5 mm caudal to the lesion site (rostral and caudal segments) were serially cryosectioned trans-
versely. The intensity of BDA staining of the dorsal CST in the rostral segment of each cord was quantified and 
the ratio was used to normalize the counts of BDA labeled fibers to correct for inter-animal variation in the BDA 
labeling efficiency. The caudal segment was examined for the presence of any BDA labeled fibers. Sections were 
processed for BDA as previously described16. In each cord, 5 consecutive serial sections containing the maximal 
area of cavitation were used for quantitation. The length of BDA fibers was measured from the caudal end of the 
lesion site and averaged. The number of fibers at distances caudal from the lesion site were quantified and binned 
as follows: <900 μm, 900–1800 μm, 1800–2700 μm. In a separate experiment, rats were injured and injected with 
AE12-1Y as described above, and then injected with BDA at 4 weeks or at 6 weeks post-SCI (n = 4/group). The 
number of BDA labeled axons and their length was quantitated as described above.

Histology and immunostaining.  Serial sections (160 μm apart) were immunostained and stained with 
Luxol Fast Blue and hematoxylin and eosin (LFB/H&E) for general morphology and cavitation analysis. Serial 
sections for fluorescence immunohistochemistry were rehydrated in 0.1 M PBS, blocked for 1hr, and incubated 
overnight at 4 °C with the following primary antibodies: NeuN (1:500, Millipore) for neurons, GFAP (1:200, 
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Millipore) for astrocytes, Iba-1 (1:1000, Wako Chemicals) for activated macrophages/microglia, CS56 (1:500, 
Sigma) for chondroitin sulfate proteoglycan, calcitonin gene-related peptide (CGRP) (1:1000, Millipore) for sen-
sory fibers, 5HT (1:3000, ImmunoStar) for serotonergic fibers, and hIgG (1:500, Millipore) to detect human 
IgG antibodies (used for staining in Fig. 4). Tissue sections were washed with 0.1 M PBS, incubated with 
fluorescent-conjugated secondary antibodies for 1hr, washed and then coverslipped with Vectashield mounting 
medium containing DAPI. Double-labeling was performed as described previously42. For RGMa (1:200, Abcam) 
and Neogenin (1:200, Santa Cruz) immunostaining as shown in Figs 1 and 3E, sections were boiled in 10 mM 
sodium citrate buffer containing 0.05% Tween20 (pH 6.0) for 10 min at 95–100 °C, blocked with 10% normal 
goat serum in 0.05% Tween20 for 1hr, incubated overnight with primary antibody diluted in blocking solu-
tion, washed and incubated with fluorescent-conjugated secondary antibody for 1hr as above. Species-specific 
non-immune IgG or omission of primary antibody was used as negative controls. Immunofluorescent stain-
ing was examined using a Nikon Eclipse TE 300 microscope and a Zeiss LSM 510 confocal microscope. For 
immunoperoxidase staining of RGMa and Neogenin in human tissue, sections were dewaxed with xylene and 
processed through to 100% alcohol. Endogenous peroxidase activity was blocked with 3% H2O2 in methanol for 
30 min. Sections were blocked and incubated with primary antibody as described above, and then incubated with 
biotinylated anti-mouse secondary antibody (1:500, Vector Laboratories) followed with avidin-biotin-peroxidase 
complex (Vectastain Elite ABC Kit Standard, Vector Laboratories) for 1hr. Diaminobenzidine (DAB) (Vectastain 
Elite ABC Kit Standard) was applied as the chromogen. Primary antibody alone and pre-absorption controls 
with RGMa peptide were run for negative controls, and staining was examined using a Nikon Eclipse TE 300 
microscope.

Quantitative analysis.  To quantify spared host neurons, in each cord 5 consecutive sections of the serially 
sectioned cord containing the maximal area of cavitation were used for quantitation16, 32. This technique ensured 
that equivalent gray matter tissue was analyzed in each animal and also avoided double-counting of cells. The 
sampled region as outlined in Fig. 6 extended from 2.7 mm rostral to 2.7 mm caudal to the lesion epicentre. 
Images were captured and cells were manually counted using Nikon NIS Elements BR v.3.1 software. Data are 
presented as group means of total counts that have not been normalized for the entire cord thickness. For quan-
tification of CSPG immunoreactivity, 3 consecutive serial sections (160 μm apart) in each cord containing the 
maximal area of cavitation were used for quantification, as we previously described16, 32. Using a Nikon Eclipse TE 
300 microscope, images encompassing the lesion site were obtained with identical settings and exposure times 
and stitched with NIS Elements BR software. Images were thresholded using NIH ImageJ software and the frac-
tional area of CSPG immunoreactivity was determined. For quantitation of activated microglia and macrophages, 
serial sections were stained with Iba-1. In each cord, 3 consecutive serial sections containing the maximal area 
of cavitation were used. In each section, the sampled regions (2.9 × 105 μm2) were 0.45 mm rostral and 0.45 mm 
caudal to the lesion. Immunostained sections were imaged with identical settings and exposure times as above 
and thresholded using ImageJ, and the % Iba-1 + area of 3 regions rostral and caudal was averaged for each cord. 
The % Iba-1 + area included both Iba-1 + activated microglia and macrophages adjacent to the lesion site. At 
spinal levels C4 and T10, Iba-1 + microglial cells were counted in the superficial dorsal horn (laminae I -III) of 
serial cross-sections. In each cord, Iba-1 + cells in 3 regions (2.9 × 105 μm2) were quantified in the superficial dor-
sal horn of 3 consecutive serial sections per cord and averaged. To assess CGRP+ primary afferents terminating 
in the dorsal horn of the spinal cord, CGRP immunoreactivity was quantified in 3 consecutive serial sections at 
T10 that were imaged with identical settings (2.9 × 105 μm2). Using NIH ImageJ software automatic thresholding 
for each image was performed as described above to obtain the % CGRP+ fractional area. To assess serotonergic 
fibers, the number of 5HT+ fibers caudal to the lesion site were quantified and binned as follows: <900 μm, 900–
1800 μm, 1800–2700 μm. To quantify RGMa immunostaining, 3 regions (2.9 × 105 μm2) in 3 serial cross-sections 
were imaged in each region of interest, thresholded as above using ImageJ, and the % RGMa+ area of the 3 
regions were averaged for each of the 3 sections per cord.

Cavitation analysis.  For cavitation analysis, serial sections were stained for LFB/H&E and imaged. The area 
of cavitation of each section was traced using Nikon NIS Elements v.3.1 software, and the total cavity volume and 
percentage cavitation was calculated using the Cavalieri method, as previously described32, 43.

Double-label NeuN/TUNEL staining.  To evaluate neuronal cell death, a separate experiment was per-
formed where two groups of rats were injured and injected (exactly as described above) with either AE12-1 (n = 5) 
or PBS (n = 3) and sacrificed 7hr later. To double-label spared neurons with TUNEL, sections were blocked and 
incubated overnight with mouse anti-NeuN (1:500, Millopore) followed by anti-mouse IgG conjugated to Alexa 
488 (1:500; Invitrogen). Sections were washed in PBS and permeabilized by immersing in 0.1% Triton X-100 
in 0.1% sodium citrate (v/v) for 2 min and then incubated for 1hr at 37 °C in a humidity chamber in a TUNEL 
reaction mixture containing a 1:10 ratio of terminal deoxynucleotidyl transferase and fluorescein-conjugated 
dUTP (in situ cell death detection kit; Roche Diagnostics, Laval, QC). Negative control sections were stained 
as above but in the absence of terminal deoxynucleotidyl transferase. Positive control sections were incubated 
with 200U/ml DNase 1, grade 1 (Roche Diagnostics) in 50 mM Tris-HCl (pH 7.5) containing 10 mM MgCl2 and 
1 mg/ml BSA, for 10 min at 37 °C to induce DNA strand breaks prior to labeling procedures. Data shown are 
representative of three independent experiments. Double-labeled cells were examined using a Zeiss LSM 510 
confocal microscope. For each cord, 6 serial cross-sections (160 μm apart) at the epicenter were sampled to avoid 
double-counting of cells. All NeuN + /TUNEL + double-labeled cells were counted in 6 cross-sections per cord 
and averaged.
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Statistical analysis.  Data are presented as mean ± S.E.M. Functional tests were analyzed by two-way 
repeated-measures ANOVA comparing groups versus time points followed by post-hoc pairwise multiple com-
parisons using the Bonferroni method. Statistical differences between multiple groups (vonFrey, tail flick, per-
centage cavitation, lesion volume, neuronal counts, fiber counts, and % area measurements) were assessed using 
one-way ANOVA and Bonferroni post-hoc corrections. Differences between two groups (% RGMa immunore-
activity and number of NeuN + /tunel + double-labeled cells) were assessed using a two-tailed Student’s t-test. 
Differences of p < 0.05 were considered to be statistically significant.
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